KIFF commited on
Commit
6a77af8
·
verified ·
1 Parent(s): 38f584e

Delete create_handler.ipynb

Browse files
Files changed (1) hide show
  1. create_handler.ipynb +0 -235
create_handler.ipynb DELETED
@@ -1,235 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "## 1. Setup & Installation"
8
- ]
9
- },
10
- {
11
- "cell_type": "code",
12
- "execution_count": 1,
13
- "metadata": {},
14
- "outputs": [
15
- {
16
- "name": "stdout",
17
- "output_type": "stream",
18
- "text": [
19
- "Overwriting requirements.txt\n"
20
- ]
21
- }
22
- ],
23
- "source": [
24
- "%%writefile requirements.txt\n",
25
- "torch>=2.0.0\n",
26
- "torchaudio>=2.2.0\n",
27
- "pyannote.audio\n",
28
- "pyannote.core\n",
29
- "speechbrain\n",
30
- "typing-extensions\n",
31
- "semver>=3.0.0\n",
32
- "pytorch-lightning"
33
- ]
34
- },
35
- {
36
- "cell_type": "code",
37
- "execution_count": null,
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "!pip install -r requirements.txt --upgrade"
42
- ]
43
- },
44
- {
45
- "cell_type": "markdown",
46
- "metadata": {},
47
- "source": [
48
- "## 2. Create Custom Handler for Inference Endpoints\n"
49
- ]
50
- },
51
- {
52
- "cell_type": "code",
53
- "execution_count": 2,
54
- "metadata": {},
55
- "outputs": [
56
- {
57
- "name": "stdout",
58
- "output_type": "stream",
59
- "text": [
60
- "Overwriting handler.py\n"
61
- ]
62
- }
63
- ],
64
- "source": [
65
- "%%writefile handler.py\n",
66
- "from typing import Dict\n",
67
- "from pyannote.audio import Pipeline\n",
68
- "from transformers.pipelines.audio_utils import ffmpeg_read\n",
69
- "import torch \n",
70
- "\n",
71
- "SAMPLE_RATE = 16000\n",
72
- "\n",
73
- "\n",
74
- "\n",
75
- "class EndpointHandler():\n",
76
- " def __init__(self, path=\"\"):\n",
77
- " # load the model\n",
78
- " self.pipeline = Pipeline.from_pretrained(\"pyannote/speaker-diarization\")\n",
79
- "\n",
80
- "\n",
81
- " def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:\n",
82
- " \"\"\"\n",
83
- " Args:\n",
84
- " data (:obj:):\n",
85
- " includes the deserialized audio file as bytes\n",
86
- " Return:\n",
87
- " A :obj:`dict`:. base64 encoded image\n",
88
- " \"\"\"\n",
89
- " # process input\n",
90
- " inputs = data.pop(\"inputs\", data)\n",
91
- " parameters = data.pop(\"parameters\", None) # min_speakers=2, max_speakers=5\n",
92
- "\n",
93
- " \n",
94
- " # prepare pynannote input\n",
95
- " audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)\n",
96
- " audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0)\n",
97
- " pyannote_input = {\"waveform\": audio_tensor, \"sample_rate\": SAMPLE_RATE}\n",
98
- " \n",
99
- " # apply pretrained pipeline\n",
100
- " # pass inputs with all kwargs in data\n",
101
- " if parameters is not None:\n",
102
- " diarization = self.pipeline(pyannote_input, **parameters)\n",
103
- " else:\n",
104
- " diarization = self.pipeline(pyannote_input)\n",
105
- "\n",
106
- " # postprocess the prediction\n",
107
- " processed_diarization = [\n",
108
- " {\"label\": str(label), \"start\": str(segment.start), \"stop\": str(segment.end)}\n",
109
- " for segment, _, label in diarization.itertracks(yield_label=True)\n",
110
- " ]\n",
111
- " \n",
112
- " return {\"diarization\": processed_diarization}"
113
- ]
114
- },
115
- {
116
- "cell_type": "markdown",
117
- "metadata": {},
118
- "source": [
119
- "test custom pipeline"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": 1,
125
- "metadata": {},
126
- "outputs": [],
127
- "source": [
128
- "from handler import EndpointHandler\n",
129
- "\n",
130
- "# init handler\n",
131
- "my_handler = EndpointHandler(path=\".\")"
132
- ]
133
- },
134
- {
135
- "cell_type": "code",
136
- "execution_count": 2,
