Keiser41's picture
Update pintar.py
dc7f2ae
raw
history blame
4.48 kB
import os
import argparse
import numpy as np
from skimage import color, io
import torch
import torch.nn.functional as F
from PIL import Image
from models import ColorEncoder, ColorUNet
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def mkdirs(path):
if not os.path.exists(path):
os.makedirs(path)
def Lab2RGB_out(img_lab):
img_lab = img_lab.detach().cpu()
img_l = img_lab[:,:1,:,:]
img_ab = img_lab[:,1:,:,:]
img_l = img_l + 50
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1) * 255).astype("uint8")
return out
def RGB2Lab(inputs):
return color.rgb2lab(inputs)
def Normalize(inputs):
l = inputs[:, :, 0:1]
ab = inputs[:, :, 1:3]
l = l - 50
lab = np.concatenate((l, ab), 2)
return lab.astype('float32')
def numpy2tensor(inputs):
out = torch.from_numpy(inputs.transpose(2,0,1))
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Colorize manga images.")
parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing manga images.")
parser.add_argument("-r", "--reference_image", type=str, required=True, help="Path to the reference image for colorization.")
parser.add_argument("-ckpt", "--model_checkpoint", type=str, required=True, help="Path to the model checkpoint file.")
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder where colorized images will be saved.")
parser.add_argument("-ne", "--no_extractor", action="store_true", help="Do not segment the manga panels.")
args = parser.parse_args()
device = "cuda"
ckpt = torch.load(args.model_checkpoint, map_location=lambda storage, loc: storage)
colorEncoder = ColorEncoder().to(device)
colorEncoder.load_state_dict(ckpt["colorEncoder"])
colorEncoder.eval()
colorUNet = ColorUNet().to(device)
colorUNet.load_state_dict(ckpt["colorUNet"])
colorUNet.eval()
reference_img = Image.open(args.reference_image).convert("RGB")
reference_img = np.array(reference_img).astype(np.float32) / 255.0 # Asegúrate de que la referencia esté en el rango [0, 1]
reference_img_lab = RGB2Lab(reference_img)
reference_img_lab = Normalize(reference_img_lab)
reference_img_lab = numpy2tensor(reference_img_lab)
reference_img_lab = reference_img_lab.to(device).unsqueeze(0)
for root, dirs, files in os.walk(args.input_folder):
for file in files:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
input_image_path = os.path.join(root, file)
img = Image.open(input_image_path).convert("RGB")
img = np.array(img).astype(np.float32) / 255.0 # Asegúrate de que la imagen de entrada esté en el rango [0, 1]
img_lab = RGB2Lab(img)
img_lab = Normalize(img_lab)
img_lab = numpy2tensor(img_lab)
img_lab = img_lab.to(device).unsqueeze(0)
with torch.no_grad():
img_resize = F.interpolate(img_lab / 110., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
img_L_resize = F.interpolate(img_resize[:, :1, :, :] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
color_vector = colorEncoder(img_resize)
fake_ab = colorUNet((img_L_resize, color_vector))
fake_ab = F.interpolate(fake_ab, size=(img.shape[0], img.shape[1]), mode='bilinear', recompute_scale_factor=False, align_corners=False)
fake_img = torch.cat((img_lab[:, :1, :, :], fake_ab), 1)
fake_img = Lab2RGB_out(fake_img)
fake_img = (fake_img * 255).astype(np.uint8) # Convierte de nuevo a [0, 255]
relative_path = os.path.relpath(input_image_path, args.input_folder)
output_subfolder = os.path.join(args.output_folder, os.path.dirname(relative_path), 'color')
mkdirs(output_subfolder)
output_image_path = os.path.join(output_subfolder, f'{os.path.splitext(os.path.basename(input_image_path))[0]}_colorized.png')
io.imsave(output_image_path, fake_img)
print(f'Colored images have been saved to: {args.output_folder}')