Upload Kabil_(EfficientNetB5_model).ipynb
Browse files- Kabil_(EfficientNetB5_model).ipynb +1078 -0
Kabil_(EfficientNetB5_model).ipynb
ADDED
@@ -0,0 +1,1078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"# EfficientNet B5\n",
|
23 |
+
"## Let's Begin...."
|
24 |
+
],
|
25 |
+
"metadata": {
|
26 |
+
"id": "DGOlpli75Z_c"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 1,
|
32 |
+
"metadata": {
|
33 |
+
"id": "OylMWw9Sh3b3"
|
34 |
+
},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"# Import Neccessary Lib...\n",
|
38 |
+
"import pandas as pd\n",
|
39 |
+
"import numpy as np\n",
|
40 |
+
"from matplotlib import pyplot as plt\n",
|
41 |
+
"import seaborn as sns\n",
|
42 |
+
"\n",
|
43 |
+
"\n",
|
44 |
+
"import os\n",
|
45 |
+
"import random\n",
|
46 |
+
"\n",
|
47 |
+
"from sklearn.model_selection import train_test_split\n",
|
48 |
+
"from sklearn.metrics import confusion_matrix, classification_report\n",
|
49 |
+
"import cv2\n",
|
50 |
+
"\n",
|
51 |
+
"import tensorflow as tf\n",
|
52 |
+
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
53 |
+
"from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint\n",
|
54 |
+
"from tensorflow.keras.applications import VGG19\n",
|
55 |
+
"from tensorflow.keras.optimizers import Adam, Adamax\n",
|
56 |
+
"from tensorflow.keras.models import Sequential\n",
|
57 |
+
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization\n",
|
58 |
+
"from tensorflow.keras import regularizers\n",
|
59 |
+
"from tensorflow.keras.regularizers import l1, l2"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"source": [
|
65 |
+
"# Directory paths\n",
|
66 |
+
"train_dir = 'drive/MyDrive/LungCancer-IITM/Data/train'\n",
|
67 |
+
"test_dir = 'drive/MyDrive/LungCancer-IITM/Data/test'\n",
|
68 |
+
"valid_dir = 'drive/MyDrive/LungCancer-IITM/Data/valid'"
|
69 |
+
],
|
70 |
+
"metadata": {
|
71 |
+
"id": "4DHOnXmTh8a_"
|
72 |
+
},
|
73 |
+
"execution_count": 2,
|
74 |
+
"outputs": []
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"source": [
|
79 |
+
"\n",
|
80 |
+
"\n",
|
81 |
+
"\n"
|
82 |
+
],
|
83 |
+
"metadata": {
|
84 |
+
"colab": {
|
85 |
+
"base_uri": "https://localhost:8080/"
|
86 |
+
},
|
87 |
+
"id": "PTGmzmm_iEqc",
|
88 |
+
"outputId": "6ecc5f01-8a51-4ef8-e672-ef60d5668eab"
|
89 |
+
},
|
90 |
+
"execution_count": 3,
|
91 |
+
"outputs": [
|
92 |
+
{
|
93 |
+
"output_type": "stream",
|
94 |
+
"name": "stdout",
|
95 |
+
"text": [
|
96 |
+
"Train DataFrame:\n",
|
97 |
+
" Image_Path \\\n",
|
98 |
+
"0 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
99 |
+
"1 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
100 |
+
"2 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
101 |
+
"3 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
102 |
+
"4 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
103 |
+
"\n",
|
104 |
+
" Label \n",
|
105 |
+
"0 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
106 |
+
"1 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
107 |
+
"2 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
108 |
+
"3 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
109 |
+
"4 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n"
|
110 |
+
]
|
111 |
+
}
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"source": [
|
117 |
+
"import os\n",
|
118 |
+
"import pandas as pd\n",
|
119 |
+
"\n",
|
120 |
+
"# Function to create a DataFrame from image files in a folder\n",
|
121 |
+
"def create_dataframe(folder_path):\n",
|
122 |
+
" # Initialize an empty dictionary to store image paths and labels\n",
|
123 |
+
" data = {'Image_Path': [], 'Label': []}\n",
|
124 |
+
"\n",
|
125 |
+
" # List all subdirectories (labels) in the given folder\n",
|
126 |
+
" labels = os.listdir(folder_path)\n",
|
127 |
+
"\n",
|
128 |
+
" # Loop through each label\n",
|
129 |
+
" for label in labels:\n",
|
130 |
+
" # Construct the full path to the label folder\n",
|
131 |
+
" label_path = os.path.join(folder_path, label)\n",
|
132 |
+
"\n",
|
133 |
+
" # Check if the path is a directory\n",
|
134 |
+
" if os.path.isdir(label_path):\n",
|
135 |
+
" # List all image files in the label folder\n",
|
136 |
+
" images = os.listdir(label_path)\n",
|
137 |
+
"\n",
|
138 |
+
" # Loop through each image\n",
|
139 |
+
" for image in images:\n",
|
140 |
+
" # Construct the full path to the image\n",
|
141 |
+
" image_path = os.path.join(label_path, image)\n",
|
142 |
+
"\n",
|
143 |
+
" # Append image path and label to the dictionary\n",
|
144 |
+
" data['Image_Path'].append(image_path)\n",
|
145 |
+
" data['Label'].append(label)\n",
|
146 |
+
"\n",
|
147 |
+
" # Create a DataFrame from the dictionary\n",
|
148 |
+
" df = pd.DataFrame(data)\n",
|
149 |
+
" return df\n",
|
150 |
+
"\n",
|
151 |
+
"# Provide the path to your 'data' folder\n",
|
152 |
+
"data_folder = 'drive/MyDrive/LungCancer-IITM/Data'\n",
|
153 |
+
"\n",
|
154 |
+
"# Create DataFrames for train, test, and valid using the create_dataframe function\n",
|
155 |
+
"train_df = create_dataframe(os.path.join(data_folder, 'train'))\n",
|
156 |
+
"test_df = create_dataframe(os.path.join(data_folder, 'test'))\n",
|
157 |
+
"valid_df = create_dataframe(os.path.join(data_folder, 'valid'))\n",
|
158 |
+
"\n",
|
159 |
+
"# Print the created DataFrames for inspection\n",
|
160 |
+
"print(\"Train DataFrame:\")\n",
|
161 |
+
"print(train_df.head())"
|
162 |
+
],
|
163 |
+
"metadata": {
|
164 |
+
"colab": {
|
165 |
+
"base_uri": "https://localhost:8080/"
|
166 |
+
},
|
167 |
+
"outputId": "67d41380-a800-446f-e017-98e22cb99872",
|
168 |
+
"id": "U-4wnr0O8dvF"
|
169 |
+
},
|
170 |
+
"execution_count": null,
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"output_type": "stream",
|
174 |
+
"name": "stdout",
|
175 |
+
"text": [
|
176 |
+
"Train DataFrame:\n",
|
177 |
+
" Image_Path \\\n",
|
178 |
+
"0 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
179 |
+
"1 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
180 |
+
"2 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
181 |
+
"3 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
182 |
+
"4 drive/MyDrive/LungCancer-IITM/Data/train/adeno... \n",
|
183 |
+
"\n",
|
184 |
+
" Label \n",
|
185 |
+
"0 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
186 |
+
"1 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
187 |
+
"2 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
188 |
+
"3 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n",
|
189 |
+
"4 adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib \n"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"source": [
|
197 |
+
"print(\"\\nTest DataFrame:\")\n",
|
198 |
+
"print(test_df.head())"
|
199 |
+
],
|
200 |
+
"metadata": {
|
201 |
+
"colab": {
|
202 |
+
"base_uri": "https://localhost:8080/"
|
203 |
+
},
|
204 |
+
"id": "c6iuI9JXiLQd",
|
205 |
+
"outputId": "e360f402-86ec-4aba-d390-be7e5ded6110"
|
206 |
+
},
|
207 |
+
"execution_count": 4,
|
208 |
+
"outputs": [
|
209 |
+
{
|
210 |
+
"output_type": "stream",
|
211 |
+
"name": "stdout",
|
212 |
+
"text": [
|
213 |
+
"\n",
|
214 |
+
"Test DataFrame:\n",
|
215 |