137
- "metadata": {},
138
- "outputs": [],
139
- "source": [
140
- "import base64\n",
141
- "from PIL import Image\n",
142
- "from io import BytesIO\n",
143
- "import json\n",
144
- "\n",
145
- "# file reader\n",
146
- "with open(\"sample.wav\", \"rb\") as f:\n",
147
- " request = {\"inputs\": f.read()}\n",
148
- "\n",
149
- "# test the handler\n",
150
- "pred = my_handler(request)"
151
- ]
152
- },
153
- {
154
- "cell_type": "code",
155
- "execution_count": 3,
156
- "metadata": {},
157
- "outputs": [
158
- {
159
- "data": {
160
- "text/plain": [
161
- "{'diarization': [{'label': 'SPEAKER_01',\n",
162
- " 'start': '0.4978125',\n",
163
- " 'stop': '1.3921875'},\n",
164
- " {'label': 'SPEAKER_01', 'start': '1.8984375', 'stop': '2.7590624999999998'},\n",
165
- " {'label': 'SPEAKER_02', 'start': '2.9953125', 'stop': '3.5015625000000004'},\n",
166
- " {'label': 'SPEAKER_01',\n",
167
- " 'start': '3.5690625000000002',\n",
168
- " 'stop': '4.311562500000001'},\n",
169
- " {'label': 'SPEAKER_02', 'start': '4.6153125', 'stop': '6.7753125'},\n",
170
- " {'label': 'SPEAKER_00', 'start': '7.1128125', 'stop': '7.551562500000001'},\n",
171
- " {'label': 'SPEAKER_02',\n",
172
- " 'start': '7.551562500000001',\n",
173
- " 'stop': '9.475312500000001'},\n",
174
- " {'label': 'SPEAKER_02',\n",
175
- " 'start': '9.812812500000003',\n",
176
- " 'stop': '10.555312500000003'},\n",
177
- " {'label': 'SPEAKER_00',\n",
178
- " 'start': '9.863437500000003',\n",
179
- " 'stop': '10.420312500000001'},\n",
180
- " {'label': 'SPEAKER_03', 'start': '12.411562500000002', 'stop': '15.5503125'},\n",
181
- " {'label': 'SPEAKER_00', 'start': '15.786562500000002', 'stop': '16.1409375'},\n",
182
- " {'label': 'SPEAKER_01', 'start': '16.1409375', 'stop': '16.1578125'},\n",
183
- " {'label': 'SPEAKER_00', 'start': '17.1534375', 'stop': '17.4234375'},\n",
184
- " {'label': 'SPEAKER_01', 'start': '17.7440625', 'stop': '20.3596875'},\n",
185
- " {'label': 'SPEAKER_01', 'start': '20.6128125', 'stop': '20.6634375'},\n",
186
- " {'label': 'SPEAKER_00', 'start': '20.6634375', 'stop': '20.8490625'},\n",
187
- " {'label': 'SPEAKER_01', 'start': '20.8490625', 'stop': '20.8828125'},\n",
188
- " {'label': 'SPEAKER_01', 'start': '21.1021875', 'stop': '22.1315625'},\n",
189
- " {'label': 'SPEAKER_02', 'start': '22.4521875', 'stop': '22.7053125'},\n",
190
- " {'label': 'SPEAKER_02', 'start': '23.2115625', 'stop': '23.4815625'},\n",
191
- " {'label': 'SPEAKER_01', 'start': '23.4815625', 'stop': '24.0215625'},\n",
192
- " {'label': 'SPEAKER_02', 'start': '24.3253125', 'stop': '25.5065625'},\n",
193
- " {'label': 'SPEAKER_01', 'start': '25.8440625', 'stop': '27.3121875'},\n",
194
- " {'label': 'SPEAKER_02', 'start': '27.3121875', 'stop': '27.4978125'},\n",
195
- " {'label': 'SPEAKER_01', 'start': '29.7253125', 'stop': '29.9615625'}]}"
196
- ]
197
- },
198
- "execution_count": 3,
199
- "metadata": {},
200
- "output_type": "execute_result"
201
- }
202
- ],
203
- "source": [
204
- "pred"
205
- ]
206
- }
207
- ],
208
- "metadata": {
209
- "kernelspec": {
210
- "display_name": "Python 3.9.13 ('dev': conda)",
211
- "language": "python",
212
- "name": "python3"
213
- },
214
- "language_info": {
215
- "codemirror_mode": {
216
- "name": "ipython",
217
- "version": 3
218
- },
219
- "file_extension": ".py",
220
- "mimetype": "text/x-python",
221
- "name": "python",
222
- "nbconvert_exporter": "python",
223
- "pygments_lexer": "ipython3",
224
- "version": "3.9.13"
225
- },
226
- "orig_nbformat": 4,
227
- "vscode": {
228
- "interpreter": {
229
- "hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
230
- }
231
- }
232
- },
233
- "nbformat": 4,
234
- "nbformat_minor": 2
235
- }