Joctor commited on
Commit
35b5d92
·
verified ·
1 Parent(s): 628ca72

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -5
README.md CHANGED
@@ -1,12 +1,16 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
@@ -71,7 +75,55 @@ Users (both direct and downstream) should be made aware of the risks, biases and
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
@@ -79,12 +131,18 @@ Use the code below to get started with the model.
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
 
 
 
 
 
 
88
  #### Preprocessing [optional]
89
 
90
  [More Information Needed]
@@ -126,7 +184,7 @@ Use the code below to get started with the model.
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
  #### Summary
132
 
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - Joctor/cn_bokete_oogiri_caption
5
+ base_model:
6
+ - Qwen/Qwen2-VL-7B-Instruct
7
+ pipeline_tag: image-to-text
8
  ---
9
 
10
  # Model Card for Model ID
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
+ AI大喜利
14
 
15
 
16
  ## Model Details
 
75
 
76
  Use the code below to get started with the model.
77
 
78
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
79
+ from qwen_vl_utils import process_vision_info
80
+
81
+ model_id = "Joctor/qwen2-vl-7b-instruct-ogiri"
82
+
83
+ # default: Load the model on the available device(s)
84
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
85
+ model_id, torch_dtype="auto", device_map="auto"
86
+ )
87
+
88
+ # default processer
89
+ processor = AutoProcessor.from_pretrained(model_id)
90
+
91
+ messages = [
92
+ {
93
+ "role": "user",
94
+ "content": [
95
+ {
96
+ "type": "image",
97
+ "image": "path/to/image",
98
+ },
99
+ {"type": "text", "text": "根据图片给出有趣巧妙的回答"},
100
+ ],
101
+ }
102
+ ]
103
+
104
+ # Preparation for inference
105
+ text = processor.apply_chat_template(
106
+ messages, tokenize=False, add_generation_prompt=True
107
+ )
108
+ image_inputs, video_inputs = process_vision_info(messages)
109
+ inputs = processor(
110
+ text=[text],
111
+ images=image_inputs,
112
+ videos=video_inputs,
113
+ padding=True,
114
+ return_tensors="pt",
115
+ )
116
+ inputs = inputs.to("cuda")
117
+
118
+ # Inference: Generation of the output
119
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
120
+ generated_ids_trimmed = [
121
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
122
+ ]
123
+ output_text = processor.batch_decode(
124
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
125
+ )
126
+ print(output_text)
127
 
128
  ## Training Details
129
 
 
131
 
132
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
133
 
134
+ https://huggingface.co/datasets/Joctor/cn_bokete_oogiri_caption
135
 
136
  ### Training Procedure
137
 
138
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
139
 
140
+ 基础模型:qwen2vl
141
+ 微调方式:数据量充足,采用SFT微调
142
+ 微调参数:max_length=1024(短就是好!), num_train_epochs=1, per_device_train_batch_size=1, gradient_accumulation_steps=1
143
+ 训练设备:10 * 4090D
144
+ 训练时长:22小时
145
+
146
  #### Preprocessing [optional]
147
 
148
  [More Information Needed]
 
184
 
185
  ### Results
186
 
187
+ https://www.gcores.com/articles/188405
188
 
189
  #### Summary
190