Update pintar.py
Browse files
pintar.py
CHANGED
@@ -67,43 +67,35 @@ if __name__ == "__main__":
|
|
67 |
colorUNet.load_state_dict(ckpt["colorUNet"])
|
68 |
colorUNet.eval()
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
for root, dirs, files in os.walk(input_folder):
|
75 |
for file in files:
|
76 |
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
|
77 |
input_image_path = os.path.join(root, file)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
img1, img1_lab = preprocessing(img1)
|
84 |
-
img2, img2_lab = preprocessing(img2)
|
85 |
-
|
86 |
-
img1 = img1.to(device)
|
87 |
-
img1_lab = img1_lab.to(device)
|
88 |
-
img2 = img2.to(device)
|
89 |
-
img2_lab = img2_lab.to(device)
|
90 |
|
91 |
with torch.no_grad():
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
color_vector = colorEncoder(
|
96 |
-
fake_ab = colorUNet((
|
97 |
-
fake_ab = F.interpolate(fake_ab * 110, size=(
|
98 |
|
99 |
-
fake_img = torch.cat((
|
100 |
fake_img = Lab2RGB_out(fake_img)
|
101 |
|
102 |
-
relative_path = os.path.relpath(input_image_path, input_folder)
|
103 |
-
output_subfolder = os.path.join(output_folder, os.path.dirname(relative_path), 'color')
|
104 |
mkdirs(output_subfolder)
|
105 |
output_image_path = os.path.join(output_subfolder, f'{os.path.splitext(os.path.basename(input_image_path))[0]}_colorized.png')
|
106 |
io.imsave(output_image_path, fake_img)
|
107 |
|
108 |
-
print(f'Colored images have been saved to: {output_folder}')
|
109 |
-
|
|
|
67 |
colorUNet.load_state_dict(ckpt["colorUNet"])
|
68 |
colorUNet.eval()
|
69 |
|
70 |
+
reference_img = Image.open(args.reference_image).convert("RGB")
|
71 |
+
reference_img, reference_img_lab = preprocessing(reference_img)
|
72 |
+
reference_img = reference_img.to(device)
|
73 |
+
reference_img_lab = reference_img_lab.to(device)
|
74 |
|
75 |
+
for root, dirs, files in os.walk(args.input_folder):
|
76 |
for file in files:
|
77 |
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
|
78 |
input_image_path = os.path.join(root, file)
|
79 |
|
80 |
+
img, img_lab = preprocessing(Image.open(input_image_path).convert("RGB"))
|
81 |
+
img = img.to(device)
|
82 |
+
img_lab = img_lab.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
with torch.no_grad():
|
85 |
+
img_resize = F.interpolate(img / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
86 |
+
img_L_resize = F.interpolate(img_lab[:, :1, :, :] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
87 |
|
88 |
+
color_vector = colorEncoder(img_resize)
|
89 |
+
fake_ab = colorUNet((img_L_resize, color_vector))
|
90 |
+
fake_ab = F.interpolate(fake_ab * 110, size=(img.size(2), img.size(3)), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
91 |
|
92 |
+
fake_img = torch.cat((img_lab[:, :1, :, :], fake_ab), 1)
|
93 |
fake_img = Lab2RGB_out(fake_img)
|
94 |
|
95 |
+
relative_path = os.path.relpath(input_image_path, args.input_folder)
|
96 |
+
output_subfolder = os.path.join(args.output_folder, os.path.dirname(relative_path), 'color')
|
97 |
mkdirs(output_subfolder)
|
98 |
output_image_path = os.path.join(output_subfolder, f'{os.path.splitext(os.path.basename(input_image_path))[0]}_colorized.png')
|
99 |
io.imsave(output_image_path, fake_img)
|
100 |
|
101 |
+
print(f'Colored images have been saved to: {args.output_folder}')
|
|