Keiser41's picture
Create pintar.py
0caed3c
raw
history blame
3.83 kB
import os
import numpy as np
from skimage import color, io
import torch
import torch.nn.functional as F
from PIL import Image
from models import ColorEncoder, ColorUNet
from extractor.manga_panel_extractor import PanelExtractor
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def mkdirs(path):
if not os.path.exists(path):
os.makedirs(path)
def Lab2RGB_out(img_lab):
img_lab = img_lab.detach().cpu()
img_l = img_lab[:,:1,:,:]
img_ab = img_lab[:,1:,:,:]
img_l = img_l + 50
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)* 255).astype("uint8")
return out
def RGB2Lab(inputs):
return color.rgb2lab(inputs)
def Normalize(inputs):
l = inputs[:, :, 0:1]
ab = inputs[:, :, 1:3]
l = l - 50
lab = np.concatenate((l, ab), 2)
return lab.astype('float32')
def numpy2tensor(inputs):
out = torch.from_numpy(inputs.transpose(2,0,1))
return out
def tensor2numpy(inputs):
out = inputs[0,...].detach().cpu().numpy().transpose(1,2,0)
return out
def preprocessing(inputs):
img_lab = Normalize(RGB2Lab(inputs))
img = np.array(inputs, 'float32')
img = numpy2tensor(img)
img_lab = numpy2tensor(img_lab)
return img.unsqueeze(0), img_lab.unsqueeze(0)
if __name__ == "__main__":
device = "cuda"
ckpt_path = 'experiments/Color2Manga_gray/074000_gray.pt'
test_dir_path = 'test_datasets/gray_test'
no_extractor = False
ref_img_path = 'path_to_your_reference_image.jpg' # Especifica la ruta de tu imagen de referencia aquí
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
colorEncoder = ColorEncoder().to(device)
colorEncoder.load_state_dict(ckpt["colorEncoder"])
colorEncoder.eval()
colorUNet = ColorUNet().to(device)
colorUNet.load_state_dict(ckpt["colorUNet"])
colorUNet.eval()
img1 = Image.open(ref_img_path).convert("RGB")
width, height = img1.size
img1, img1_lab = preprocessing(img1)
img1 = img1.to(device)
img1_lab = img1_lab.to(device)
while True:
print(f'make sure manga images are under this path: {test_dir_path}')
img_path = input("please input the name of image needed to be colorized (with file extension): ")
img_path = os.path.join(test_dir_path, img_path)
img_name = os.path.basename(img_path)
img_name = os.path.splitext(img_name)[0]
img2 = Image.open(img_path).convert("RGB")
img2, img2_lab = preprocessing(img2)
img2 = img2.to(device)
img2_lab = img2_lab.to(device)
with torch.no_grad():
img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
color_vector = colorEncoder(img2_resize)
fake_ab = colorUNet((img1_L_resize, color_vector))
fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
fake_img = Lab2RGB_out(fake_img)
out_folder = os.path.dirname(img_path)
out_name = os.path.basename(img_path)
out_name = os.path.splitext(out_name)[0]
out_img_path = os.path.join(out_folder, 'color', f'{out_name}_color.png')
# show image
Image.fromarray(fake_img).show()
# save image
folder_path = os.path.join(out_folder, 'color')
if not os.path.exists(folder_path):
os.mkdir(folder_path)
io.imsave(out_img_path, fake_img)