+
" Image_Path Label\n",
|
216 |
+
"0 drive/MyDrive/LungCancer-IITM/Data/test/large.... large.cell.carcinoma\n",
|
217 |
+
"1 drive/MyDrive/LungCancer-IITM/Data/test/large.... large.cell.carcinoma\n",
|
218 |
+
"2 drive/MyDrive/LungCancer-IITM/Data/test/large.... large.cell.carcinoma\n",
|
219 |
+
"3 drive/MyDrive/LungCancer-IITM/Data/test/large.... large.cell.carcinoma\n",
|
220 |
+
"4 drive/MyDrive/LungCancer-IITM/Data/test/large.... large.cell.carcinoma\n"
|
221 |
+
]
|
222 |
+
}
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"source": [
|
228 |
+
"print(\"\\nValid DataFrame:\")\n",
|
229 |
+
"print(valid_df.head())"
|
230 |
+
],
|
231 |
+
"metadata": {
|
232 |
+
"colab": {
|
233 |
+
"base_uri": "https://localhost:8080/"
|
234 |
+
},
|
235 |
+
"id": "0TX-BeALiOEZ",
|
236 |
+
"outputId": "68839461-8585-426f-c4e7-dce922db48bb"
|
237 |
+
},
|
238 |
+
"execution_count": 5,
|
239 |
+
"outputs": [
|
240 |
+
{
|
241 |
+
"output_type": "stream",
|
242 |
+
"name": "stdout",
|
243 |
+
"text": [
|
244 |
+
"\n",
|
245 |
+
"Valid DataFrame:\n",
|
246 |
+
" Image_Path \\\n",
|
247 |
+
"0 drive/MyDrive/LungCancer-IITM/Data/valid/large... \n",
|
248 |
+
"1 drive/MyDrive/LungCancer-IITM/Data/valid/large... \n",
|
249 |
+
"2 drive/MyDrive/LungCancer-IITM/Data/valid/large... \n",
|
250 |
+
"3 drive/MyDrive/LungCancer-IITM/Data/valid/large... \n",
|
251 |
+
"4 drive/MyDrive/LungCancer-IITM/Data/valid/large... \n",
|
252 |
+
"\n",
|
253 |
+
" Label \n",
|
254 |
+
"0 large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa \n",
|
255 |
+
"1 large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa \n",
|
256 |
+
"2 large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa \n",
|
257 |
+
"3 large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa \n",
|
258 |
+
"4 large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa \n"
|
259 |
+
]
|
260 |
+
}
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"source": [
|
266 |
+
"# Calculate the number of unique classes (labels) in the 'Label' column of the training DataFrame\n",
|
267 |
+
"num_classes = len(train_df['Label'].unique())\n",
|
268 |
+
"\n",
|
269 |
+
"# Print the number of classes in the dataset\n",
|
270 |
+
"print(f\"We have {num_classes} classes\")\n",
|
271 |
+
"\n",
|
272 |
+
"# Print the total number of images in the training DataFrame (total rows)\n",
|
273 |
+
"print(f\"We have {train_df.shape[0]} images\")"
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"colab": {
|
277 |
+
"base_uri": "https://localhost:8080/"
|
278 |
+
},
|
279 |
+
"id": "dKwwZ0aXiS8Y",
|
280 |
+
"outputId": "17a1d131-9684-4e97-eb98-d836de207eb6"
|
281 |
+
},
|
282 |
+
"execution_count": 6,
|
283 |
+
"outputs": [
|
284 |
+
{
|
285 |
+
"output_type": "stream",
|
286 |
+
"name": "stdout",
|
287 |
+
"text": [
|
288 |
+
"We have 4 classes\n",
|
289 |
+
"We have 613 images\n"
|
290 |
+
]
|
291 |
+
}
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"source": [
|
297 |
+
"# Calculate the number of unique classes (labels) in the 'Label' column of the test DataFrame\n",
|
298 |
+
"num_classes = len(test_df['Label'].unique())\n",
|
299 |
+
"\n",
|
300 |
+
"# Print the number of classes in the dataset\n",
|
301 |
+
"print(f\"We have {num_classes} classes\")\n",
|
302 |
+
"\n",
|
303 |
+
"# Print the total number of images in the test DataFrame (total rows)\n",
|
304 |
+
"print(f\"We have {test_df.shape[0]} images\")"
|
305 |
+
],
|
306 |
+
"metadata": {
|
307 |
+
"colab": {
|
308 |
+
"base_uri": "https://localhost:8080/"
|
309 |
+
},
|
310 |
+
"id": "C8DIiGIwijaq",
|
311 |
+
"outputId": "6e7a4904-4c58-4dcc-84d6-4bd02b00df6a"
|
312 |
+
},
|
313 |
+
"execution_count": 7,
|
314 |
+
"outputs": [
|
315 |
+
{
|
316 |
+
"output_type": "stream",
|
317 |
+
"name": "stdout",
|
318 |
+
"text": [
|
319 |
+
"We have 4 classes\n",
|
320 |
+
"We have 315 images\n"
|
321 |
+
]
|
322 |
+
}
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"source": [
|
328 |
+
"# Calculate the number of unique classes (labels) in the 'Label' column of the valid DataFrame\n",
|
329 |
+
"num_classes = len(valid_df['Label'].unique())\n",
|
330 |
+
"\n",
|
331 |
+
"# Print the number of classes in the dataset\n",
|
332 |
+
"print(f\"We have {num_classes} classes\")\n",
|
333 |
+
"\n",
|
334 |
+
"# Print the total number of images in the valid DataFrame (total rows)\n",
|
335 |
+
"print(f\"We have {valid_df.shape[0]} images\")"
|
336 |
+
],
|
337 |
+
"metadata": {
|
338 |
+
"colab": {
|
339 |
+
"base_uri": "https://localhost:8080/"
|
340 |
+
},
|
341 |
+
"id": "OhbkmbZqinKY",
|
342 |
+
"outputId": "4ca3a84a-3ef7-41cd-dca5-024b6afe66fd"
|
343 |
+
},
|
344 |
+
"execution_count": 8,
|
345 |
+
"outputs": [
|
346 |
+
{
|
347 |
+
"output_type": "stream",
|
348 |
+
"name": "stdout",
|
349 |
+
"text": [
|
350 |
+
"We have 4 classes\n",
|
351 |
+
"We have 72 images\n"
|
352 |
+
]
|
353 |
+
}
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"cell_type": "code",
|
358 |
+
"source": [
|
359 |
+
"# Define the size of the input images\n",
|
360 |
+
"img_size = (224, 224)\n",
|
361 |
+
"\n",
|
362 |
+
"# Specify the number of color channels in the images (3 for RGB)\n",
|
363 |
+
"channels = 3\n",
|
364 |
+
"\n",
|
365 |
+
"# Specify the color representation ('rgb' for red, green, blue)\n",
|
366 |
+
"color = 'rgb'\n",
|
367 |
+
"\n",
|
368 |
+
"# Define the shape of the input images based on size, channels, and color representation\n",
|
369 |
+
"img_shape = (img_size[0], img_size[1], channels)\n",
|
370 |
+
"\n",
|
371 |
+
"# Specify the batch size for training\n",
|
372 |
+
"batch_size = 32\n",
|
373 |
+
"\n",
|
374 |
+
"# Get the length of the test DataFrame\n",
|
375 |
+
"ts_length = len(test_df)\n",
|
376 |
+
"\n",
|
377 |
+
"# Determine an optimal test batch size that evenly divides the length of the test DataFrame\n",
|
378 |
+
"test_batch_size = max(sorted([ts_length // n for n in range(1, ts_length + 1) if ts_length % n == 0 and ts_length / n <= 80]))\n",
|
379 |
+
"\n",
|
380 |
+
"# Calculate the number of steps needed to cover the entire test dataset\n",
|
381 |
+
"test_steps = ts_length // test_batch_size\n",
|
382 |
+
"\n",
|
383 |
+
"# Define a function 'scalar' that takes an image as input (placeholder, no implementation provided)\n",
|
384 |
+
"def scalar(img):\n",
|
385 |
+
" return img\n"
|
386 |
+
],
|
387 |
+
"metadata": {
|
388 |
+
"id": "7H00Xv0riwXL"
|
389 |
+
},
|
390 |
+
"execution_count": 9,
|
391 |
+
"outputs": []
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"source": [
|
396 |
+
"tr_gen = ImageDataGenerator(preprocessing_function= scalar,\n",
|
397 |
+
" horizontal_flip= True)\n",
|
398 |
+
"\n",
|
399 |
+
"# Create an ImageDataGenerator for training with specified preprocessing and augmentation settings\n",
|
400 |
+
"tr_gen = ImageDataGenerator(preprocessing_function=scalar, horizontal_flip=True)\n",
|
401 |
+
"\n",
|
402 |
+
"# Create an ImageDataGenerator for testing with specified preprocessing settings\n",
|
403 |
+
"ts_gen = ImageDataGenerator(preprocessing_function=scalar)\n",
|
404 |
+
"\n",
|
405 |
+
