|
import os |
|
import argparse |
|
import numpy as np |
|
from skimage import color, io |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from models import ColorEncoder, ColorUNet |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = '0' |
|
|
|
def mkdirs(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
def Lab2RGB_out(img_lab): |
|
img_lab = img_lab.detach().cpu() |
|
img_l = img_lab[:,:1,:,:] |
|
img_ab = img_lab[:,1:,:,:] |
|
img_l = img_l + 50 |
|
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy() |
|
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1) * 255).astype("uint8") |
|
return out |
|
|
|
def RGB2Lab(inputs): |
|
return color.rgb2lab(inputs) |
|
|
|
def Normalize(inputs): |
|
l = inputs[:, :, 0:1] |
|
ab = inputs[:, :, 1:3] |
|
l = l - 50 |
|
lab = np.concatenate((l, ab), 2) |
|
return lab.astype('float32') |
|
|
|
def numpy2tensor(inputs): |
|
out = torch.from_numpy(inputs.transpose(2,0,1)) |
|
return out |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Colorize manga images.") |
|
parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing manga images.") |
|
parser.add_argument("-r", "--reference_image", type=str, required=True, help="Path to the reference image for colorization.") |
|
parser.add_argument("-ckpt", "--model_checkpoint", type=str, required=True, help="Path to the model checkpoint file.") |
|
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder where colorized images will be saved.") |
|
parser.add_argument("-ne", "--no_extractor", action="store_true", help="Do not segment the manga panels.") |
|
args = parser.parse_args() |
|
|
|
device = "cuda" |
|
|
|
ckpt = torch.load(args.model_checkpoint, map_location=lambda storage, loc: storage) |
|
|
|
colorEncoder = ColorEncoder().to(device) |
|
colorEncoder.load_state_dict(ckpt["colorEncoder"]) |
|
colorEncoder.eval() |
|
|
|
colorUNet = ColorUNet().to(device) |
|
colorUNet.load_state_dict(ckpt["colorUNet"]) |
|
colorUNet.eval() |
|
|
|
reference_img = Image.open(args.reference_image).convert("RGB") |
|
reference_img = np.array(reference_img).astype(np.float32) / 255.0 |
|
reference_img_lab = RGB2Lab(reference_img) |
|
reference_img_lab = Normalize(reference_img_lab) |
|
reference_img_lab = numpy2tensor(reference_img_lab) |
|
reference_img_lab = reference_img_lab.to(device).unsqueeze(0) |
|
|
|
for root, dirs, files in os.walk(args.input_folder): |
|
for file in files: |
|
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')): |
|
input_image_path = os.path.join(root, file) |
|
|
|
img = Image.open(input_image_path).convert("RGB") |
|
img = np.array(img).astype(np.float32) / 255.0 |
|
img_lab = RGB2Lab(img) |
|
img_lab = Normalize(img_lab) |
|
img_lab = numpy2tensor(img_lab) |
|
img_lab = img_lab.to(device).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
img_resize = F.interpolate(img_lab / 110., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False) |
|
img_L_resize = F.interpolate(img_resize[:, :1, :, :] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False) |
|
|
|
color_vector = colorEncoder(img_resize) |
|
fake_ab = colorUNet((img_L_resize, color_vector)) |
|
fake_ab = F.interpolate(fake_ab, size=(img.shape[0], img.shape[1]), mode='bilinear', recompute_scale_factor=False, align_corners=False) |
|
|
|
fake_img = torch.cat((img_lab[:, :1, :, :], fake_ab), 1) |
|
fake_img = Lab2RGB_out(fake_img) |
|
fake_img = (fake_img * 255).astype(np.uint8) |
|
|
|
relative_path = os.path.relpath(input_image_path, args.input_folder) |
|
output_subfolder = os.path.join(args.output_folder, os.path.dirname(relative_path), 'color') |
|
mkdirs(output_subfolder) |
|
output_image_path = os.path.join(output_subfolder, f'{os.path.splitext(os.path.basename(input_image_path))[0]}_colorized.png') |
|
io.imsave(output_image_path, fake_img) |
|
|
|
print(f'Colored images have been saved to: {args.output_folder}') |
|
|