fatal: not a git repository (or any parent up to mount point /kaggle)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
fatal: not a git repository (or any parent up to mount point /kaggle)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
> Training Environment:
| > Backend: Torch
| > Mixed precision: False
| > Precision: float32
| > Current device: 0
| > Num. of GPUs: 1
| > Num. of CPUs: 4
| > Num. of Torch Threads: 2
| > Torch seed: 54321
| > Torch CUDNN: True
| > Torch CUDNN deterministic: False
| > Torch CUDNN benchmark: False
| > Torch TF32 MatMul: False
> Start Tensorboard: tensorboard --logdir=/kaggle/working/train_output/vits-male-finetune-January-25-2025_01+06PM-0000000
> Restoring from checkpoint_218000.pth ...
> Restoring Model...
> Restoring Optimizer...
> Model restored from step 218000
> Model has 83063980 parameters
> EPOCH: 0/1000
--> /kaggle/working/train_output/vits-male-finetune-January-25-2025_01+06PM-0000000
100%|███████████████████████████████████████| 3689/3689 [05:58<00:00, 10.30it/s]
> TRAINING (2025-01-25 13:13:58)
! Run is removed from /kaggle/working/train_output/vits-male-finetune-January-25-2025_01+06PM-0000000
Traceback (most recent call last):
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 1633, in fit
self._fit()
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 1585, in _fit
self.train_epoch()
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 1302, in train_epoch
outputs, _ = self.train_step(batch, batch_num_steps, cur_step, loader_start_time)
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 1179, in train_step
outputs, loss_dict_new, step_time = self.optimize(
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 1018, in optimize
outputs, loss_dict = self._compute_loss(
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 947, in _compute_loss
outputs, loss_dict = self._model_train_step(batch, model, criterion, optimizer_idx=optimizer_idx)
File "/kaggle/working/my_env/lib/python3.9/site-packages/trainer/trainer.py", line 896, in _model_train_step
return model.train_step(*input_args)
File "/kaggle/working/my_env/lib/python3.9/site-packages/TTS/tts/models/vits.py", line 1110, in train_step
scores_disc_fake, _, scores_disc_real, _ = self.disc(
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/TTS/tts/layers/vits/discriminator.py", line 82, in forward
x_score, x_feat = net(x)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/TTS/vocoder/models/hifigan_discriminator.py", line 69, in forward
x = l(x)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 554, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/utils/parametrize.py", line 407, in get_parametrized
return parametrization()
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/utils/parametrize.py", line 303, in forward
x = self[0](*originals)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/kaggle/working/my_env/lib/python3.9/site-packages/torch/nn/utils/parametrizations.py", line 325, in forward
return torch._weight_norm(weight_v, weight_g, self.dim)
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 15.89 GiB of which 35.12 MiB is free. Process 4102 has 15.85 GiB memory in use. Of the allocated memory 14.83 GiB is allocated by PyTorch, and 730.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)