File size: 7,952 Bytes
7c071a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
#!/usr/bin/env python3
# ==============================================================================
#
# Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved.
#
# TPU-MLIR is licensed under the 2-Clause BSD License except for the
# third-party components.
#
# ==============================================================================
import os
import torch
import argparse
from tqdm import tqdm
from transformers import AutoModelForCausalLM
torch.set_grad_enabled(False)
parser = argparse.ArgumentParser(description='export onnx')
parser.add_argument('-m', '--model_path', type=str, help='path to the torch model')
parser.add_argument('-s', '--seq_length', type=int, default=512, help="sequence length")
parser.add_argument('-d', '--device', type=str, choices=["cpu", "cuda"], default="cpu")
args = parser.parse_args()
model_path = args.model_path
folder = f"./tmp/onnx"
device = torch.device(args.device)
origin_model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True,
torch_dtype=torch.float).eval()
for param in origin_model.parameters():
param.requires_grad = False
config = origin_model.config
transformer = origin_model.model
layers = transformer.layers
SEQ_LENGTH = args.seq_length
NUM_LAYERS = config.num_hidden_layers
HIDDEN_SIZE = config.hidden_size
NUM_ATTENTION_HEADS = config.num_attention_heads
HEAD_DIM = HIDDEN_SIZE // NUM_ATTENTION_HEADS
VOCAB_SIZE = config.vocab_size
print(f'Layers: {NUM_LAYERS}\nHidden size: {HIDDEN_SIZE}\n')
class Embedding(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_ids):
out = transformer.embed_tokens(input_ids)
return out.float()
class QwenBlock(torch.nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.layer = layers[layer_id]
def forward(self, hidden_states, position_ids, attention_mask):
hidden_states, past_kv = self.layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=True)
present_k, present_v = past_kv
return hidden_states.float(), present_k.float(), present_v.float()
class QwenBlockCache(torch.nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.layer = layers[layer_id]
def forward(self, hidden_states, position_ids, attention_mask, past_k,
past_v):
hidden_states, past_kv = self.layer(
hidden_states,
past_key_value=(past_k, past_v),
position_ids=position_ids,
attention_mask=attention_mask,
use_cache=True)
present_k, present_v = past_kv
return hidden_states.float(), present_k.float(), present_v.float()
class LmHead(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states):
hidden_states = transformer.norm(hidden_states)
m_logits = origin_model.lm_head(hidden_states)
return m_logits
class GreedyHead(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, m_logits):
_, token = torch.topk(m_logits.float(), 1)
return token
# refs:https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py
class PenaltySampleHead(torch.nn.Module):
def __init__(self, top_k = 50, min_tokens_to_keep = 5):
super().__init__()
self.top_k = top_k
self.min_tokens_to_keep = min_tokens_to_keep
self.keep_matrix = torch.zeros((1, self.top_k), dtype=torch.bool)
self.keep_matrix[0, :self.min_tokens_to_keep] = True
def forward(self, m_logits, input_ids, top_p, temperature, penalty):
# repeat penalty
logits = torch.gather(m_logits, 1, input_ids)
logits = torch.where(logits < 0, logits * penalty, logits / penalty)
m_logits.scatter_(1, input_ids, logits)
# top_k
logits, token = torch.topk(m_logits.float(), self.top_k)
# temperature
logits = logits / temperature
# top_p
cumulative_probs = logits.softmax(dim=1).cumsum(dim=1)
mask = cumulative_probs < top_p
mask = mask + self.keep_matrix
filtered_logits = torch.where(mask, logits, torch.FloatTensor([-1000.]))
probs = filtered_logits.softmax(dim=1)
return probs, token
def convert_block(layer_id):
model = QwenBlock(layer_id)
hidden_states = torch.randn(
(1, SEQ_LENGTH, HIDDEN_SIZE)).to(torch.float).to(device)
position_ids = torch.tensor(
[range(SEQ_LENGTH)], dtype=torch.long).to(device)
attention_mask = torch.randn(
(1, 1, SEQ_LENGTH, SEQ_LENGTH)).to(torch.float).to(device)
torch.onnx.export(
model, (hidden_states, position_ids, attention_mask),
f'{folder}/block_{layer_id}.onnx',
verbose=False,
input_names=['input_states', 'position_ids', 'attention_mask'],
output_names=['hidden_states', 'past_k', 'past_v'],
do_constant_folding=True,
opset_version=15)
def convert_block_cache(layer_id):
model = QwenBlockCache(layer_id)
hidden_states = torch.randn((1, 1, HIDDEN_SIZE)).to(torch.float).to(device)
position_ids = torch.tensor([range(1)], dtype=torch.long).to(device)
attention_mask = torch.ones(
(1, 1, 1, SEQ_LENGTH + 1)).to(torch.float).to(device)
past_k = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM)).to(torch.float).to(device)
past_v = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM)).to(torch.float).to(device)
torch.onnx.export(
model, (hidden_states, position_ids, attention_mask, past_k, past_v),
f'{folder}/block_cache_{layer_id}.onnx',
verbose=False,
input_names=[
'input_states', 'position_ids', 'attention_mask', 'history_k',
'history_v'
],
output_names=['hidden_states', 'past_k', 'past_v'],
do_constant_folding=True,
opset_version=15)
def convert_embedding():
model = Embedding()
input_ids = torch.tensor([range(SEQ_LENGTH)]).to(device)
module = torch.jit.trace(model.forward, input_ids)
torch.jit.save(module, f'{folder}/embedding.pt')
def convert_lm_head():
model = LmHead()
hidden_states = torch.randn(1, HIDDEN_SIZE).bfloat16().to(device)
module = torch.jit.trace(model.forward, hidden_states)
torch.jit.save(module, f'{folder}/lm_head.pt')
def convert_greedy_head():
model = GreedyHead()
m_logits = torch.randn(1, VOCAB_SIZE)
torch.onnx.export(
model, (m_logits),
f'{folder}/greedy_head.onnx',
verbose=False,
input_names=['m_logits'],
output_names=['token'],
do_constant_folding=True,
opset_version=15)
def convert_penalty_sample_head():
model = PenaltySampleHead()
m_logits = torch.randn(1, VOCAB_SIZE)
input_ids = torch.tensor([range(SEQ_LENGTH)])
top_p = torch.tensor([0.8])
temperature = torch.tensor([0.98])
penalty = torch.tensor([0.98])
torch.onnx.export(
model, (m_logits, input_ids, top_p, temperature, penalty),
f'{folder}/penalty_sample_head.onnx',
verbose=False,
input_names=[
'm_logits', 'input_ids', 'top_p', 'temperature',
'penalty'
],
output_names=['probs', 'token'],
do_constant_folding=True,
opset_version=15)
# create folder to store onnx
if not os.path.exists(folder):
os.makedirs(folder)
# export models
print(f'Convert block & block_cache')
for i in tqdm(range(NUM_LAYERS)):
convert_block(i)
convert_block_cache(i)
print(f'Convert embedding')
convert_embedding()
print(f'Convert lm_head')
convert_lm_head()
convert_greedy_head()
convert_penalty_sample_head()
|