File size: 1,353 Bytes
47be72b abfcd1b 2122e78 abfcd1b eb27d9c 3bebb63 eb27d9c 3bebb63 eb27d9c 466360d 47be72b eb27d9c 08474c3 a9865a1 08474c3 a9865a1 08474c3 a9865a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: afl-3.0
tags:
- feature_extraction
- image
- perceptual_metric
datasets:
- tid2008
- tid2013
metrics:
- pearsonr
model-index:
- name: PerceptNet
results:
- task:
type: feature_extraction
name: Perceptual Distance
dataset:
type: image
name: tid2013
metrics:
- type: pearsonr
value: 0.93
name: PearsonR (MOS)
---
# PerceptNet
PercepNet model trained on TID2008 and validated on TID2013, obtaining 0.97 and 0.93 Pearson Correlation respectively.
Link to the run: https://wandb.ai/jorgvt/PerceptNet/runs/28m2cnzj?workspace=user-jorgvt
# Usage
As of now to use the model you have to install the [PerceptNet repo](https://github.com/Jorgvt/perceptnet) to get access to the `PerceptNet` class where you will load the weights available here like this:
```python
from perceptnet.networks import PerceptNet
from tensorflow.keras.utils import get_file
weights_path = get_file(fname='perceptnet_rgb.h5',
origin='https://huggingface.co/Jorgvt/PerceptNet/resolve/main/tf_model.h5')
model = PerceptNet(kernel_initializer='ones', gdn_kernel_size=1, learnable_undersampling=False)
model.build(input_shape=(None, 384, 512, 3))
model.load_weights(weights_path)
```
> PerceptNet requires `wandb` to be installed. It's something we're looking into. |