"# Generate a flow from DataFrame for training data\n",
|
406 |
+
"train_gen = tr_gen.flow_from_dataframe(\n",
|
407 |
+
" train_df,\n",
|
408 |
+
" x_col='Image_Path',\n",
|
409 |
+
" y_col='Label',\n",
|
410 |
+
" target_size=img_size,\n",
|
411 |
+
" class_mode='categorical',\n",
|
412 |
+
" color_mode=color,\n",
|
413 |
+
" shuffle=True,\n",
|
414 |
+
" batch_size=batch_size\n",
|
415 |
+
")\n",
|
416 |
+
"\n",
|
417 |
+
"# Generate a flow from DataFrame for validation data\n",
|
418 |
+
"valid_gen = ts_gen.flow_from_dataframe(\n",
|
419 |
+
" valid_df,\n",
|
420 |
+
" x_col='Image_Path',\n",
|
421 |
+
" y_col='Label',\n",
|
422 |
+
" target_size=img_size,\n",
|
423 |
+
" class_mode='categorical',\n",
|
424 |
+
" color_mode=color,\n",
|
425 |
+
" shuffle=True,\n",
|
426 |
+
" batch_size=batch_size\n",
|
427 |
+
")\n",
|
428 |
+
"\n",
|
429 |
+
"# Generate a flow from DataFrame for test data\n",
|
430 |
+
"test_gen = ts_gen.flow_from_dataframe(\n",
|
431 |
+
" test_df,\n",
|
432 |
+
" x_col='Image_Path',\n",
|
433 |
+
" y_col='Label',\n",
|
434 |
+
" target_size=img_size,\n",
|
435 |
+
" class_mode='categorical',\n",
|
436 |
+
" color_mode=color,\n",
|
437 |
+
" shuffle=False,\n",
|
438 |
+
" batch_size=test_batch_size\n",
|
439 |
+
")\n"
|
440 |
+
],
|
441 |
+
"metadata": {
|
442 |
+
"colab": {
|
443 |
+
"base_uri": "https://localhost:8080/"
|
444 |
+
},
|
445 |
+
"id": "QqSOiLrxjjOD",
|
446 |
+
"outputId": "e562f193-cc5c-439f-c7b9-18bad8e76fe2"
|
447 |
+
},
|
448 |
+
"execution_count": 10,
|
449 |
+
"outputs": [
|
450 |
+
{
|
451 |
+
"output_type": "stream",
|
452 |
+
"name": "stdout",
|
453 |
+
"text": [
|
454 |
+
"Found 613 validated image filenames belonging to 4 classes.\n",
|
455 |
+
"Found 72 validated image filenames belonging to 4 classes.\n",
|
456 |
+
"Found 315 validated image filenames belonging to 4 classes.\n"
|
457 |
+
]
|
458 |
+
}
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"source": [
|
464 |
+
"# Using the EfficientNetB5 pre-trained model as a base model (without the fully connected layers)\n",
|
465 |
+
"base_model = tf.keras.applications.efficientnet.EfficientNetB5(\n",
|
466 |
+
" include_top=False, # Exclude the fully connected layers\n",
|
467 |
+
" weights=\"imagenet\", # Load pre-trained ImageNet weights\n",
|
468 |
+
" input_shape=img_shape, # Specify the input shape for the model\n",
|
469 |
+
" pooling='max' # Use global max pooling as the final pooling layer\n",
|
470 |
+
")\n",
|
471 |
+
"\n",
|
472 |
+
"# Constructing the complete model using Sequential API\n",
|
473 |
+
"model = Sequential([\n",
|
474 |
+
" base_model, # EfficientNetB5 as the base model\n",
|
475 |
+
" BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001), # Batch normalization layer\n",
|
476 |
+
" Dense(256,\n",
|
477 |
+
" kernel_regularizer=regularizers.l2(l=0.016),\n",
|
478 |
+
" activity_regularizer=regularizers.l1(0.006),\n",
|
479 |
+
" bias_regularizer=regularizers.l1(0.006),\n",
|
480 |
+
" activation='relu'), # Dense layer with regularization and ReLU activation\n",
|
481 |
+
" Dropout(rate=0.45, seed=123), # Dropout layer for regularization\n",
|
482 |
+
" Dense(4, activation='softmax') # Output layer with softmax activation for multi-class classification\n",
|
483 |
+
"])\n",
|
484 |
+
"\n",
|
485 |
+
"# Compile the model with specified optimizer, loss function, and evaluation metric\n",
|
486 |
+
"model.compile(\n",
|
487 |
+
" optimizer=Adamax(learning_rate=0.001),\n",
|
488 |
+
" loss='categorical_crossentropy',\n",
|
489 |
+
" metrics=['accuracy']\n",
|
490 |
+
")\n",
|
491 |
+
"\n",
|
492 |
+
"# Display a summary of the model architecture\n",
|
493 |
+
"model.summary()\n"
|
494 |
+
],
|
495 |
+
"metadata": {
|
496 |
+
"colab": {
|
497 |
+
"base_uri": "https://localhost:8080/"
|
498 |
+
},
|
499 |
+
"id": "h2iZBYVFkm0n",
|
500 |
+
"outputId": "76e92170-c977-4a26-d134-b261838ef813"
|
501 |
+
},
|
502 |
+
"execution_count": 11,
|
503 |
+
"outputs": [
|
504 |
+
{
|
505 |
+
"output_type": "stream",
|
506 |
+
"name": "stdout",
|
507 |
+
"text": [
|
508 |
+
"Model: \"sequential\"\n",
|
509 |
+
"_________________________________________________________________\n",
|
510 |
+
" Layer (type) Output Shape Param # \n",
|
511 |
+
"=================================================================\n",
|
512 |
+
" efficientnetb5 (Functional (None, 2048) 28513527 \n",
|
513 |
+
" ) \n",
|
514 |
+
" \n",
|
515 |
+
" batch_normalization (Batch (None, 2048) 8192 \n",
|
516 |
+
" Normalization) \n",
|
517 |
+
" \n",
|
518 |
+
" dense (Dense) (None, 256) 524544 \n",
|
519 |
+
" \n",
|
520 |
+
" dropout (Dropout) (None, 256) 0 \n",
|
521 |
+
" \n",
|
522 |
+
" dense_1 (Dense) (None, 4) 1028 \n",
|
523 |
+
" \n",
|
524 |
+
"=================================================================\n",
|
525 |
+
"Total params: 29047291 (110.81 MB)\n",
|
526 |
+
"Trainable params: 28870452 (110.13 MB)\n",
|
527 |
+
"Non-trainable params: 176839 (690.78 KB)\n",
|
528 |
+
"_________________________________________________________________\n"
|
529 |
+
]
|
530 |
+
}
|
531 |
+
]
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"cell_type": "code",
|
535 |
+
"source": [
|
536 |
+
"# Retrieve the configuration of the optimizer used in the EfficientNetB5 base model\n",
|
537 |
+
"model.optimizer.get_config()"
|
538 |
+
],
|
539 |
+
"metadata": {
|
540 |
+
"colab": {
|
541 |
+
"base_uri": "https://localhost:8080/"
|
542 |
+
},
|
543 |
+
"id": "FhylF03qk8dp",
|
544 |
+
"outputId": "b9b8515d-048c-4a1f-829a-78906413760b"
|
545 |
+
},
|
546 |
+
"execution_count": 13,
|
547 |
+
"outputs": [
|
548 |
+
{
|
549 |
+
"output_type": "execute_result",
|
550 |
+
"data": {
|
551 |
+
"text/plain": [
|
552 |
+
"{'name': 'Adamax',\n",
|
553 |
+
" 'weight_decay': None,\n",
|
554 |
+
" 'clipnorm': None,\n",
|
555 |
+
" 'global_clipnorm': None,\n",
|
556 |
+
" 'clipvalue': None,\n",
|
557 |
+
" 'use_ema': False,\n",
|
558 |
+
" 'ema_momentum': 0.99,\n",
|
559 |
+
" 'ema_overwrite_frequency': None,\n",
|
560 |
+
" 'jit_compile': True,\n",
|
561 |
+
" 'is_legacy_optimizer': False,\n",
|
562 |
+
" 'learning_rate': 0.001,\n",
|
563 |
+
" 'beta_1': 0.9,\n",
|
564 |
+
" 'beta_2': 0.999,\n",
|
565 |
+
" 'epsilon': 1e-07}"
|
566 |
+
]
|
567 |
+
},
|
568 |
+
"metadata": {},
|
569 |
+
"execution_count": 13
|
570 |
+
}
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "code",
|
575 |
+
"source": [
|
576 |
+
"# Define early stopping to halt training if the validation loss doesn't improve for 'patience' consecutive epochs\n",
|
577 |
+
"early_stop = EarlyStopping(monitor='val_loss',\n",
|
578 |
+
" patience=5,\n",
|
579 |
+
" verbose=1)\n",
|
580 |
+
"# Define model checkpoint to save the best weights during training based on validation loss\n",
|
581 |
+
"checkpoint = ModelCheckpoint('model_weights_efficient_B5_2.h5',\n",
|
582 |
+
" monitor='val_loss',\n",
|
583 |
+
" save_best_only=True,\n",
|
584 |
+
" save_weights_only=True,\n",
|
585 |
+
" mode='min',\n",
|
586 |
+
" verbose=1)\n",
|
587 |
+
"\n",
|
588 |
+
"# Train the EfficientNetB5 base model on the training data with validation using the generator\n",
