File size: 6,446 Bytes
0caed3c
 
 
 
 
 
 
063c371
 
0caed3c
 
 
 
 
 
 
 
 
 
 
 
 
f199ded
0caed3c
 
 
 
 
 
 
 
 
 
 
 
 
df23063
0caed3c
 
063c371
 
 
 
 
 
 
 
 
 
 
0caed3c
f199ded
 
 
 
dc7f2ae
df23063
0caed3c
f199ded
df23063
f199ded
df23063
 
 
 
 
 
 
 
 
063c371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a424b9d
 
063c371
 
a424b9d
063c371
 
 
a424b9d
063c371
a424b9d
 
063c371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import numpy as np
from skimage import color, io
import torch
import torch.nn.functional as F
from PIL import Image
from models import ColorEncoder, ColorUNet
from extractor.manga_panel_extractor import PanelExtractor
import argparse

os.environ["CUDA_VISIBLE_DEVICES"] = '0'

def mkdirs(path):
    if not os.path.exists(path):
        os.makedirs(path)

def Lab2RGB_out(img_lab):
    img_lab = img_lab.detach().cpu()
    img_l = img_lab[:,:1,:,:]
    img_ab = img_lab[:,1:,:,:]
    img_l = img_l + 50
    pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
    out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1) * 255).astype("uint8")
    return out

def RGB2Lab(inputs):
    return color.rgb2lab(inputs)

def Normalize(inputs):
    l = inputs[:, :, 0:1]
    ab = inputs[:, :, 1:3]
    l = l - 50
    lab = np.concatenate((l, ab), 2)
    return lab.astype('float32')

def numpy2tensor(inputs):
    out = torch.from_numpy(inputs.transpose(2,0,1))
    return out

def tensor2numpy(inputs):
    out = inputs[0,...].detach().cpu().numpy().transpose(1,2,0)
    return out

def preprocessing(inputs):
    img_lab = Normalize(RGB2Lab(inputs))
    img = np.array(inputs, 'float32')
    img = numpy2tensor(img)
    img_lab = numpy2tensor(img_lab)
    return img.unsqueeze(0), img_lab.unsqueeze(0)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Colorize manga images.")
    parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing manga images.")
    parser.add_argument("-ckpt", "--model_checkpoint", type=str, required=True, help="Path to the model checkpoint file.")
    parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder where colorized images will be saved.")
    parser.add_argument("-ne", "--no_extractor", action="store_true", help="Do not segment the manga panels.")
    args = parser.parse_args()

    device = "cuda"

    ckpt = torch.load(args.model_checkpoint, map_location=lambda storage, loc: storage)

    colorEncoder = ColorEncoder().to(device)
    colorEncoder.load_state_dict(ckpt["colorEncoder"])
    colorEncoder.eval()

    colorUNet = ColorUNet().to(device)
    colorUNet.load_state_dict(ckpt["colorUNet"])
    colorUNet.eval()

    input_files = os.listdir(args.input_folder)

    for input_file in input_files:
        input_path = os.path.join(args.input_folder, input_file)

        if os.path.isfile(input_path):
            if args.no_extractor:
                ref_img_path = input("Please enter the path of the reference image: ")

                img1 = Image.open(ref_img_path).convert("RGB")
                width, height = img1.size
                img2 = Image.open(input_path).convert("RGB")

                img1, img1_lab = preprocessing(img1)
                img2, img2_lab = preprocessing(img2)

                img1 = img1.to(device)
                img1_lab = img1_lab.to(device)
                img2 = img2.to(device)
                img2_lab = img2_lab.to(device)

                with torch.no_grad():
                    img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
                    img1_L_resize = F.interpolate(img1_lab[:, :1, :, :] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)

                    color_vector = colorEncoder(img2_resize)
                    fake_ab = colorUNet((img1_L_resize, color_vector))
                    fake_ab = F.interpolate(fake_ab * 110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)

                    fake_img = torch.cat((img1_lab[:, :1, :, :], fake_ab), 1)
                    fake_img = Lab2RGB_out(fake_img)

                    out_folder = os.path.join(args.output_folder, 'color')
                    mkdirs(out_folder)
                    out_img_path = os.path.join(out_folder, f'{os.path.splitext(input_file)[0]}_color.png')
                    io.imsave(out_img_path, fake_img)

            else:
                panel_extractor = PanelExtractor(min_pct_panel=5, max_pct_panel=90)  # You might need to adjust these parameters
                panels, masks, panel_masks = panel_extractor.extract(input_path)
                
                ref_img_paths = []
                print("Please enter the name of the reference image in order according to the number prompts on the picture")
                for i in range(len(panels)):
                    ref_img_path = input(f"{i+1}/{len(panels)} reference image:")
                    ref_img_paths.append(ref_img_path)

                fake_imgs = []
                for i in range(len(panels)):
                    img1 = Image.fromarray(panels[i]).convert("RGB")
                    width, height = img1.size
                    img2 = Image.open(ref_img_paths[i]).convert("RGB")

                    img1, img1_lab = preprocessing(img1)
                    img2, img2_lab = preprocessing(img2)

                    img1 = img1.to(device)
                    img1_lab = img1_lab.to(device)
                    img2 = img2.to(device)
                    img2_lab = img2_lab.to(device)

                    with torch.no_grad():
                        img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
                        img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)

                        color_vector = colorEncoder(img2_resize)

                        fake_ab = colorUNet((img1_L_resize, color_vector))
                        fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)

                        fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
                        fake_img = Lab2RGB_out(fake_img)

                        out_folder = os.path.join(args.output_folder, 'color')
                        mkdirs(out_folder)
                        out_img_path = os.path.join(out_folder, f'{os.path.splitext(input_file)[0]}_panel_{i}_color.png')
                        io.imsave(out_img_path, fake_img)

    print(f'Colored images have been saved to: {os.path.join(args.output_folder, "color")}')