--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - accuracy - roc_auc model-index: - name: ModernEMO-base results: [] datasets: - Jsevisal/go_emotions_ekman - google-research-datasets/go_emotions pipeline_tag: text-classification --- # ModernEMO-base This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on [Jsevisal/go_emotions_ekman](https://huggingface.co/datasets/Jsevisal/go_emotions_ekman) It achieves the following results on the evaluation set: - Loss: 0.2224 - F1: 0.7037 - Roc Auc: 0.8143 - Accuracy: 0.6226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.2162 | 1.0 | 2714 | 0.2049 | 0.6920 | 0.7979 | 0.6010 | | 0.1553 | 2.0 | 5428 | 0.2224 | 0.7037 | 0.8143 | 0.6226 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0