|
589 |
+
"# - x: Training generator\n",
|
590 |
+
"# - steps_per_epoch: Number of batches to process in each epoch\n",
|
591 |
+
"# - epochs: Number of training epochs\n",
|
592 |
+
"# - callbacks: List of callbacks to apply during training (early stopping and model checkpoint)\n",
|
593 |
+
"# - validation_data: Validation generator for evaluating the model's performance on a separate dataset\n",
|
594 |
+
"\n",
|
595 |
+
"history = model.fit(x= train_gen,\n",
|
596 |
+
" steps_per_epoch = 20,\n",
|
597 |
+
" epochs= 100,\n",
|
598 |
+
" callbacks=[early_stop, checkpoint],\n",
|
599 |
+
" validation_data = valid_gen)"
|
600 |
+
],
|
601 |
+
"metadata": {
|
602 |
+
"colab": {
|
603 |
+
"base_uri": "https://localhost:8080/"
|
604 |
+
},
|
605 |
+
"id": "Ymbza2MYlB2j",
|
606 |
+
"outputId": "d8eea6ac-dc3e-4e0c-8525-cdfa875f115f"
|
607 |
+
},
|
608 |
+
"execution_count": 14,
|
609 |
+
"outputs": [
|
610 |
+
{
|
611 |
+
"output_type": "stream",
|
612 |
+
"name": "stdout",
|
613 |
+
"text": [
|
614 |
+
"Epoch 1/100\n",
|
615 |
+
"20/20 [==============================] - ETA: 0s - loss: 8.9467 - accuracy: 0.6525\n",
|
616 |
+
"Epoch 1: val_loss improved from inf to 13.82872, saving model to model_weights_efficient_B5_2.h5\n",
|
617 |
+
"20/20 [==============================] - 330s 12s/step - loss: 8.9467 - accuracy: 0.6525 - val_loss: 13.8287 - val_accuracy: 0.4861\n",
|
618 |
+
"Epoch 2/100\n",
|
619 |
+
"20/20 [==============================] - ETA: 0s - loss: 7.9310 - accuracy: 0.8222\n",
|
620 |
+
"Epoch 2: val_loss improved from 13.82872 to 9.65489, saving model to model_weights_efficient_B5_2.h5\n",
|
621 |
+
"20/20 [==============================] - 19s 935ms/step - loss: 7.9310 - accuracy: 0.8222 - val_loss: 9.6549 - val_accuracy: 0.5000\n",
|
622 |
+
"Epoch 3/100\n",
|
623 |
+
"20/20 [==============================] - ETA: 0s - loss: 7.1907 - accuracy: 0.9086\n",
|
624 |
+
"Epoch 3: val_loss improved from 9.65489 to 8.90058, saving model to model_weights_efficient_B5_2.h5\n",
|
625 |
+
"20/20 [==============================] - 19s 947ms/step - loss: 7.1907 - accuracy: 0.9086 - val_loss: 8.9006 - val_accuracy: 0.5833\n",
|
626 |
+
"Epoch 4/100\n",
|
627 |
+
"20/20 [==============================] - ETA: 0s - loss: 6.6951 - accuracy: 0.9478\n",
|
628 |
+
"Epoch 4: val_loss improved from 8.90058 to 7.97767, saving model to model_weights_efficient_B5_2.h5\n",
|
629 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 6.6951 - accuracy: 0.9478 - val_loss: 7.9777 - val_accuracy: 0.5833\n",
|
630 |
+
"Epoch 5/100\n",
|
631 |
+
"20/20 [==============================] - ETA: 0s - loss: 6.2736 - accuracy: 0.9755\n",
|
632 |
+
"Epoch 5: val_loss improved from 7.97767 to 7.08031, saving model to model_weights_efficient_B5_2.h5\n",
|
633 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 6.2736 - accuracy: 0.9755 - val_loss: 7.0803 - val_accuracy: 0.6528\n",
|
634 |
+
"Epoch 6/100\n",
|
635 |
+
"20/20 [==============================] - ETA: 0s - loss: 5.9248 - accuracy: 0.9641\n",
|
636 |
+
"Epoch 6: val_loss improved from 7.08031 to 6.62661, saving model to model_weights_efficient_B5_2.h5\n",
|
637 |
+
"20/20 [==============================] - 19s 951ms/step - loss: 5.9248 - accuracy: 0.9641 - val_loss: 6.6266 - val_accuracy: 0.7500\n",
|
638 |
+
"Epoch 7/100\n",
|
639 |
+
"20/20 [==============================] - ETA: 0s - loss: 5.6432 - accuracy: 0.9739\n",
|
640 |
+
"Epoch 7: val_loss improved from 6.62661 to 6.26470, saving model to model_weights_efficient_B5_2.h5\n",
|
641 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 5.6432 - accuracy: 0.9739 - val_loss: 6.2647 - val_accuracy: 0.6667\n",
|
642 |
+
"Epoch 8/100\n",
|
643 |
+
"20/20 [==============================] - ETA: 0s - loss: 5.4284 - accuracy: 0.9739\n",
|
644 |
+
"Epoch 8: val_loss improved from 6.26470 to 5.88624, saving model to model_weights_efficient_B5_2.h5\n",
|
645 |
+
"20/20 [==============================] - 20s 975ms/step - loss: 5.4284 - accuracy: 0.9739 - val_loss: 5.8862 - val_accuracy: 0.7361\n",
|
646 |
+
"Epoch 9/100\n",
|
647 |
+
"20/20 [==============================] - ETA: 0s - loss: 5.1599 - accuracy: 0.9821\n",
|
648 |
+
"Epoch 9: val_loss improved from 5.88624 to 5.53767, saving model to model_weights_efficient_B5_2.h5\n",
|
649 |
+
"20/20 [==============================] - 19s 933ms/step - loss: 5.1599 - accuracy: 0.9821 - val_loss: 5.5377 - val_accuracy: 0.8472\n",
|
650 |
+
"Epoch 10/100\n",
|
651 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.9567 - accuracy: 0.9788\n",
|
652 |
+
"Epoch 10: val_loss improved from 5.53767 to 5.29575, saving model to model_weights_efficient_B5_2.h5\n",
|
653 |
+
"20/20 [==============================] - 19s 934ms/step - loss: 4.9567 - accuracy: 0.9788 - val_loss: 5.2957 - val_accuracy: 0.8750\n",
|
654 |
+
"Epoch 11/100\n",
|
655 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.7625 - accuracy: 0.9804\n",
|
656 |
+
"Epoch 11: val_loss improved from 5.29575 to 5.10167, saving model to model_weights_efficient_B5_2.h5\n",
|
657 |
+
"20/20 [==============================] - 19s 948ms/step - loss: 4.7625 - accuracy: 0.9804 - val_loss: 5.1017 - val_accuracy: 0.8750\n",
|
658 |
+
"Epoch 12/100\n",
|
659 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.6141 - accuracy: 0.9788\n",
|
660 |
+
"Epoch 12: val_loss improved from 5.10167 to 4.96450, saving model to model_weights_efficient_B5_2.h5\n",
|
661 |
+
"20/20 [==============================] - 19s 957ms/step - loss: 4.6141 - accuracy: 0.9788 - val_loss: 4.9645 - val_accuracy: 0.8750\n",
|
662 |
+
"Epoch 13/100\n",
|
663 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.4517 - accuracy: 0.9902\n",
|
664 |
+
"Epoch 13: val_loss improved from 4.96450 to 4.89537, saving model to model_weights_efficient_B5_2.h5\n",
|
665 |
+
"20/20 [==============================] - 19s 938ms/step - loss: 4.4517 - accuracy: 0.9902 - val_loss: 4.8954 - val_accuracy: 0.8750\n",
|
666 |
+
"Epoch 14/100\n",
|
667 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.3521 - accuracy: 0.9788\n",
|
668 |
+
"Epoch 14: val_loss improved from 4.89537 to 4.61144, saving model to model_weights_efficient_B5_2.h5\n",
|
669 |
+
"20/20 [==============================] - 19s 941ms/step - loss: 4.3521 - accuracy: 0.9788 - val_loss: 4.6114 - val_accuracy: 0.8611\n",
|
670 |
+
"Epoch 15/100\n",
|
671 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.1907 - accuracy: 0.9837\n",
|
672 |
+
"Epoch 15: val_loss improved from 4.61144 to 4.47061, saving model to model_weights_efficient_B5_2.h5\n",
|
673 |
+
"20/20 [==============================] - 20s 980ms/step - loss: 4.1907 - accuracy: 0.9837 - val_loss: 4.4706 - val_accuracy: 0.8611\n",
|
674 |
+
"Epoch 16/100\n",
|
675 |
+
"20/20 [==============================] - ETA: 0s - loss: 4.0591 - accuracy: 0.9821\n",
|
676 |
+
"Epoch 16: val_loss improved from 4.47061 to 4.35734, saving model to model_weights_efficient_B5_2.h5\n",
|
677 |
+
"20/20 [==============================] - 19s 930ms/step - loss: 4.0591 - accuracy: 0.9821 - val_loss: 4.3573 - val_accuracy: 0.8750\n",
