{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa4f9f10c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688881307593262843, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY9y7wkwHs+7d7lPDTcer7O4jw8XvucOgAAAAAAAAAAZn2RPF32pD/V6QQ+80S7vqUjLzzEgAg8AAAAAAAAAAAanBm90hGRu9jxY73Q5xO+OHkVPBvWvD4AAIA/AACAPyqwub6sZqW97QLmvTGD17xnZ6w+BM4/OQAAgD8AAIA/rdJWPpA2aj/NDkm9z7Oivudt2j2ic/a8AAAAAAAAAABmxvM8F+erP7eisz5nl8a+9ij+O5gttz0AAAAAAAAAAGao1b1DNTI/ZkrbPRvXl760Pp689obuPQAAAAAAAAAAmp+kPPZUVLq3vSy4BiEfs7dJsDoTiUs3AACAPwAAgD+aOdc9pSBbPutga73C7pC+/ZJDu1HDET0AAAAAAAAAAE0YOT3FEqI8It8xvCGRlL7OYYy8WCEEPQAAAAAAAAAAZu4bPtQAVj/qppo9qui3vsVjwz0fnbU7AAAAAAAAAACmdwe+2CAgP3oDvj1Sar6+raB/vBAtcr0AAAAAAAAAAE1ajT12srs/bn6VPp5gPb6cLss9pwXMPQAAAAAAAAAAAFy4u49OT7ro8dk60fRtNUGDgbmakAC6AACAPwAAgD8zoFm9bU9wP8ij771vnri+FHR8vbAzVjwAAAAAAAAAALP6dz0/8lY/qR+FvNJStr7rXJ48O5f+vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3z+2E0zj6MAWyUTSYBjAF0lEdAkxlmI0qH5HV9lChoBkdAb7YYUFjd6GgHTTcCaAhHQJMaapPykKx1fZQoaAZHQHBHMvduYQdoB00MAWgIR0CTGrmF8G9pdX2UKGgGR0BvsZbjcVQAaAdN8wFoCEdAkxy+5Fw1i3V9lChoBkdAcbJb4rSVnmgHTbYCaAhHQJMeFfF72L51fZQoaAZHQG5SBtDUmUpoB002AWgIR0CTHiOkcjqwdX2UKGgGR0BxesJRfnfVaAdNjwNoCEdAkx82sJY1YXV9lChoBkdAcWDhaC+UQmgHTTkBaAhHQJMgzWuoxYd1fZQoaAZHQHKUKVMVUMpoB02VAWgIR0CTIQfgrH2idX2UKGgGR0Bvk9jNIK+jaAdNDwFoCEdAkyFdjCpFTnV9lChoBkdAcPjZ+QU5/GgHTVABaAhHQJMhn3+MqBp1fZQoaAZHQHHq6tozvZ1oB02YAWgIR0CTIfi2DxsmdX2UKGgGR0BxCplBhQWOaAdN3wFoCEdAkyIQ3gk1M3V9lChoBkdAJMHkcS5AhWgHS/BoCEdAkyL3974SH3V9lChoBkdAcUqWhRIjGGgHTYIBaAhHQJMjxfBvaUR1fZQoaAZHQHB1Yd+5OJtoB003AWgIR0CTJBz3yqdZdX2UKGgGR0BxM1v1lGwzaAdN1gFoCEdAkyR770nPV3V9lChoBkdAb90fU4JeFGgHTVQBaAhHQJMl02Kl54Z1fZQoaAZHQG6uK3VkMCtoB02PAWgIR0CTJskxyn1ndX2UKGgGR0BwNbMt9QXRaAdNHgFoCEdAkydloUSIxnV9lChoBkdAcj3RNATqS2gHTS0BaAhHQJMpHaTOgQJ1fZQoaAZHQHB7QBtDUmVoB01cAWgIR0CTKaaHKwIMdX2UKGgGR0Bw5H0UXYUWaAdNJwFoCEdAkyrRFZxJd3V9lChoBkdAOGA7gbZOBWgHS+BoCEdAkyxGT9sJpnV9lChoBkdAcjkGRV6u4mgHTRQBaAhHQJMsaJGe+VV1fZQoaAZHQHHljnRsuWdoB01SAWgIR0CTLfl4TsY3dX2UKGgGR0By7gqur6tUaAdNeQFoCEdAky5UHIIWxnV9lChoBkdAb8D36AOJ+GgHTXcBaAhHQJMvGa5PM0R1fZQoaAZHQG98DNyHVPNoB01uAWgIR0CTL6zO5avBdX2UKGgGR0BwjE9TxXnyaAdNigFoCEdAkzB0DZDiO3V9lChoBkdASsMlkYoAn2gHS7BoCEdAkzEeIEbHZXV9lChoBkdAb6SPikwevWgHTTICaAhHQJMx39VFQVN1fZQoaAZHQG3WS4vvjOtoB00uAWgIR0CTMnE9dNWVdX2UKGgGR0Bw9cY0l7dBaAdNcwFoCEdAkzKfpt78enV9lChoBkdAcKxtIClrM2gHTWkBaAhHQJMyqH6/IsB1fZQoaAZHQGycwHJLdvdoB00vAWgIR0CTM5GNJe3QdX2UKGgGR0BuUu5UcXFcaAdNLQFoCEdAkzQ7g88s+XV9lChoBkdAUUwp3HJcPmgHS+9oCEdAkzRLE1l5GHV9lChoBkdAcIlcghbGFWgHTSYBaAhHQJM35+6RQrN1fZQoaAZHQHB5+eOGTLZoB00XAWgIR0CTOQpHqeK9dX2UKGgGR0BHHR5s0pEyaAdL5mgIR0CTOTDB/I8ydX2UKGgGR0A9sC/oJRfnaAdL9mgIR0CTOo57w8W9dX2UKGgGR0BwWU7U5MlDaAdNNQFoCEdAkzrB1X/5tXV9lChoBkdAb3S20iQkomgHTTYBaAhHQJM8RSMtK7J1fZQoaAZHQG82q4YrJ8xoB01iAWgIR0CTPw+n62v0dX2UKGgGR0BuETFhoduHaAdNGAFoCEdAkz+M/D+BH3V9lChoBkdAcFEMSbpeNWgHTUIBaAhHQJM/9EhJRO11fZQoaAZHQG4MNJvo/zJoB000AWgIR0CTQJ5vLowFdX2UKGgGR0ByM8leF+NMaAdNPQFoCEdAk0DFUADJVHV9lChoBkdAci3gXuVopWgHTVcBaAhHQJNBPggow251fZQoaAZHQG12pWFN+LFoB014AWgIR0CTQVfb9If9dX2UKGgGR0BtDmViWmgraAdNRAFoCEdAk1I8DbJwKnV9lChoBkdAQc8ZBLPD52gHS/poCEdAk1NpL/S6UnV9lChoBkdAcPnkFwDNhWgHTYQBaAhHQJNUX7N0NjN1fZQoaAZHQDjaX0Gu9vloB0vnaAhHQJNU31PFefJ1fZQoaAZHQHJUdOmBOHpoB00nAWgIR0CTVQBMSK3vdX2UKGgGR0Bw7kBV+7UYaAdNWgFoCEdAk1XC8nNPg3V9lChoBkdAa9YxYaHbh2gHTS4BaAhHQJNWBbOeJ551fZQoaAZHQEiS1Bt1p0xoB0uwaAhHQJNWGosI3R51fZQoaAZHQHE0NKh+OOtoB01KAWgIR0CTVu3w1BMSdX2UKGgGR0BxK81dgOSXaAdN8gFoCEdAk1ciVObiInV9lChoBkdAcEtxL0z0pWgHTSUBaAhHQJNY01+AmRh1fZQoaAZHQHHToVmBe5ZoB01HAWgIR0CTWZVpKzzFdX2UKGgGR0Byi6ZiNKh+aAdNNwFoCEdAk1oB1oxpL3V9lChoBkdAbbDvG6wt8WgHTS0BaAhHQJNaX3yqdYp1fZQoaAZHQHEJoUJv5xloB00JAWgIR0CTWnLcsUZfdX2UKGgGR0Bxcj3pOerdaAdNPAFoCEdAk1q26PKdQXV9lChoBkdAbnEGzru6VmgHTT4BaAhHQJNdZSJj2Bd1fZQoaAZHQHEvO05U96loB00eAWgIR0CTXgEnssxxdX2UKGgGR0BweS8Zk079aAdNEwFoCEdAk16LqIJqqXV9lChoBkdAUYYhA4XGfmgHS/ZoCEdAk17sJY1YQ3V9lChoBkdAbrjskY4yXWgHTU4BaAhHQJNfDbdrO7h1fZQoaAZHQEeTR8c+7lJoB0vXaAhHQJNgE5+6RQt1fZQoaAZHQG+zRlYlpoNoB01GAWgIR0CTYKHN5dGBdX2UKGgGR0BxzFas6q82aAdNTQFoCEdAk2DNRvWH13V9lChoBkdAcSPJiiItUWgHTZcBaAhHQJNh9xhlUZN1fZQoaAZHQHBDTafzz3BoB00ZAWgIR0CTYw/bj94vdX2UKGgGR0BwMAPhAGB4aAdNHQFoCEdAk2R4hY/3WXV9lChoBkdAcIQaufVZtGgHTS0BaAhHQJNksPz4DcN1fZQoaAZHQHGvQ5zYEntoB02lAWgIR0CTZRkS26TXdX2UKGgGR0Bumupda+vhaAdNUQFoCEdAk2V2hVU+93V9lChoBkdAcUgdDpkf92gHTVwBaAhHQJNmKPuG9Ht1fZQoaAZHQEkZZdv863loB0uraAhHQJNoAfdRBNV1fZQoaAZHQHD0ioKlYU5oB00fAWgIR0CTaKscABDHdX2UKGgGR0BsU/NmlImPaAdNLQFoCEdAk2ny3CsOonV9lChoBkdAbqdYvnKW9mgHTUYBaAhHQJNrb74zrNZ1fZQoaAZHQG6y0JWvKU5oB02HAWgIR0CTbVTYNAkcdX2UKGgGR0BuTWDJ2dNGaAdNRAFoCEdAk23PmLcbi3V9lChoBkdAcFJueSSvDGgHTV4BaAhHQJNuXIV/MGJ1fZQoaAZHQHL4uTFERapoB01pAWgIR0CTb+k2P1cudX2UKGgGR0Bxi/j81n/UaAdNMgFoCEdAk3CW56MR6HV9lChoBkdAbLaotL+PzWgHTR8BaAhHQJNyreaa1Cx1fZQoaAZHQFWfV0tAcDNoB03oA2gIR0CTdKX1J17qdX2UKGgGR0Bw82kqMFUyaAdNQwFoCEdAk3VMguAZsXV9lChoBkdAcJxjYI0IkmgHTWIBaAhHQJN1cCr92ox1fZQoaAZHQG0MEIomXw9oB00wAWgIR0CTdX24NI9UdX2UKGgGR0Bw3UxHoX9BaAdNYwFoCEdAk3XF7tzCDXV9lChoBkdAcH3oexOclWgHTSwBaAhHQJN4JuvUz9F1fZQoaAZHQEfcRQrMC91oB0vTaAhHQJN4nQmeDnN1fZQoaAZHQHCPZ1aGHpNoB01JAWgIR0CTeOw0waisdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}