File size: 6,446 Bytes
0caed3c 063c371 0caed3c f199ded 0caed3c df23063 0caed3c 063c371 0caed3c f199ded dc7f2ae df23063 0caed3c f199ded df23063 f199ded df23063 063c371 a424b9d 063c371 a424b9d 063c371 a424b9d 063c371 a424b9d 063c371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import numpy as np
from skimage import color, io
import torch
import torch.nn.functional as F
from PIL import Image
from models import ColorEncoder, ColorUNet
from extractor.manga_panel_extractor import PanelExtractor
import argparse
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def mkdirs(path):
if not os.path.exists(path):
os.makedirs(path)
def Lab2RGB_out(img_lab):
img_lab = img_lab.detach().cpu()
img_l = img_lab[:,:1,:,:]
img_ab = img_lab[:,1:,:,:]
img_l = img_l + 50
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1) * 255).astype("uint8")
return out
def RGB2Lab(inputs):
return color.rgb2lab(inputs)
def Normalize(inputs):
l = inputs[:, :, 0:1]
ab = inputs[:, :, 1:3]
l = l - 50
lab = np.concatenate((l, ab), 2)
return lab.astype('float32')
def numpy2tensor(inputs):
out = torch.from_numpy(inputs.transpose(2,0,1))
return out
def tensor2numpy(inputs):
out = inputs[0,...].detach().cpu().numpy().transpose(1,2,0)
return out
def preprocessing(inputs):
img_lab = Normalize(RGB2Lab(inputs))
img = np.array(inputs, 'float32')
img = numpy2tensor(img)
img_lab = numpy2tensor(img_lab)
return img.unsqueeze(0), img_lab.unsqueeze(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Colorize manga images.")
parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing manga images.")
parser.add_argument("-ckpt", "--model_checkpoint", type=str, required=True, help="Path to the model checkpoint file.")
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder where colorized images will be saved.")
parser.add_argument("-ne", "--no_extractor", action="store_true", help="Do not segment the manga panels.")
args = parser.parse_args()
device = "cuda"
ckpt = torch.load(args.model_checkpoint, map_location=lambda storage, loc: storage)
colorEncoder = ColorEncoder().to(device)
colorEncoder.load_state_dict(ckpt["colorEncoder"])
colorEncoder.eval()
colorUNet = ColorUNet().to(device)
colorUNet.load_state_dict(ckpt["colorUNet"])
colorUNet.eval()
input_files = os.listdir(args.input_folder)
for input_file in input_files:
input_path = os.path.join(args.input_folder, input_file)
if os.path.isfile(input_path):
if args.no_extractor:
ref_img_path = input("Please enter the path of the reference image: ")
img1 = Image.open(ref_img_path).convert("RGB")
width, height = img1.size
img2 = Image.open(input_path).convert("RGB")
img1, img1_lab = preprocessing(img1)
img2, img2_lab = preprocessing(img2)
img1 = img1.to(device)
img1_lab = img1_lab.to(device)
img2 = img2.to(device)
img2_lab = img2_lab.to(device)
with torch.no_grad():
img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
img1_L_resize = F.interpolate(img1_lab[:, :1, :, :] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
color_vector = colorEncoder(img2_resize)
fake_ab = colorUNet((img1_L_resize, color_vector))
fake_ab = F.interpolate(fake_ab * 110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
fake_img = torch.cat((img1_lab[:, :1, :, :], fake_ab), 1)
fake_img = Lab2RGB_out(fake_img)
out_folder = os.path.join(args.output_folder, 'color')
mkdirs(out_folder)
out_img_path = os.path.join(out_folder, f'{os.path.splitext(input_file)[0]}_color.png')
io.imsave(out_img_path, fake_img)
else:
panel_extractor = PanelExtractor(min_pct_panel=5, max_pct_panel=90) # You might need to adjust these parameters
panels, masks, panel_masks = panel_extractor.extract(input_path)
ref_img_paths = []
print("Please enter the name of the reference image in order according to the number prompts on the picture")
for i in range(len(panels)):
ref_img_path = input(f"{i+1}/{len(panels)} reference image:")
ref_img_paths.append(ref_img_path)
fake_imgs = []
for i in range(len(panels)):
img1 = Image.fromarray(panels[i]).convert("RGB")
width, height = img1.size
img2 = Image.open(ref_img_paths[i]).convert("RGB")
img1, img1_lab = preprocessing(img1)
img2, img2_lab = preprocessing(img2)
img1 = img1.to(device)
img1_lab = img1_lab.to(device)
img2 = img2.to(device)
img2_lab = img2_lab.to(device)
with torch.no_grad():
img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
color_vector = colorEncoder(img2_resize)
fake_ab = colorUNet((img1_L_resize, color_vector))
fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
fake_img = Lab2RGB_out(fake_img)
out_folder = os.path.join(args.output_folder, 'color')
mkdirs(out_folder)
out_img_path = os.path.join(out_folder, f'{os.path.splitext(input_file)[0]}_panel_{i}_color.png')
io.imsave(out_img_path, fake_img)
print(f'Colored images have been saved to: {os.path.join(args.output_folder, "color")}')
|