|
678 |
+
"Epoch 17/100\n",
|
679 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.9479 - accuracy: 0.9837\n",
|
680 |
+
"Epoch 17: val_loss improved from 4.35734 to 4.19360, saving model to model_weights_efficient_B5_2.h5\n",
|
681 |
+
"20/20 [==============================] - 19s 940ms/step - loss: 3.9479 - accuracy: 0.9837 - val_loss: 4.1936 - val_accuracy: 0.8750\n",
|
682 |
+
"Epoch 18/100\n",
|
683 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.8014 - accuracy: 0.9951\n",
|
684 |
+
"Epoch 18: val_loss improved from 4.19360 to 4.07113, saving model to model_weights_efficient_B5_2.h5\n",
|
685 |
+
"20/20 [==============================] - 20s 977ms/step - loss: 3.8014 - accuracy: 0.9951 - val_loss: 4.0711 - val_accuracy: 0.8750\n",
|
686 |
+
"Epoch 19/100\n",
|
687 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.7042 - accuracy: 0.9918\n",
|
688 |
+
"Epoch 19: val_loss improved from 4.07113 to 4.02841, saving model to model_weights_efficient_B5_2.h5\n",
|
689 |
+
"20/20 [==============================] - 19s 940ms/step - loss: 3.7042 - accuracy: 0.9918 - val_loss: 4.0284 - val_accuracy: 0.8472\n",
|
690 |
+
"Epoch 20/100\n",
|
691 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.6051 - accuracy: 0.9918\n",
|
692 |
+
"Epoch 20: val_loss improved from 4.02841 to 3.87404, saving model to model_weights_efficient_B5_2.h5\n",
|
693 |
+
"20/20 [==============================] - 19s 943ms/step - loss: 3.6051 - accuracy: 0.9918 - val_loss: 3.8740 - val_accuracy: 0.9028\n",
|
694 |
+
"Epoch 21/100\n",
|
695 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.5299 - accuracy: 0.9902\n",
|
696 |
+
"Epoch 21: val_loss improved from 3.87404 to 3.76933, saving model to model_weights_efficient_B5_2.h5\n",
|
697 |
+
"20/20 [==============================] - 19s 947ms/step - loss: 3.5299 - accuracy: 0.9902 - val_loss: 3.7693 - val_accuracy: 0.9028\n",
|
698 |
+
"Epoch 22/100\n",
|
699 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.4325 - accuracy: 0.9902\n",
|
700 |
+
"Epoch 22: val_loss improved from 3.76933 to 3.64684, saving model to model_weights_efficient_B5_2.h5\n",
|
701 |
+
"20/20 [==============================] - 20s 964ms/step - loss: 3.4325 - accuracy: 0.9902 - val_loss: 3.6468 - val_accuracy: 0.8889\n",
|
702 |
+
"Epoch 23/100\n",
|
703 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.3194 - accuracy: 0.9967\n",
|
704 |
+
"Epoch 23: val_loss improved from 3.64684 to 3.55495, saving model to model_weights_efficient_B5_2.h5\n",
|
705 |
+
"20/20 [==============================] - 19s 934ms/step - loss: 3.3194 - accuracy: 0.9967 - val_loss: 3.5549 - val_accuracy: 0.8889\n",
|
706 |
+
"Epoch 24/100\n",
|
707 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.2151 - accuracy: 0.9935\n",
|
708 |
+
"Epoch 24: val_loss improved from 3.55495 to 3.47809, saving model to model_weights_efficient_B5_2.h5\n",
|
709 |
+
"20/20 [==============================] - 20s 1s/step - loss: 3.2151 - accuracy: 0.9935 - val_loss: 3.4781 - val_accuracy: 0.8889\n",
|
710 |
+
"Epoch 25/100\n",
|
711 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.1480 - accuracy: 0.9869\n",
|
712 |
+
"Epoch 25: val_loss improved from 3.47809 to 3.46385, saving model to model_weights_efficient_B5_2.h5\n",
|
713 |
+
"20/20 [==============================] - 19s 937ms/step - loss: 3.1480 - accuracy: 0.9869 - val_loss: 3.4639 - val_accuracy: 0.8889\n",
|
714 |
+
"Epoch 26/100\n",
|
715 |
+
"20/20 [==============================] - ETA: 0s - loss: 3.0889 - accuracy: 0.9837\n",
|
716 |
+
"Epoch 26: val_loss improved from 3.46385 to 3.30259, saving model to model_weights_efficient_B5_2.h5\n",
|
717 |
+
"20/20 [==============================] - 19s 935ms/step - loss: 3.0889 - accuracy: 0.9837 - val_loss: 3.3026 - val_accuracy: 0.8889\n",
|
718 |
+
"Epoch 27/100\n",
|
719 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.9959 - accuracy: 0.9902\n",
|
720 |
+
"Epoch 27: val_loss improved from 3.30259 to 3.23432, saving model to model_weights_efficient_B5_2.h5\n",
|
721 |
+
"20/20 [==============================] - 19s 977ms/step - loss: 2.9959 - accuracy: 0.9902 - val_loss: 3.2343 - val_accuracy: 0.9167\n",
|
722 |
+
"Epoch 28/100\n",
|
723 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.8889 - accuracy: 0.9967\n",
|
724 |
+
"Epoch 28: val_loss improved from 3.23432 to 3.13419, saving model to model_weights_efficient_B5_2.h5\n",
|
725 |
+
"20/20 [==============================] - 19s 952ms/step - loss: 2.8889 - accuracy: 0.9967 - val_loss: 3.1342 - val_accuracy: 0.9028\n",
|
726 |
+
"Epoch 29/100\n",
|
727 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.8285 - accuracy: 0.9918\n",
|
728 |
+
"Epoch 29: val_loss improved from 3.13419 to 3.05611, saving model to model_weights_efficient_B5_2.h5\n",
|
729 |
+
"20/20 [==============================] - 20s 969ms/step - loss: 2.8285 - accuracy: 0.9918 - val_loss: 3.0561 - val_accuracy: 0.9167\n",
|
730 |
+
"Epoch 30/100\n",
|
731 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.7386 - accuracy: 0.9967\n",
|
732 |
+
"Epoch 30: val_loss improved from 3.05611 to 2.98006, saving model to model_weights_efficient_B5_2.h5\n",
|
733 |
+
"20/20 [==============================] - 19s 930ms/step - loss: 2.7386 - accuracy: 0.9967 - val_loss: 2.9801 - val_accuracy: 0.9167\n",
|
734 |
+
"Epoch 31/100\n",
|
735 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.6883 - accuracy: 0.9935\n",
|
736 |
+
"Epoch 31: val_loss improved from 2.98006 to 2.91081, saving model to model_weights_efficient_B5_2.h5\n",
|
737 |
+
"20/20 [==============================] - 19s 942ms/step - loss: 2.6883 - accuracy: 0.9935 - val_loss: 2.9108 - val_accuracy: 0.9167\n",
|
738 |
+
"Epoch 32/100\n",
|
739 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.6405 - accuracy: 0.9788\n",
|
740 |
+
"Epoch 32: val_loss did not improve from 2.91081\n",
|
741 |
+
"20/20 [==============================] - 18s 901ms/step - loss: 2.6405 - accuracy: 0.9788 - val_loss: 2.9625 - val_accuracy: 0.8611\n",
|
742 |
+
"Epoch 33/100\n",
|
743 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.5627 - accuracy: 0.9886\n",
|
744 |
+
"Epoch 33: val_loss improved from 2.91081 to 2.88892, saving model to model_weights_efficient_B5_2.h5\n",
|
745 |
+
"20/20 [==============================] - 19s 938ms/step - loss: 2.5627 - accuracy: 0.9886 - val_loss: 2.8889 - val_accuracy: 0.9028\n",
|
746 |
+
"Epoch 34/100\n",
|
747 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.5646 - accuracy: 0.9804\n",
|
748 |
+
"Epoch 34: val_loss did not improve from 2.88892\n",
|
749 |
+
"20/20 [==============================] - 18s 901ms/step - loss: 2.5646 - accuracy: 0.9804 - val_loss: 2.9084 - val_accuracy: 0.8611\n",
|
750 |
+
"Epoch 35/100\n",
|
751 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.4740 - accuracy: 0.9935\n",
|
752 |
+
"Epoch 35: val_loss improved from 2.88892 to 2.79603, saving model to model_weights_efficient_B5_2.h5\n",
|
753 |
+
