/* Generated by Cython 0.20.2 (Debian 0.20.2-1) on Sun Sep 7 09:12:24 2014 */ #define PY_SSIZE_T_CLEAN #ifndef CYTHON_USE_PYLONG_INTERNALS #ifdef PYLONG_BITS_IN_DIGIT #define CYTHON_USE_PYLONG_INTERNALS 0 #else #include "pyconfig.h" #ifdef PYLONG_BITS_IN_DIGIT #define CYTHON_USE_PYLONG_INTERNALS 1 #else #define CYTHON_USE_PYLONG_INTERNALS 0 #endif #endif #endif #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. #elif PY_VERSION_HEX < 0x02040000 #error Cython requires Python 2.4+. #else #define CYTHON_ABI "0_20_2" #include /* For offsetof */ #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) #endif #if !defined(WIN32) && !defined(MS_WINDOWS) #ifndef __stdcall #define __stdcall #endif #ifndef __cdecl #define __cdecl #endif #ifndef __fastcall #define __fastcall #endif #endif #ifndef DL_IMPORT #define DL_IMPORT(t) t #endif #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif #ifndef PY_LONG_LONG #define PY_LONG_LONG LONG_LONG #endif #ifndef Py_HUGE_VAL #define Py_HUGE_VAL HUGE_VAL #endif #ifdef PYPY_VERSION #define CYTHON_COMPILING_IN_PYPY 1 #define CYTHON_COMPILING_IN_CPYTHON 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_CPYTHON 1 #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 #define Py_OptimizeFlag 0 #endif #if PY_VERSION_HEX < 0x02050000 typedef int Py_ssize_t; #define PY_SSIZE_T_MAX INT_MAX #define PY_SSIZE_T_MIN INT_MIN #define PY_FORMAT_SIZE_T "" #define CYTHON_FORMAT_SSIZE_T "" #define PyInt_FromSsize_t(z) PyInt_FromLong(z) #define PyInt_AsSsize_t(o) __Pyx_PyInt_As_int(o) #define PyNumber_Index(o) ((PyNumber_Check(o) && !PyFloat_Check(o)) ? PyNumber_Int(o) : \ (PyErr_Format(PyExc_TypeError, \ "expected index value, got %.200s", Py_TYPE(o)->tp_name), \ (PyObject*)0)) #define __Pyx_PyIndex_Check(o) (PyNumber_Check(o) && !PyFloat_Check(o) && \ !PyComplex_Check(o)) #define PyIndex_Check __Pyx_PyIndex_Check #define PyErr_WarnEx(category, message, stacklevel) PyErr_Warn(category, message) #define __PYX_BUILD_PY_SSIZE_T "i" #else #define __PYX_BUILD_PY_SSIZE_T "n" #define CYTHON_FORMAT_SSIZE_T "z" #define __Pyx_PyIndex_Check PyIndex_Check #endif #if PY_VERSION_HEX < 0x02060000 #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt) #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type) #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size) #define PyVarObject_HEAD_INIT(type, size) \ PyObject_HEAD_INIT(type) size, #define PyType_Modified(t) typedef struct { void *buf; PyObject *obj; Py_ssize_t len; Py_ssize_t itemsize; int readonly; int ndim; char *format; Py_ssize_t *shape; Py_ssize_t *strides; Py_ssize_t *suboffsets; void *internal; } Py_buffer; #define PyBUF_SIMPLE 0 #define PyBUF_WRITABLE 0x0001 #define PyBUF_FORMAT 0x0004 #define PyBUF_ND 0x0008 #define PyBUF_STRIDES (0x0010 | PyBUF_ND) #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES) #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES) #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES) #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES) #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_FORMAT | PyBUF_WRITABLE) #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_FORMAT | PyBUF_WRITABLE) typedef int (*getbufferproc)(PyObject *, Py_buffer *, int); typedef void (*releasebufferproc)(PyObject *, Py_buffer *); #endif #if PY_MAJOR_VERSION < 3 #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyClass_Type #else #define __Pyx_BUILTIN_MODULE_NAME "builtins" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyType_Type #endif #if PY_VERSION_HEX < 0x02060000 #define PyUnicode_FromString(s) PyUnicode_Decode(s, strlen(s), "UTF-8", "strict") #endif #if PY_MAJOR_VERSION >= 3 #define Py_TPFLAGS_CHECKTYPES 0 #define Py_TPFLAGS_HAVE_INDEX 0 #endif #if (PY_VERSION_HEX < 0x02060000) || (PY_MAJOR_VERSION >= 3) #define Py_TPFLAGS_HAVE_NEWBUFFER 0 #endif #if PY_VERSION_HEX < 0x02060000 #define Py_TPFLAGS_HAVE_VERSION_TAG 0 #endif #if PY_VERSION_HEX < 0x02060000 && !defined(Py_TPFLAGS_IS_ABSTRACT) #define Py_TPFLAGS_IS_ABSTRACT 0 #endif #if PY_VERSION_HEX < 0x030400a1 && !defined(Py_TPFLAGS_HAVE_FINALIZE) #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ? \ 0 : _PyUnicode_Ready((PyObject *)(op))) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #else #define CYTHON_PEP393_ENABLED 0 #define __Pyx_PyUnicode_READY(op) (0) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) #endif #if CYTHON_COMPILING_IN_PYPY #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) #else #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ? \ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) #endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) #else #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) #endif #if PY_MAJOR_VERSION >= 3 #define PyBaseString_Type PyUnicode_Type #define PyStringObject PyUnicodeObject #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact #endif #if PY_VERSION_HEX < 0x02060000 #define PyBytesObject PyStringObject #define PyBytes_Type PyString_Type #define PyBytes_Check PyString_Check #define PyBytes_CheckExact PyString_CheckExact #define PyBytes_FromString PyString_FromString #define PyBytes_FromStringAndSize PyString_FromStringAndSize #define PyBytes_FromFormat PyString_FromFormat #define PyBytes_DecodeEscape PyString_DecodeEscape #define PyBytes_AsString PyString_AsString #define PyBytes_AsStringAndSize PyString_AsStringAndSize #define PyBytes_Size PyString_Size #define PyBytes_AS_STRING PyString_AS_STRING #define PyBytes_GET_SIZE PyString_GET_SIZE #define PyBytes_Repr PyString_Repr #define PyBytes_Concat PyString_Concat #define PyBytes_ConcatAndDel PyString_ConcatAndDel #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) #else #define __Pyx_PyBaseString_Check(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj) || \ PyString_Check(obj) || PyUnicode_Check(obj)) #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) #endif #if PY_VERSION_HEX < 0x02060000 #define PySet_Check(obj) PyObject_TypeCheck(obj, &PySet_Type) #define PyFrozenSet_Check(obj) PyObject_TypeCheck(obj, &PyFrozenSet_Type) #endif #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type #define PyInt_Check(op) PyLong_Check(op) #define PyInt_CheckExact(op) PyLong_CheckExact(op) #define PyInt_FromString PyLong_FromString #define PyInt_FromUnicode PyLong_FromUnicode #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSize_t PyLong_FromSize_t #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsSsize_t PyLong_AsSsize_t #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask #define PyNumber_Int PyNumber_Long #endif #if PY_MAJOR_VERSION >= 3 #define PyBoolObject PyLongObject #endif #if PY_VERSION_HEX < 0x030200A4 typedef long Py_hash_t; #define __Pyx_PyInt_FromHash_t PyInt_FromLong #define __Pyx_PyInt_AsHash_t PyInt_AsLong #else #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t #endif #if (PY_MAJOR_VERSION < 3) || (PY_VERSION_HEX >= 0x03010300) #define __Pyx_PySequence_GetSlice(obj, a, b) PySequence_GetSlice(obj, a, b) #define __Pyx_PySequence_SetSlice(obj, a, b, value) PySequence_SetSlice(obj, a, b, value) #define __Pyx_PySequence_DelSlice(obj, a, b) PySequence_DelSlice(obj, a, b) #else #define __Pyx_PySequence_GetSlice(obj, a, b) (unlikely(!(obj)) ? \ (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), (PyObject*)0) : \ (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_GetSlice(obj, a, b)) : \ (PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", (obj)->ob_type->tp_name), (PyObject*)0))) #define __Pyx_PySequence_SetSlice(obj, a, b, value) (unlikely(!(obj)) ? \ (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \ (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_SetSlice(obj, a, b, value)) : \ (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice assignment", (obj)->ob_type->tp_name), -1))) #define __Pyx_PySequence_DelSlice(obj, a, b) (unlikely(!(obj)) ? \ (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \ (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_DelSlice(obj, a, b)) : \ (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice deletion", (obj)->ob_type->tp_name), -1))) #endif #if PY_MAJOR_VERSION >= 3 #define PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func)) #endif #if PY_VERSION_HEX < 0x02050000 #define __Pyx_GetAttrString(o,n) PyObject_GetAttrString((o),((char *)(n))) #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),((char *)(n)),(a)) #define __Pyx_DelAttrString(o,n) PyObject_DelAttrString((o),((char *)(n))) #else #define __Pyx_GetAttrString(o,n) PyObject_GetAttrString((o),(n)) #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),(n),(a)) #define __Pyx_DelAttrString(o,n) PyObject_DelAttrString((o),(n)) #endif #if PY_VERSION_HEX < 0x02050000 #define __Pyx_NAMESTR(n) ((char *)(n)) #define __Pyx_DOCSTR(n) ((char *)(n)) #else #define __Pyx_NAMESTR(n) (n) #define __Pyx_DOCSTR(n) (n) #endif #ifndef CYTHON_INLINE #if defined(__GNUC__) #define CYTHON_INLINE __inline__ #elif defined(_MSC_VER) #define CYTHON_INLINE __inline #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_INLINE inline #else #define CYTHON_INLINE #endif #endif #ifndef CYTHON_RESTRICT #if defined(__GNUC__) #define CYTHON_RESTRICT __restrict__ #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define CYTHON_RESTRICT __restrict #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_RESTRICT restrict #else #define CYTHON_RESTRICT #endif #endif #ifdef NAN #define __PYX_NAN() ((float) NAN) #else static CYTHON_INLINE float __PYX_NAN() { /* Initialize NaN. The sign is irrelevant, an exponent with all bits 1 and a nonzero mantissa means NaN. If the first bit in the mantissa is 1, it is a quiet NaN. */ float value; memset(&value, 0xFF, sizeof(value)); return value; } #endif #ifdef __cplusplus template void __Pyx_call_destructor(T* x) { x->~T(); } #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) #else #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) #endif #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" #else #define __PYX_EXTERN_C extern #endif #endif #if defined(WIN32) || defined(MS_WINDOWS) #define _USE_MATH_DEFINES #endif #include #define __PYX_HAVE__mtrand #define __PYX_HAVE_API__mtrand #include "string.h" #include "math.h" #include "numpy/npy_no_deprecated_api.h" #include "numpy/arrayobject.h" #include "mtrand_py_helper.h" #include "randomkit.h" #include "distributions.h" #include "initarray.h" #ifdef _OPENMP #include #endif /* _OPENMP */ #ifdef PYREX_WITHOUT_ASSERTIONS #define CYTHON_WITHOUT_ASSERTIONS #endif #ifndef CYTHON_UNUSED # if defined(__GNUC__) # if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif #endif typedef struct {PyObject **p; char *s; const Py_ssize_t n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; /*proto*/ #define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT 0 #define __PYX_DEFAULT_STRING_ENCODING "" #define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString #define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #define __Pyx_fits_Py_ssize_t(v, type, is_signed) ( \ (sizeof(type) < sizeof(Py_ssize_t)) || \ (sizeof(type) > sizeof(Py_ssize_t) && \ likely(v < (type)PY_SSIZE_T_MAX || \ v == (type)PY_SSIZE_T_MAX) && \ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN || \ v == (type)PY_SSIZE_T_MIN))) || \ (sizeof(type) == sizeof(Py_ssize_t) && \ (is_signed || likely(v < (type)PY_SSIZE_T_MAX || \ v == (type)PY_SSIZE_T_MAX))) ) static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject*); static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString #define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #if PY_MAJOR_VERSION < 3 #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #else #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif #define __Pyx_PyObject_AsSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromUString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromUString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromUString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromUString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromUString(s) __Pyx_PyUnicode_FromString((const char*)s) #if PY_MAJOR_VERSION < 3 static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } #else #define __Pyx_Py_UNICODE_strlen Py_UNICODE_strlen #endif #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_Owned_Py_None(b) (Py_INCREF(Py_None), Py_None) #define __Pyx_PyBool_FromLong(b) ((b) ? (Py_INCREF(Py_True), Py_True) : (Py_INCREF(Py_False), Py_False)) static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x); static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); #if CYTHON_COMPILING_IN_CPYTHON #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) #else #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) #endif #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII static int __Pyx_sys_getdefaultencoding_not_ascii; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; PyObject* ascii_chars_u = NULL; PyObject* ascii_chars_b = NULL; const char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; if (strcmp(default_encoding_c, "ascii") == 