---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 2 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
Thursday 28 Mar LAE1113 FCO4 Lecture 8.OOAM T1-OOAM FCI Building CQAR4OO6 C DS1114 TCIL Lecture 12OOPM 2O0PM Common Lecture Complex & MPH CNMX10O3 CMT1134 TC3L Lecture 2 OOpM 4OOpM Common Lecture Complex & MPH CNMX1OO3
| Thursday 28 Mar LAE1113 FCO4 Lecture 8:00AM - 10:00AM FCI Building CQAR4006 C DS1114 TC1L Lecture 1200PM - 2:00PM Common Lecture Complex & MPH CNMX1003 CMT1134 TC3L Lecture 2:00PM - 4:00PM Common Lecture Complex & MPH CNMX1003
|
| Wednesday 27 Mar C PP1113 - TTSL Tutoral 2OOPM 4OOPM FCI Building CQAR40O5 C MT1134 TT9L Tutoral 4.Oopm 6.00pm FCI Building CQAROOO2
| Wednesday 27 Mar CPP1113 - TT5L Tutorial 2:00PM - 4:00PM FCI Building CQAR4005 C MT1134 TT9L Tutorial 4:00PM 6:00PM FCI Building CQAR0002
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1 evaluation samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | Friday 29 Mar C MT1134 TC3L Lecture 11.OOAM _ 12.O0PM Common Lecture Complex & MPH CNMX1002 C DS1114 - TTIL Tutorial 3OOPM 5.OOPM FCI Building COCR300Z
| Friday 29 Mar CMT1134 TC3L Lecture 11:00AM - 12:00PM Common Lecture Complex & MPH CNMX1002 CDS1114 - TT1L Tutorial 3:00PM - 5:00PM FCI Building CQCR3002
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 3e-05
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `ddp_find_unused_parameters`: False
#### All Hyperparameters