File size: 7,194 Bytes
0caed3c
0004858
0caed3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df23063
0caed3c
 
 
 
 
 
 
 
 
 
 
 
 
df23063
0caed3c
 
 
df23063
0caed3c
 
 
 
 
 
 
 
 
 
 
 
df23063
 
 
 
 
0caed3c
df23063
0caed3c
df23063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import argparse
import numpy as np
from skimage import color, io
import torch
import torch.nn.functional as F
from PIL import Image
from models import ColorEncoder, ColorUNet
from extractor.manga_panel_extractor import PanelExtractor

os.environ["CUDA_VISIBLE_DEVICES"] = '0'

def mkdirs(path):
    if not os.path.exists(path):
        os.makedirs(path)

def Lab2RGB_out(img_lab):
    img_lab = img_lab.detach().cpu()
    img_l = img_lab[:,:1,:,:]
    img_ab = img_lab[:,1:,:,:]
    img_l = img_l + 50
    pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
    out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)* 255).astype("uint8")
    return out

def RGB2Lab(inputs):
    return color.rgb2lab(inputs)

def Normalize(inputs):
    l = inputs[:, :, 0:1]
    ab = inputs[:, :, 1:3]
    l = l - 50
    lab = np.concatenate((l, ab), 2)
    return lab.astype('float32')

def numpy2tensor(inputs):
    out = torch.from_numpy(inputs.transpose(2,0,1))
    return out

def tensor2numpy(inputs):
    out = inputs[0,...].detach().cpu().numpy().transpose(1,2,0)
    return out

def preprocessing(inputs):
    img_lab = Normalize(RGB2Lab(inputs))
    img = np.array(inputs, 'float32')
    img = numpy2tensor(img)
    img_lab = numpy2tensor(img_lab)
    return img.unsqueeze(0), img_lab.unsqueeze(0)

if __name__ == "__main__":
    device = "cuda"

    parser = argparse.ArgumentParser()
    parser.add_argument("--path", type=str, default=None, help="path of input image")
    parser.add_argument("--size", type=int, default=None)
    parser.add_argument("--ckpt", type=str, default=None, help="path of model weight")
    parser.add_argument("-ne", "--no_extractor", action='store_true', help="Do not segment the manga panels.")

    args = parser.parse_args()

    if args.path:
        test_dir_path = args.path
    if args.size:
        imgsize = args.size
    if args.ckpt:
        ckpt_path = args.ckpt
    if args.no_extractor:
        no_extractor = args.no_extractor

    ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)

    colorEncoder = ColorEncoder().to(device)
    colorEncoder.load_state_dict(ckpt["colorEncoder"])
    colorEncoder.eval()

    colorUNet = ColorUNet().to(device)
    colorUNet.load_state_dict(ckpt["colorUNet"])
    colorUNet.eval()

    imgs = []
    imgs_lab = []

    while 1:
        print(f'make sure both manga image and reference images are under this path {test_dir_path}')
        img_path = input("please input the name of image needed to be colorized (with file extension): ")
        img_path = os.path.join(test_dir_path, img_path)
        img_name = os.path.basename(img_path)
        img_name = os.path.splitext(img_name)[0]

        if no_extractor:
            ref_img_path = os.path.join(test_dir_path, input(f"Enter the reference image path: "))

            img1 = Image.open(img_path).convert("RGB")
            width, height = img1.size
            img2 = Image.open(ref_img_path).convert("RGB")

            img1, img1_lab = preprocessing(img1)
            img2, img2_lab = preprocessing(img2)

            img1 = img1.to(device)
            img1_lab = img1_lab.to(device)
            img2 = img2.to(device)
            img2_lab = img2_lab.to(device)

            with torch.no_grad():
                img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear',
                                            recompute_scale_factor=False, align_corners=False)
                img1_L_resize = F.interpolate(img1_lab[:, :1, :, :] / 50., size=(imgsize, imgsize), mode='bilinear',
                                              recompute_scale_factor=False, align_corners=False)

                color_vector = colorEncoder(img2_resize)

                fake_ab = colorUNet((img1_L_resize, color_vector))
                fake_ab = F.interpolate(fake_ab * 110, size=(height, width), mode='bilinear',
                                        recompute_scale_factor=False, align_corners=False)

                fake_img = torch.cat((img1_lab[:, :1, :, :], fake_ab), 1)
                fake_img = Lab2RGB_out(fake_img)

                out_folder = os.path.dirname(img_path)
                out_name = os.path.basename(img_path)
                out_name = os.path.splitext(out_name)[0]
                out_img_path = os.path.join(out_folder, 'color', f'{out_name}_color.png')

                # show image
                Image.fromarray(fake_img).show()
                # save image
                folder_path = os.path.join(out_folder, 'color')
                if not os.path.exists(folder_path):
                    os.makedirs(folder_path)
                io.imsave(out_img_path, fake_img)

            continue

        panel_extractor = PanelExtractor(min_pct_panel=5, max_pct_panel=90)
        panels, masks, panel_masks = panel_extractor.extract(img_path)
        panel_num = len(panels)

        ref_img_paths = []
        print("Please enter the name of the reference image in order according to the number prompts on the picture")
        for i in range(panel_num):
            ref_img_path = os.path.join(test_dir_path, input(f"{i+1}/{panel_num} reference image:"))
            ref_img_paths.append(ref_img_path)

        fake_imgs = []
        for i in range(panel_num):
            img1 = Image.fromarray(panels[i]).convert("RGB")
            width, height = img1.size
            img2 = Image.open(ref_img_paths[i]).convert("RGB")

            img1, img1_lab = preprocessing(img1)
            img2, img2_lab = preprocessing(img2)

            img1 = img1.to(device)
            img1_lab = img1_lab.to(device)
            img2 = img2.to(device)
            img2_lab = img2_lab.to(device)

            with torch.no_grad():
                img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
                img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)

                color_vector = colorEncoder(img2_resize)

                fake_ab = colorUNet((img1_L_resize, color_vector))
                fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)

                fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
                fake_img = Lab2RGB_out(fake_img)
                fake_imgs.append(fake_img)

        if panel_num == 1:
            out_folder = os.path.dirname(img_path)
            out_name = os.path.basename(img_path)
            out_name = os.path.splitext(out_name)[0]
            out_img_path = os.path.join(out_folder,'color',f'{out_name}_color.png')

            Image.fromarray(fake_imgs[0]).show()
            folder_path = os.path.join(out_folder, 'color')
            if not os.path.exists(folder_path):
                os.makedirs(folder_path)
            io.imsave(out_img_path, fake_imgs[0])
        else:
            panel_extractor.concatPanels(img_path, fake_imgs, masks, panel_masks)

        print(f'Colored images have been saved to: {os.path.join(test_dir_path, "color")}')