--- library_name: transformers datasets: - abisee/cnn_dailymail language: - en base_model: - google-t5/t5-small pipeline_tag: summarization --- # Fine-tunined the t5-small model This is a text summarization fine-tuned model based on t5-small architecture with cnn_dailymail dataset. ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("JayasakthiBalaji/Text_Summarization_2e-5") model = AutoModelForSeq2SeqLM.from_pretrained("JayasakthiBalaji/Text_Summarization_2e-5") text = "Type your long story for summarization...." inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) summary = tokenizer.decode(outputs, skip_special_tokens=True) print(summary) ```