"20/20 [==============================] - 19s 955ms/step - loss: 2.4740 - accuracy: 0.9935 - val_loss: 2.7960 - val_accuracy: 0.9028\n",
|
754 |
+
"Epoch 36/100\n",
|
755 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.4113 - accuracy: 0.9853\n",
|
756 |
+
"Epoch 36: val_loss improved from 2.79603 to 2.72169, saving model to model_weights_efficient_B5_2.h5\n",
|
757 |
+
"20/20 [==============================] - 19s 965ms/step - loss: 2.4113 - accuracy: 0.9853 - val_loss: 2.7217 - val_accuracy: 0.8333\n",
|
758 |
+
"Epoch 37/100\n",
|
759 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.3420 - accuracy: 0.9869\n",
|
760 |
+
"Epoch 37: val_loss improved from 2.72169 to 2.62496, saving model to model_weights_efficient_B5_2.h5\n",
|
761 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 2.3420 - accuracy: 0.9869 - val_loss: 2.6250 - val_accuracy: 0.8611\n",
|
762 |
+
"Epoch 38/100\n",
|
763 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.2655 - accuracy: 0.9951\n",
|
764 |
+
"Epoch 38: val_loss improved from 2.62496 to 2.49132, saving model to model_weights_efficient_B5_2.h5\n",
|
765 |
+
"20/20 [==============================] - 20s 980ms/step - loss: 2.2655 - accuracy: 0.9951 - val_loss: 2.4913 - val_accuracy: 0.9167\n",
|
766 |
+
"Epoch 39/100\n",
|
767 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.2046 - accuracy: 0.9967\n",
|
768 |
+
"Epoch 39: val_loss improved from 2.49132 to 2.45171, saving model to model_weights_efficient_B5_2.h5\n",
|
769 |
+
"20/20 [==============================] - 19s 935ms/step - loss: 2.2046 - accuracy: 0.9967 - val_loss: 2.4517 - val_accuracy: 0.9028\n",
|
770 |
+
"Epoch 40/100\n",
|
771 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.1569 - accuracy: 0.9935\n",
|
772 |
+
"Epoch 40: val_loss improved from 2.45171 to 2.36931, saving model to model_weights_efficient_B5_2.h5\n",
|
773 |
+
"20/20 [==============================] - 19s 934ms/step - loss: 2.1569 - accuracy: 0.9935 - val_loss: 2.3693 - val_accuracy: 0.9306\n",
|
774 |
+
"Epoch 41/100\n",
|
775 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.0928 - accuracy: 0.9967\n",
|
776 |
+
"Epoch 41: val_loss improved from 2.36931 to 2.30855, saving model to model_weights_efficient_B5_2.h5\n",
|
777 |
+
"20/20 [==============================] - 20s 979ms/step - loss: 2.0928 - accuracy: 0.9967 - val_loss: 2.3086 - val_accuracy: 0.9306\n",
|
778 |
+
"Epoch 42/100\n",
|
779 |
+
"20/20 [==============================] - ETA: 0s - loss: 2.0393 - accuracy: 0.9967\n",
|
780 |
+
"Epoch 42: val_loss improved from 2.30855 to 2.24363, saving model to model_weights_efficient_B5_2.h5\n",
|
781 |
+
"20/20 [==============================] - 19s 937ms/step - loss: 2.0393 - accuracy: 0.9967 - val_loss: 2.2436 - val_accuracy: 0.9306\n",
|
782 |
+
"Epoch 43/100\n",
|
783 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.9881 - accuracy: 0.9984\n",
|
784 |
+
"Epoch 43: val_loss improved from 2.24363 to 2.19355, saving model to model_weights_efficient_B5_2.h5\n",
|
785 |
+
"20/20 [==============================] - 19s 979ms/step - loss: 1.9881 - accuracy: 0.9984 - val_loss: 2.1935 - val_accuracy: 0.9167\n",
|
786 |
+
"Epoch 44/100\n",
|
787 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.9369 - accuracy: 1.0000\n",
|
788 |
+
"Epoch 44: val_loss improved from 2.19355 to 2.13765, saving model to model_weights_efficient_B5_2.h5\n",
|
789 |
+
"20/20 [==============================] - 19s 963ms/step - loss: 1.9369 - accuracy: 1.0000 - val_loss: 2.1376 - val_accuracy: 0.9306\n",
|
790 |
+
"Epoch 45/100\n",
|
791 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.8963 - accuracy: 0.9967\n",
|
792 |
+
"Epoch 45: val_loss improved from 2.13765 to 2.11182, saving model to model_weights_efficient_B5_2.h5\n",
|
793 |
+
"20/20 [==============================] - 19s 934ms/step - loss: 1.8963 - accuracy: 0.9967 - val_loss: 2.1118 - val_accuracy: 0.9306\n",
|
794 |
+
"Epoch 46/100\n",
|
795 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.8555 - accuracy: 0.9967\n",
|
796 |
+
"Epoch 46: val_loss improved from 2.11182 to 2.08817, saving model to model_weights_efficient_B5_2.h5\n",
|
797 |
+
"20/20 [==============================] - 19s 939ms/step - loss: 1.8555 - accuracy: 0.9967 - val_loss: 2.0882 - val_accuracy: 0.9306\n",
|
798 |
+
"Epoch 47/100\n",
|
799 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.8443 - accuracy: 0.9869\n",
|
800 |
+
"Epoch 47: val_loss improved from 2.08817 to 2.08034, saving model to model_weights_efficient_B5_2.h5\n",
|
801 |
+
"20/20 [==============================] - 20s 978ms/step - loss: 1.8443 - accuracy: 0.9869 - val_loss: 2.0803 - val_accuracy: 0.9306\n",
|
802 |
+
"Epoch 48/100\n",
|
803 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.7713 - accuracy: 0.9984\n",
|
804 |
+
"Epoch 48: val_loss improved from 2.08034 to 1.98731, saving model to model_weights_efficient_B5_2.h5\n",
|
805 |
+
"20/20 [==============================] - 19s 936ms/step - loss: 1.7713 - accuracy: 0.9984 - val_loss: 1.9873 - val_accuracy: 0.9306\n",
|
806 |
+
"Epoch 49/100\n",
|
807 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.7160 - accuracy: 0.9984\n",
|
808 |
+
"Epoch 49: val_loss improved from 1.98731 to 1.93409, saving model to model_weights_efficient_B5_2.h5\n",
|
809 |
+
"20/20 [==============================] - 19s 935ms/step - loss: 1.7160 - accuracy: 0.9984 - val_loss: 1.9341 - val_accuracy: 0.9306\n",
|
810 |
+
"Epoch 50/100\n",
|
811 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.6692 - accuracy: 0.9967\n",
|
812 |
+
"Epoch 50: val_loss improved from 1.93409 to 1.88645, saving model to model_weights_efficient_B5_2.h5\n",
|
813 |
+
"20/20 [==============================] - 19s 953ms/step - loss: 1.6692 - accuracy: 0.9967 - val_loss: 1.8864 - val_accuracy: 0.9306\n",
|
814 |
+
"Epoch 51/100\n",
|
815 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.6335 - accuracy: 0.9967\n",
|
816 |
+
"Epoch 51: val_loss improved from 1.88645 to 1.87095, saving model to model_weights_efficient_B5_2.h5\n",
|
817 |
+
"20/20 [==============================] - 19s 937ms/step - loss: 1.6335 - accuracy: 0.9967 - val_loss: 1.8709 - val_accuracy: 0.9306\n",
|
818 |
+
"Epoch 52/100\n",
|
819 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.6030 - accuracy: 0.9935\n",
|
820 |
+
"Epoch 52: val_loss improved from 1.87095 to 1.81230, saving model to model_weights_efficient_B5_2.h5\n",
|
821 |
+
"20/20 [==============================] - 19s 934ms/step - loss: 1.6030 - accuracy: 0.9935 - val_loss: 1.8123 - val_accuracy: 0.9306\n",
|
822 |
+
"Epoch 53/100\n",
|
823 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.5754 - accuracy: 0.9951\n",
|
824 |
+
"Epoch 53: val_loss improved from 1.81230 to 1.80875, saving model to model_weights_efficient_B5_2.h5\n",
|
825 |
+
"20/20 [==============================] - 19s 943ms/step - loss: 1.5754 - accuracy: 0.9951 - val_loss: 1.8088 - val_accuracy: 0.9306\n",
|
826 |
+
"Epoch 54/100\n",
|
827 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.5490 - accuracy: 0.9902\n",
|
828 |
+
"Epoch 54: val_loss improved from 1.80875 to 1.77187, saving model to model_weights_efficient_B5_2.h5\n",
