--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6237 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1543 | 1.0 | 57 | 2.0380 | 0.53 | | 1.5511 | 2.0 | 114 | 1.4662 | 0.64 | | 1.2385 | 3.0 | 171 | 1.1992 | 0.67 | | 0.8789 | 4.0 | 228 | 1.0423 | 0.68 | | 0.818 | 5.0 | 285 | 0.7940 | 0.8 | | 0.6487 | 6.0 | 342 | 0.7579 | 0.74 | | 0.635 | 7.0 | 399 | 0.7074 | 0.79 | | 0.4116 | 8.0 | 456 | 0.6650 | 0.8 | | 0.3642 | 9.0 | 513 | 0.6494 | 0.82 | | 0.396 | 10.0 | 570 | 0.6237 | 0.83 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1