Jiahuita
commited on
Commit
·
700431a
1
Parent(s):
5aafe28
Deleted app
Browse files- README.md +1 -2
- app.py +0 -84
- config.json +2 -2
- pipeline.py +41 -23
README.md
CHANGED
|
@@ -56,9 +56,8 @@ You can use this model directly with a FastAPI endpoint:
|
|
| 56 |
```python
|
| 57 |
import requests
|
| 58 |
|
| 59 |
-
# Make a prediction
|
| 60 |
response = requests.post(
|
| 61 |
-
"https://huggingface.co/Jiahuita/NewsSourceClassification
|
| 62 |
json={"text": "Your news headline here"}
|
| 63 |
)
|
| 64 |
print(response.json())
|
|
|
|
| 56 |
```python
|
| 57 |
import requests
|
| 58 |
|
|
|
|
| 59 |
response = requests.post(
|
| 60 |
+
"https://huggingface.co/Jiahuita/NewsSourceClassification",
|
| 61 |
json={"text": "Your news headline here"}
|
| 62 |
)
|
| 63 |
print(response.json())
|
app.py
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
-
from transformers import Pipeline
|
| 4 |
-
import tensorflow as tf
|
| 5 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 6 |
-
import json
|
| 7 |
-
import os
|
| 8 |
-
|
| 9 |
-
class TextInput(BaseModel):
|
| 10 |
-
text: str
|
| 11 |
-
|
| 12 |
-
app = FastAPI(
|
| 13 |
-
title="News Source Classifier",
|
| 14 |
-
description="A model to classify news headlines as either Fox News or NBC News",
|
| 15 |
-
version="1.0.0"
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
class NewsClassificationPipeline(Pipeline):
|
| 19 |
-
def __init__(self):
|
| 20 |
-
super().__init__()
|
| 21 |
-
model_path = os.path.join(os.path.dirname(__file__), 'news_classifier.h5')
|
| 22 |
-
self.model = tf.keras.models.load_model(model_path)
|
| 23 |
-
|
| 24 |
-
tokenizer_path = os.path.join(os.path.dirname(__file__), 'tokenizer.json')
|
| 25 |
-
with open(tokenizer_path, 'r') as f:
|
| 26 |
-
tokenizer_data = json.load(f)
|
| 27 |
-
self.tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_data)
|
| 28 |
-
|
| 29 |
-
def __call__(self, text):
|
| 30 |
-
if isinstance(text, str):
|
| 31 |
-
text = [text]
|
| 32 |
-
|
| 33 |
-
sequences = self.tokenizer.texts_to_sequences(text)
|
| 34 |
-
padded = pad_sequences(sequences, maxlen=128)
|
| 35 |
-
|
| 36 |
-
predictions = self.model.predict(padded)
|
| 37 |
-
|
| 38 |
-
results = []
|
| 39 |
-
for pred in predictions:
|
| 40 |
-
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
| 41 |
-
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
| 42 |
-
results.append({"label": label, "score": score})
|
| 43 |
-
|
| 44 |
-
return results[0] if len(results) == 1 else results
|
| 45 |
-
|
| 46 |
-
try:
|
| 47 |
-
classifier = NewsClassificationPipeline()
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"Error initializing model: {str(e)}")
|
| 50 |
-
raise
|
| 51 |
-
|
| 52 |
-
@app.get("/")
|
| 53 |
-
async def root():
|
| 54 |
-
return {
|
| 55 |
-
"message": "News Source Classification API",
|
| 56 |
-
"usage": "Send POST request to /predict with {'text': 'your news headline'}"
|
| 57 |
-
}
|
| 58 |
-
|
| 59 |
-
@app.post("/predict")
|
| 60 |
-
async def predict(input_data: TextInput):
|
| 61 |
-
try:
|
| 62 |
-
result = classifier(input_data.text)
|
| 63 |
-
return result
|
| 64 |
-
except Exception as e:
|
| 65 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 66 |
-
|
| 67 |
-
@app.get("/examples")
|
| 68 |
-
async def examples():
|
| 69 |
-
return {
|
| 70 |
-
"examples": [
|
| 71 |
-
{
|
| 72 |
-
"title": "Crime News Headline",
|
| 73 |
-
"text": "Wife of murdered Minnesota pastor hired 3 men to kill husband after affair: police"
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"title": "Science News Headline",
|
| 77 |
-
"text": "Scientists discover breakthrough in renewable energy research"
|
| 78 |
-
},
|
| 79 |
-
{
|
| 80 |
-
"title": "Political News Headline",
|
| 81 |
-
"text": "Presidential candidates face off in heated debate over climate policies"
|
| 82 |
-
}
|
| 83 |
-
]
|
| 84 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae409354ee5a0f6edfd67b5b838c072be95c352a1e1faca73a2473ee8ac15253
|
| 3 |
+
size 286
|
pipeline.py
CHANGED
|
@@ -1,35 +1,53 @@
|
|
| 1 |
-
from transformers import
|
| 2 |
-
|
|
|
|
| 3 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
|
| 4 |
import json
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
super().__init__(**kwargs)
|
| 14 |
-
model_path = os.path.join(os.path.dirname(__file__), './news_classifier.h5')
|
| 15 |
-
self.model = tf.keras.models.load_model(model_path)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def __call__(self, texts, **kwargs):
|
| 21 |
-
if isinstance(texts, str):
|
| 22 |
-
texts = [texts]
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
predictions = self.model.predict(padded)
|
| 28 |
|
| 29 |
results = []
|
| 30 |
for pred in predictions:
|
| 31 |
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
| 32 |
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
| 33 |
-
results.append({
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 2 |
+
from tensorflow.keras.models import load_model
|
| 3 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
| 4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 5 |
+
import numpy as np
|
| 6 |
import json
|
|
|
|
| 7 |
|
| 8 |
+
class NewsClassifierConfig(PretrainedConfig):
|
| 9 |
+
model_type = "news_classifier"
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
max_length=128,
|
| 14 |
+
vocab_size=10000,
|
| 15 |
+
hidden_size=64,
|
| 16 |
+
num_labels=2,
|
| 17 |
+
**kwargs
|
| 18 |
+
):
|
| 19 |
+
self.max_length = max_length
|
| 20 |
+
self.vocab_size = vocab_size
|
| 21 |
+
self.hidden_size = hidden_size
|
| 22 |
+
self.num_labels = num_labels
|
| 23 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
class NewsClassifier(PreTrainedModel):
|
| 26 |
+
config_class = NewsClassifierConfig
|
| 27 |
+
base_model_prefix = "news_classifier"
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def __init__(self, config):
|
| 30 |
+
super().__init__(config)
|
| 31 |
+
self.model = load_model('news_classifier.h5')
|
| 32 |
+
with open('tokenizer.json', 'r') as f:
|
| 33 |
+
tokenizer_data = json.load(f)
|
| 34 |
+
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
| 35 |
+
|
| 36 |
+
def forward(self, text_input):
|
| 37 |
+
if isinstance(text_input, str):
|
| 38 |
+
text_input = [text_input]
|
| 39 |
+
|
| 40 |
+
sequences = self.tokenizer.texts_to_sequences(text_input)
|
| 41 |
+
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
| 42 |
predictions = self.model.predict(padded)
|
| 43 |
|
| 44 |
results = []
|
| 45 |
for pred in predictions:
|
| 46 |
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
| 47 |
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
| 48 |
+
results.append({
|
| 49 |
+
"label": label,
|
| 50 |
+
"score": score
|
| 51 |
+
})
|
| 52 |
+
|
| 53 |
+
return results[0] if len(text_input) == 1 else results
|