|
829 |
+
"20/20 [==============================] - 20s 973ms/step - loss: 1.5490 - accuracy: 0.9902 - val_loss: 1.7719 - val_accuracy: 0.9167\n",
|
830 |
+
"Epoch 55/100\n",
|
831 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.4940 - accuracy: 0.9967\n",
|
832 |
+
"Epoch 55: val_loss improved from 1.77187 to 1.72648, saving model to model_weights_efficient_B5_2.h5\n",
|
833 |
+
"20/20 [==============================] - 19s 943ms/step - loss: 1.4940 - accuracy: 0.9967 - val_loss: 1.7265 - val_accuracy: 0.9167\n",
|
834 |
+
"Epoch 56/100\n",
|
835 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.4628 - accuracy: 0.9951\n",
|
836 |
+
"Epoch 56: val_loss improved from 1.72648 to 1.66311, saving model to model_weights_efficient_B5_2.h5\n",
|
837 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 1.4628 - accuracy: 0.9951 - val_loss: 1.6631 - val_accuracy: 0.9306\n",
|
838 |
+
"Epoch 57/100\n",
|
839 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.4283 - accuracy: 0.9951\n",
|
840 |
+
"Epoch 57: val_loss improved from 1.66311 to 1.58719, saving model to model_weights_efficient_B5_2.h5\n",
|
841 |
+
"20/20 [==============================] - 19s 956ms/step - loss: 1.4283 - accuracy: 0.9951 - val_loss: 1.5872 - val_accuracy: 0.9306\n",
|
842 |
+
"Epoch 58/100\n",
|
843 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.4072 - accuracy: 0.9967\n",
|
844 |
+
"Epoch 58: val_loss improved from 1.58719 to 1.56380, saving model to model_weights_efficient_B5_2.h5\n",
|
845 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 1.4072 - accuracy: 0.9967 - val_loss: 1.5638 - val_accuracy: 0.9306\n",
|
846 |
+
"Epoch 59/100\n",
|
847 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.3953 - accuracy: 0.9902\n",
|
848 |
+
"Epoch 59: val_loss did not improve from 1.56380\n",
|
849 |
+
"20/20 [==============================] - 18s 935ms/step - loss: 1.3953 - accuracy: 0.9902 - val_loss: 1.5837 - val_accuracy: 0.9306\n",
|
850 |
+
"Epoch 60/100\n",
|
851 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.3637 - accuracy: 0.9902\n",
|
852 |
+
"Epoch 60: val_loss improved from 1.56380 to 1.55265, saving model to model_weights_efficient_B5_2.h5\n",
|
853 |
+
"20/20 [==============================] - 19s 941ms/step - loss: 1.3637 - accuracy: 0.9902 - val_loss: 1.5526 - val_accuracy: 0.9444\n",
|
854 |
+
"Epoch 61/100\n",
|
855 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.3116 - accuracy: 0.9918\n",
|
856 |
+
"Epoch 61: val_loss improved from 1.55265 to 1.48927, saving model to model_weights_efficient_B5_2.h5\n",
|
857 |
+
"20/20 [==============================] - 19s 955ms/step - loss: 1.3116 - accuracy: 0.9918 - val_loss: 1.4893 - val_accuracy: 0.9444\n",
|
858 |
+
"Epoch 62/100\n",
|
859 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.2852 - accuracy: 0.9951\n",
|
860 |
+
"Epoch 62: val_loss improved from 1.48927 to 1.46638, saving model to model_weights_efficient_B5_2.h5\n",
|
861 |
+
"20/20 [==============================] - 19s 947ms/step - loss: 1.2852 - accuracy: 0.9951 - val_loss: 1.4664 - val_accuracy: 0.9306\n",
|
862 |
+
"Epoch 63/100\n",
|
863 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.2581 - accuracy: 0.9935\n",
|
864 |
+
"Epoch 63: val_loss improved from 1.46638 to 1.45661, saving model to model_weights_efficient_B5_2.h5\n",
|
865 |
+
"20/20 [==============================] - 19s 934ms/step - loss: 1.2581 - accuracy: 0.9935 - val_loss: 1.4566 - val_accuracy: 0.9306\n",
|
866 |
+
"Epoch 64/100\n",
|
867 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.2234 - accuracy: 0.9967\n",
|
868 |
+
"Epoch 64: val_loss improved from 1.45661 to 1.42951, saving model to model_weights_efficient_B5_2.h5\n",
|
869 |
+
"20/20 [==============================] - 19s 932ms/step - loss: 1.2234 - accuracy: 0.9967 - val_loss: 1.4295 - val_accuracy: 0.9306\n",
|
870 |
+
"Epoch 65/100\n",
|
871 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.1978 - accuracy: 0.9967\n",
|
872 |
+
"Epoch 65: val_loss improved from 1.42951 to 1.40270, saving model to model_weights_efficient_B5_2.h5\n",
|
873 |
+
"20/20 [==============================] - 20s 972ms/step - loss: 1.1978 - accuracy: 0.9967 - val_loss: 1.4027 - val_accuracy: 0.9306\n",
|
874 |
+
"Epoch 66/100\n",
|
875 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.1966 - accuracy: 0.9935\n",
|
876 |
+
"Epoch 66: val_loss did not improve from 1.40270\n",
|
877 |
+
"20/20 [==============================] - 18s 896ms/step - loss: 1.1966 - accuracy: 0.9935 - val_loss: 1.4201 - val_accuracy: 0.9167\n",
|
878 |
+
"Epoch 67/100\n",
|
879 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.1682 - accuracy: 0.9984\n",
|
880 |
+
"Epoch 67: val_loss did not improve from 1.40270\n",
|
881 |
+
"20/20 [==============================] - 19s 931ms/step - loss: 1.1682 - accuracy: 0.9984 - val_loss: 1.4158 - val_accuracy: 0.9306\n",
|
882 |
+
"Epoch 68/100\n",
|
883 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.1414 - accuracy: 0.9918\n",
|
884 |
+
"Epoch 68: val_loss improved from 1.40270 to 1.36896, saving model to model_weights_efficient_B5_2.h5\n",
|
885 |
+
"20/20 [==============================] - 19s 939ms/step - loss: 1.1414 - accuracy: 0.9918 - val_loss: 1.3690 - val_accuracy: 0.9306\n",
|
886 |
+
"Epoch 69/100\n",
|
887 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.1103 - accuracy: 0.9984\n",
|
888 |
+
"Epoch 69: val_loss improved from 1.36896 to 1.32771, saving model to model_weights_efficient_B5_2.h5\n",
|
889 |
+
"20/20 [==============================] - 20s 977ms/step - loss: 1.1103 - accuracy: 0.9984 - val_loss: 1.3277 - val_accuracy: 0.9306\n",
|
890 |
+
"Epoch 70/100\n",
|
891 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.1277 - accuracy: 0.9886\n",
|
892 |
+
"Epoch 70: val_loss did not improve from 1.32771\n",
|
893 |
+
"20/20 [==============================] - 18s 897ms/step - loss: 1.1277 - accuracy: 0.9886 - val_loss: 1.3546 - val_accuracy: 0.9167\n",
|
894 |
+
"Epoch 71/100\n",
|
895 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.0964 - accuracy: 0.9902\n",
|
896 |
+
"Epoch 71: val_loss improved from 1.32771 to 1.27567, saving model to model_weights_efficient_B5_2.h5\n",
|
897 |
+
"20/20 [==============================] - 19s 938ms/step - loss: 1.0964 - accuracy: 0.9902 - val_loss: 1.2757 - val_accuracy: 0.9306\n",
|
898 |
+
"Epoch 72/100\n",
|
899 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.0688 - accuracy: 0.9886\n",
|
900 |
+
"Epoch 72: val_loss did not improve from 1.27567\n",
|
901 |
+
"20/20 [==============================] - 18s 907ms/step - loss: 1.0688 - accuracy: 0.9886 - val_loss: 1.3252 - val_accuracy: 0.9028\n",
|
902 |
+
"Epoch 73/100\n",
|
903 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.0428 - accuracy: 0.9984\n",
|
904 |
+
"Epoch 73: val_loss did not improve from 1.27567\n",
|
905 |
+
"20/20 [==============================] - 18s 901ms/step - loss: 1.0428 - accuracy: 0.9984 - val_loss: 1.3001 - val_accuracy: 0.9028\n",
|
906 |
+
"Epoch 74/100\n",
