File size: 1,671 Bytes
779fa94
 
f0950bd
 
 
 
 
 
 
 
 
779fa94
 
f0950bd
 
779fa94
f0950bd
779fa94
f0950bd
 
f9ade98
 
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
779fa94
f0950bd
 
 
 
 
 
 
 
 
 
 
 
 
 
779fa94
f0950bd
779fa94
f0950bd
 
f9ade98
 
779fa94
 
f0950bd
779fa94
f0950bd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: llama3_honest_rm_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama3_honest_rm_full

This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2716
- Accuracy: 0.888

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2878        | 0.4632 | 50   | 0.2828          | 0.892    |
| 0.282         | 0.9265 | 100  | 0.2716          | 0.888    |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3