|
907 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.0202 - accuracy: 0.9951\n",
|
908 |
+
"Epoch 74: val_loss did not improve from 1.27567\n",
|
909 |
+
"20/20 [==============================] - 18s 895ms/step - loss: 1.0202 - accuracy: 0.9951 - val_loss: 1.4571 - val_accuracy: 0.8472\n",
|
910 |
+
"Epoch 75/100\n",
|
911 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.0117 - accuracy: 0.9902\n",
|
912 |
+
"Epoch 75: val_loss did not improve from 1.27567\n",
|
913 |
+
"20/20 [==============================] - 19s 930ms/step - loss: 1.0117 - accuracy: 0.9902 - val_loss: 1.2980 - val_accuracy: 0.8889\n",
|
914 |
+
"Epoch 76/100\n",
|
915 |
+
"20/20 [==============================] - ETA: 0s - loss: 1.0119 - accuracy: 0.9918\n",
|
916 |
+
"Epoch 76: val_loss did not improve from 1.27567\n",
|
917 |
+
"20/20 [==============================] - 19s 968ms/step - loss: 1.0119 - accuracy: 0.9918 - val_loss: 1.2769 - val_accuracy: 0.9028\n",
|
918 |
+
"Epoch 76: early stopping\n"
|
919 |
+
]
|
920 |
+
}
|
921 |
+
]
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"cell_type": "code",
|
925 |
+
"source": [
|
926 |
+
"# Calculate the total number of samples in the test dataset\n",
|
927 |
+
"ts_length = len(test_df)\n",
|
928 |
+
"# Determine the optimal test batch size within a reasonable range (1 to 80)\n",
|
929 |
+
"test_batch_size = max(sorted([ts_length // n for n in range(1, ts_length + 1) if ts_length%n == 0 and ts_length/n <= 80]))\n",
|
930 |
+
"# Calculate the number of steps to cover the entire test dataset using the determined test batch size\n",
|
931 |
+
"test_steps = ts_length // test_batch_size\n",
|
932 |
+
"\n",
|
933 |
+
"# Evaluate the EfficientNetB5base model on the training dataset and print the results\n",
|
934 |
+
"train_score = model.evaluate(train_gen, steps= test_steps, verbose= 1)\n",
|
935 |
+
"# Evaluate the EfficientNetB5 base model on the validation dataset and print the results\n",
|
936 |
+
"valid_score = model.evaluate(valid_gen, steps= test_steps, verbose= 1)\n",
|
937 |
+
"# Evaluate the EfficientNetB5 base model on the test dataset and print the results\n",
|
938 |
+
"test_score = model.evaluate(test_gen, steps= test_steps, verbose= 1)\n",
|
939 |
+
"\n",
|
940 |
+
"# Print the evaluation results for the training dataset\n",
|
941 |
+
"print(\"Train Loss: \", train_score[0])\n",
|
942 |
+
"print(\"Train Accuracy: \", train_score[1])\n",
|
943 |
+
"print('-' * 20)\n",
|
944 |
+
"\n",
|
945 |
+
"# Print the evaluation results for the validation dataset\n",
|
946 |
+
"print(\"Validation Loss: \", valid_score[0])\n",
|
947 |
+
"print(\"Validation Accuracy: \", valid_score[1])\n",
|
948 |
+
"print('-' * 20)\n",
|
949 |
+
"\n",
|
950 |
+
"# Print the evaluation results for the test dataset\n",
|
951 |
+
"print(\"Test Loss: \", test_score[0])\n",
|
952 |
+
"print(\"Test Loss: \", test_score[0])\n",
|
953 |
+
"print(\"Test Accuracy: \", test_score[1])"
|
954 |
+
],
|
955 |
+
"metadata": {
|
956 |
+
"colab": {
|
957 |
+
"base_uri": "https://localhost:8080/"
|
958 |
+
},
|
959 |
+
"id": "mf1mrDrLpGXF",
|
960 |
+
"outputId": "85ada66f-d5a3-4cd5-b1ad-b6ab756c89bf"
|
961 |
+
},
|
962 |
+
"execution_count": 15,
|
963 |
+
"outputs": [
|
964 |
+
{
|
965 |
+
"output_type": "stream",
|
966 |
+
"name": "stdout",
|
967 |
+
"text": [
|
968 |
+
"5/5 [==============================] - 2s 276ms/step - loss: 0.9960 - accuracy: 1.0000\n",
|
969 |
+
"3/5 [=================>............] - ETA: 0s - loss: 1.2769 - accuracy: 0.9028"
|
970 |
+
]
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"output_type": "stream",
|
974 |
+
"name": "stderr",
|
975 |
+
"text": [
|
976 |
+
"WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 5 batches). You may need to use the repeat() function when building your dataset.\n"
|
977 |
+
]
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"output_type": "stream",
|
981 |
+
"name": "stdout",
|
982 |
+
"text": [
|
983 |
+
"5/5 [==============================] - 1s 213ms/step - loss: 1.2769 - accuracy: 0.9028\n",
|
984 |
+
"5/5 [==============================] - 150s 37s/step - loss: 1.2655 - accuracy: 0.9111\n",
|
985 |
+
"Train Loss: 0.9959659576416016\n",
|
986 |
+
"Train Accuracy: 1.0\n",
|
987 |
+
"--------------------\n",
|
988 |
+
"Validation Loss: 1.2768819332122803\n",
|
989 |
+
"Validation Accuracy: 0.9027777910232544\n",
|
990 |
+
"--------------------\n",
|
991 |
+
"Test Loss: 1.2654653787612915\n",
|
992 |
+
"Test Accuracy: 0.9111111164093018\n"
|
993 |
+
]
|
994 |
+
}
|
995 |
+
]
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"cell_type": "markdown",
|
999 |
+
"source": [
|
1000 |
+
"# EfficientNet B5\n",
|
1001 |
+
"## (The Above model is EfficientNetB5 which shows best accuracy compare to other models)\n",
|
1002 |
+
"## Train Accuracy: 100%\n",
|
1003 |
+
"## Validation Accuracy: 90.2%\n",
|
1004 |
+
"## Test Accuracy: 91.11%"
|
1005 |
+
],
|
1006 |
+
"metadata": {
|
1007 |
+
"id": "3aYDXYnm71Wd"
|
1008 |
+
}
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"cell_type": "markdown",
|
1012 |
+
"source": [
|
1013 |
+
"# VGG19\n",
|
1014 |
+
"## Train Accuracy: 100%\n",
|
1015 |
+
"## Validation Accuracy: 80.56%\n",
|
1016 |
+
"## Test Accuracy: 79.05%"
|
1017 |
+
],
|
1018 |
+
"metadata": {
|
1019 |
+
"id": "av1hgCOj-VLh"
|
1020 |
+
}
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"cell_type": "markdown",
|
1024 |
+
"source": [
|
1025 |
+
"# VGG16\n",
|
1026 |
+
"## Train Accuracy: 100%\n",
|
1027 |
+
"## Validation Accuracy: 79.16%\n",
|
1028 |
+
"## Test Accuracy: 76.19%"
|
1029 |
+
],
|
1030 |
+
"metadata": {
|
1031 |
+
"id": "shJGEpmM-iSU"
|
1032 |
+
}
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"cell_type": "code",
|
1036 |
+
"source": [
|
1037 |
+
"import shutil\n",
|
1038 |
+
"\n",
|
1039 |
+
"# Source path\n",
|
1040 |
+
"source_path = \"content/model_weights_efficient_B5_2.h5\"\n",
|
1041 |
+
"\n",
|
1042 |
+
"# Destination path (Data folder)\n",
|
1043 |
+
"destination_path = \"drive/MyDrive/LungCancer-IITM/Data/model_weights_efficient_B5_2.h5\"\n",
|
1044 |
+
"\n",
|
1045 |
+
"# Move the file\n",
|
1046 |
+
"shutil.move(source_path, destination_path)\n",
|
1047 |
+
"\n",
|
1048 |
+
"print(f\"File moved from {source_path} to {destination_path}\")"
|
1049 |
+
],
|
1050 |
+
"metadata": {
|
1051 |
+
"id": "nF-O7RYjEFCi"
|
1052 |
+
},
|
1053 |
+
"execution_count": 22,
|
1054 |
+
"outputs": []
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"cell_type": "code",
|
1058 |
+
"source": [
|
1059 |
+
"# EfficientNetB5 model link:-\n",
|
1060 |
+
"google_drive_link = \"https://drive.google.com/file/d/1ppJ_h5jE3tr2-n0x1TBzx8CEfCdAg9TD/view?usp=drive_link\""
|
1061 |
+
],
|
1062 |
+
"metadata": {
|
1063 |
+
"id": "qXQfOXJGEo9R"
|
1064 |
+
},
|
1065 |
+
"execution_count": null,
|
1066 |
+
"outputs": []
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"cell_type": "markdown",
|
1070 |
+
"source": [
|
1071 |
+
"#Thank You..."
|
1072 |
+
],
|
1073 |
+
"metadata": {
|
1074 |
+
"id": "F1XWcOHaE8gc"
|
1075 |
+
}
|
1076 |
+
}
|
1077 |
+
]
|
1078 |
+
}
|