0) { __Pyx_sys_getdefaultencoding_not_ascii = 0; } else { char ascii_chars[128]; int c; for (c = 0; c < 128; c++) { ascii_chars[c] = c; } __Pyx_sys_getdefaultencoding_not_ascii = 1; ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); if (!ascii_chars_u) goto bad; ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { PyErr_Format( PyExc_ValueError, "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", default_encoding_c); goto bad; } Py_DECREF(ascii_chars_u); Py_DECREF(ascii_chars_b); } Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); Py_XDECREF(ascii_chars_u); Py_XDECREF(ascii_chars_b); return -1; } #endif #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) #else #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT static char* __PYX_DEFAULT_STRING_ENCODING; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c)); if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); return -1; } #endif #endif /* Test for GCC > 2.95 */ #if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ static PyObject *__pyx_m; static PyObject *__pyx_d; static PyObject *__pyx_b; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static int __pyx_lineno; static int __pyx_clineno = 0; static const char * __pyx_cfilenm= __FILE__; static const char *__pyx_filename; static const char *__pyx_f[] = { "mtrand.pyx", "numpy.pxd", }; /*--- Type declarations ---*/ struct __pyx_obj_6mtrand_RandomState; /* "mtrand.pyx":108 * long rk_logseries(rk_state *state, double p) nogil * * ctypedef double (* rk_cont0)(rk_state *state) nogil # <<<<<<<<<<<<<< * ctypedef double (* rk_cont1)(rk_state *state, double a) nogil * ctypedef double (* rk_cont2)(rk_state *state, double a, double b) nogil */ typedef double (*__pyx_t_6mtrand_rk_cont0)(rk_state *); /* "mtrand.pyx":109 * * ctypedef double (* rk_cont0)(rk_state *state) nogil * ctypedef double (* rk_cont1)(rk_state *state, double a) nogil # <<<<<<<<<<<<<< * ctypedef double (* rk_cont2)(rk_state *state, double a, double b) nogil * ctypedef double (* rk_cont3)(rk_state *state, double a, double b, double c) nogil */ typedef double (*__pyx_t_6mtrand_rk_cont1)(rk_state *, double); /* "mtrand.pyx":110 * ctypedef double (* rk_cont0)(rk_state *state) nogil * ctypedef double (* rk_cont1)(rk_state *state, double a) nogil * ctypedef double (* rk_cont2)(rk_state *state, double a, double b) nogil # <<<<<<<<<<<<<< * ctypedef double (* rk_cont3)(rk_state *state, double a, double b, double c) nogil * */ typedef double (*__pyx_t_6mtrand_rk_cont2)(rk_state *, double, double); /* "mtrand.pyx":111 * ctypedef double (* rk_cont1)(rk_state *state, double a) nogil * ctypedef double (* rk_cont2)(rk_state *state, double a, double b) nogil * ctypedef double (* rk_cont3)(rk_state *state, double a, double b, double c) nogil # <<<<<<<<<<<<<< * * ctypedef long (* rk_disc0)(rk_state *state) nogil */ typedef double (*__pyx_t_6mtrand_rk_cont3)(rk_state *, double, double, double); /* "mtrand.pyx":113 * ctypedef double (* rk_cont3)(rk_state *state, double a, double b, double c) nogil * * ctypedef long (* rk_disc0)(rk_state *state) nogil # <<<<<<<<<<<<<< * ctypedef long (* rk_discnp)(rk_state *state, long n, double p) nogil * ctypedef long (* rk_discdd)(rk_state *state, double n, double p) nogil */ typedef long (*__pyx_t_6mtrand_rk_disc0)(rk_state *); /* "mtrand.pyx":114 * * ctypedef long (* rk_disc0)(rk_state *state) nogil * ctypedef long (* rk_discnp)(rk_state *state, long n, double p) nogil # <<<<<<<<<<<<<< * ctypedef long (* rk_discdd)(rk_state *state, double n, double p) nogil * ctypedef long (* rk_discnmN)(rk_state *state, long n, long m, long N) nogil */ typedef long (*__pyx_t_6mtrand_rk_discnp)(rk_state *, long, double); /* "mtrand.pyx":115 * ctypedef long (* rk_disc0)(rk_state *state) nogil * ctypedef long (* rk_discnp)(rk_state *state, long n, double p) nogil * ctypedef long (* rk_discdd)(rk_state *state, double n, double p) nogil # <<<<<<<<<<<<<< * ctypedef long (* rk_discnmN)(rk_state *state, long n, long m, long N) nogil * ctypedef long (* rk_discd)(rk_state *state, double a) nogil */ typedef long (*__pyx_t_6mtrand_rk_discdd)(rk_state *, double, double); /* "mtrand.pyx":116 * ctypedef long (* rk_discnp)(rk_state *state, long n, double p) nogil * ctypedef long (* rk_discdd)(rk_state *state, double n, double p) nogil * ctypedef long (* rk_discnmN)(rk_state *state, long n, long m, long N) nogil # <<<<<<<<<<<<<< * ctypedef long (* rk_discd)(rk_state *state, double a) nogil * */ typedef long (*__pyx_t_6mtrand_rk_discnmN)(rk_state *, long, long, long); /* "mtrand.pyx":117 * ctypedef long (* rk_discdd)(rk_state *state, double n, double p) nogil * ctypedef long (* rk_discnmN)(rk_state *state, long n, long m, long N) nogil * ctypedef long (* rk_discd)(rk_state *state, double a) nogil # <<<<<<<<<<<<<< * * */ typedef long (*__pyx_t_6mtrand_rk_discd)(rk_state *, double); /* "mtrand.pyx":570 * return shape * * cdef class RandomState: # <<<<<<<<<<<<<< * """ * RandomState(seed=None) */ struct __pyx_obj_6mtrand_RandomState { PyObject_HEAD rk_state *internal_state; PyObject *lock; }; #ifndef CYTHON_REFNANNY #define CYTHON_REFNANNY 0 #endif #if CYTHON_REFNANNY typedef struct { void (*INCREF)(void*, PyObject*, int); void (*DECREF)(void*, PyObject*, int); void (*GOTREF)(void*, PyObject*, int); void (*GIVEREF)(void*, PyObject*, int); void* (*SetupContext)(const char*, int, const char*); void (*FinishContext)(void**); } __Pyx_RefNannyAPIStruct; static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); /*proto*/ #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; #ifdef WITH_THREAD #define __Pyx_RefNannySetupContext(name, acquire_gil) \ if (acquire_gil) { \ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); \ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \ PyGILState_Release(__pyx_gilstate_save); \ } else { \ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \ } #else #define __Pyx_RefNannySetupContext(name, acquire_gil) \ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) #endif #define __Pyx_RefNannyFinishContext() \ __Pyx_RefNanny->FinishContext(&__pyx_refnanny) #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) #else #define __Pyx_RefNannyDeclarations #define __Pyx_RefNannySetupContext(name, acquire_gil) #define __Pyx_RefNannyFinishContext() #define __Pyx_INCREF(r) Py_INCREF(r) #define __Pyx_DECREF(r) Py_DECREF(r) #define __Pyx_GOTREF(r) #define __Pyx_GIVEREF(r) #define __Pyx_XINCREF(r) Py_XINCREF(r) #define __Pyx_XDECREF(r) Py_XDECREF(r) #define __Pyx_XGOTREF(r) #define __Pyx_XGIVEREF(r) #endif /* CYTHON_REFNANNY */ #define __Pyx_XDECREF_SET(r, v) do { \ PyObject *tmp = (PyObject *) r; \ r = v; __Pyx_XDECREF(tmp); \ } while (0) #define __Pyx_DECREF_SET(r, v) do { \ PyObject *tmp = (PyObject *) r; \ r = v; __Pyx_DECREF(tmp); \ } while (0) #define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) #define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro)) return tp->tp_getattro(obj, attr_name); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_getattr)) return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); #endif return PyObject_GetAttr(obj, attr_name); } #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif static PyObject *__Pyx_GetBuiltinName(PyObject *name); /*proto*/ static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name); /*proto*/ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); /*proto*/ #else #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif #if CYTHON_COMPILING_IN_CPYTHON && (PY_VERSION_HEX >= 0x03020000 || PY_MAJOR_VERSION < 3 && PY_VERSION_HEX >= 0x02070000) static CYTHON_INLINE PyObject* __Pyx_PyObject_LookupSpecial(PyObject* obj, PyObject* attr_name) { PyObject *res; PyTypeObject *tp = Py_TYPE(obj); #if PY_MAJOR_VERSION < 3 if (unlikely(PyInstance_Check(obj))) return __Pyx_PyObject_GetAttrStr(obj, attr_name); #endif res = _PyType_Lookup(tp, attr_name); if (likely(res)) { descrgetfunc f = Py_TYPE(res)->tp_descr_get; if (!f) { Py_INCREF(res); } else { res = f(res, obj, (PyObject *)tp); } } else { PyErr_SetObject(PyExc_AttributeError, attr_name); } return res; } #else #define __Pyx_PyObject_LookupSpecial(o,n) __Pyx_PyObject_GetAttrStr(o,n) #endif static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb); /*proto*/ static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /*proto*/ static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /*proto*/ static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /*proto*/ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[], \ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, \ const char* function_name); /*proto*/ static CYTHON_INLINE void __Pyx_ExceptionSave(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ static void __Pyx_ExceptionReset(PyObject *type, PyObject *value, PyObject *tb); /*proto*/ static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /*proto*/ #define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) : \ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) : \ __Pyx_GetItemInt_Generic(o, to_py_func(i)))) #define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) : \ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); #define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) : \ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck); #include static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /*proto*/ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /*proto*/ #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals #else #define __Pyx_PyString_Equals __Pyx_PyBytes_Equals #endif static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice( PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** py_start, PyObject** py_stop, PyObject** py_slice, int has_cstart, int has_cstop, int wraparound); static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); static CYTHON_INLINE int __Pyx_IterFinish(void); /*proto*/ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); /*proto*/ #define __Pyx_PyObject_DelSlice(obj, cstart, cstop, py_start, py_stop, py_slice, has_cstart, has_cstop, wraparound) \ __Pyx_PyObject_SetSlice(obj, (PyObject*)NULL, cstart, cstop, py_start, py_stop, py_slice, has_cstart, has_cstop, wraparound) static CYTHON_INLINE int __Pyx_PyObject_SetSlice( PyObject* obj, PyObject* value, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** py_start, PyObject** py_stop, PyObject** py_slice, int has_cstart, int has_cstop, int wraparound); #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o,n,NULL) static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_setattro)) return tp->tp_setattro(obj, attr_name, value); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_setattr)) return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value); #endif return PyObject_SetAttr(obj, attr_name, value); } #else #define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n) #define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v) #endif static CYTHON_INLINE int __Pyx_CheckKeywordStrings(PyObject *kwdict, const char* function_name, int kw_allowed); /*proto*/ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); /*proto*/ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); Py_SIZE(list) = len+1; return 0; } return PyList_Append(list, x); } #else #define __Pyx_PyList_Append(L,x) PyList_Append(L,x) #endif #ifndef __PYX_FORCE_INIT_THREADS #define __PYX_FORCE_INIT_THREADS 0 #endif #define __Pyx_SetItemInt(o, i, v, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ __Pyx_SetItemInt_Fast(o, (Py_ssize_t)i, v, is_list, wraparound, boundscheck) : \ (is_list ? (PyErr_SetString(PyExc_IndexError, "list assignment index out of range"), -1) : \ __Pyx_SetItemInt_Generic(o, to_py_func(i), v))) static CYTHON_INLINE int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v); static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, int wraparound, int boundscheck); static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /*proto*/ static CYTHON_INLINE npy_intp __Pyx_PyInt_As_npy_intp(PyObject *); static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); static CYTHON_INLINE unsigned long __Pyx_PyInt_As_unsigned_long(PyObject *); static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); static CYTHON_INLINE PyObject* __Pyx_PyInt_From_npy_intp(npy_intp value); static int __Pyx_check_binary_version(void); #if !defined(__Pyx_PyIdentifier_FromString) #if PY_MAJOR_VERSION < 3 #define __Pyx_PyIdentifier_FromString(s) PyString_FromString(s) #else #define __Pyx_PyIdentifier_FromString(s) PyUnicode_FromString(s) #endif #endif static PyObject *__Pyx_ImportModule(const char *name); /*proto*/ static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, size_t size, int strict); /*proto*/ typedef struct { int code_line; PyCodeObject* code_object; } __Pyx_CodeObjectCacheEntry; struct __Pyx_CodeObjectCache { int count; int max_count; __Pyx_CodeObjectCacheEntry* entries; }; static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); static PyCodeObject *__pyx_find_code_object(int code_line); static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename); /*proto*/ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/ /* Module declarations from 'numpy' */ /* Module declarations from 'mtrand' */ static PyTypeObject *__pyx_ptype_6mtrand_dtype = 0; static PyTypeObject *__pyx_ptype_6mtrand_ndarray = 0; static PyTypeObject *__pyx_ptype_6mtrand_flatiter = 0; static PyTypeObject *__pyx_ptype_6mtrand_broadcast = 0; static PyTypeObject *__pyx_ptype_6mtrand_RandomState = 0; static PyObject *__pyx_f_6mtrand_cont0_array(rk_state *, __pyx_t_6mtrand_rk_cont0, PyObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_cont1_array_sc(rk_state *, __pyx_t_6mtrand_rk_cont1, PyObject *, double, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_cont1_array(rk_state *, __pyx_t_6mtrand_rk_cont1, PyObject *, PyArrayObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_cont2_array_sc(rk_state *, __pyx_t_6mtrand_rk_cont2, PyObject *, double, double, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_cont2_array(rk_state *, __pyx_t_6mtrand_rk_cont2, PyObject *, PyArrayObject *, PyArrayObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_cont3_array_sc(rk_state *, __pyx_t_6mtrand_rk_cont3, PyObject *, double, double, double, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_cont3_array(rk_state *, __pyx_t_6mtrand_rk_cont3, PyObject *, PyArrayObject *, PyArrayObject *, PyArrayObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_disc0_array(rk_state *, __pyx_t_6mtrand_rk_disc0, PyObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discnp_array_sc(rk_state *, __pyx_t_6mtrand_rk_discnp, PyObject *, long, double, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discnp_array(rk_state *, __pyx_t_6mtrand_rk_discnp, PyObject *, PyArrayObject *, PyArrayObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discdd_array_sc(rk_state *, __pyx_t_6mtrand_rk_discdd, PyObject *, double, double, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discdd_array(rk_state *, __pyx_t_6mtrand_rk_discdd, PyObject *, PyArrayObject *, PyArrayObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discnmN_array_sc(rk_state *, __pyx_t_6mtrand_rk_discnmN, PyObject *, long, long, long, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discnmN_array(rk_state *, __pyx_t_6mtrand_rk_discnmN, PyObject *, PyArrayObject *, PyArrayObject *, PyArrayObject *, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discd_array_sc(rk_state *, __pyx_t_6mtrand_rk_discd, PyObject *, double, PyObject *); /*proto*/ static PyObject *__pyx_f_6mtrand_discd_array(rk_state *, __pyx_t_6mtrand_rk_discd, PyObject *, PyArrayObject *, PyObject *); /*proto*/ static double __pyx_f_6mtrand_kahan_sum(double *, npy_intp); /*proto*/ #define __Pyx_MODULE_NAME "mtrand" int __pyx_module_is_main_mtrand = 0; /* Implementation of 'mtrand' */ static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_TypeError; static PyObject *__pyx_builtin_RuntimeWarning; static PyObject *__pyx_pf_6mtrand__shape_from_size(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_size, PyObject *__pyx_v_d); /* proto */ static int __pyx_pf_6mtrand_11RandomState___init__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed); /* proto */ static void __pyx_pf_6mtrand_11RandomState_2__dealloc__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_4seed(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_6get_state(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_8set_state(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_10__getstate__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_12__setstate__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_14__reduce__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_16random_sample(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_18tomaxint(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_20randint(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_22bytes(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_length); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_24choice(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size, PyObject *__pyx_v_replace, PyObject *__pyx_v_p); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_26uniform(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_28rand(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_30randn(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_32random_integers(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_34standard_normal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_36normal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_38beta(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_40exponential(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_42standard_exponential(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_44standard_gamma(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_46gamma(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_48f(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_50noncentral_f(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_52chisquare(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_54noncentral_chisquare(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_56standard_cauchy(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_58standard_t(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_60vonmises(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mu, PyObject *__pyx_v_kappa, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_62pareto(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_64weibull(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_66power(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_68laplace(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_70gumbel(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_72logistic(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_74lognormal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_sigma, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_76rayleigh(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_78wald(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_80triangular(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_left, PyObject *__pyx_v_mode, PyObject *__pyx_v_right, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_82binomial(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_84negative_binomial(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_86poisson(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_lam, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_88zipf(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_90geometric(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_92hypergeometric(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_ngood, PyObject *__pyx_v_nbad, PyObject *__pyx_v_nsample, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_94logseries(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_96multivariate_normal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_cov, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_98multinomial(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_n, PyObject *__pyx_v_pvals, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_100dirichlet(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_alpha, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_102shuffle(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x); /* proto */ static PyObject *__pyx_pf_6mtrand_11RandomState_104permutation(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x); /* proto */ static PyObject *__pyx_tp_new_6mtrand_RandomState(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static char __pyx_k_L[] = "L"; static char __pyx_k_T[] = "T"; static char __pyx_k_a[] = "a"; static char __pyx_k_b[] = "b"; static char __pyx_k_d[] = "d"; static char __pyx_k_f[] = "f"; static char __pyx_k_l[] = "l"; static char __pyx_k_n[] = "n"; static char __pyx_k_p[] = "p"; static char __pyx_k_df[] = "df"; static char __pyx_k_mu[] = "mu"; static char __pyx_k_np[] = "np"; static char __pyx_k_a_0[] = "a <= 0"; static char __pyx_k_add[] = "add"; static char __pyx_k_any[] = "any"; static char __pyx_k_b_0[] = "b <= 0"; static char __pyx_k_cov[] = "cov"; static char __pyx_k_dot[] = "dot"; static char __pyx_k_int[] = "int"; static char __pyx_k_lam[] = "lam"; static char __pyx_k_loc[] = "loc"; static char __pyx_k_low[] = "low"; static char __pyx_k_max[] = "max"; static char __pyx_k_n_0[] = "n < 0"; static char __pyx_k_p_0[] = "p < 0"; static char __pyx_k_p_1[] = "p > 1"; static char __pyx_k_sum[] = "sum"; static char __pyx_k_svd[] = "svd"; static char __pyx_k_Lock[] = "Lock"; static char __pyx_k_axis[] = "axis"; static char __pyx_k_beta[] = "beta"; static char __pyx_k_copy[] = "copy"; static char __pyx_k_df_0[] = "df <= 0"; static char __pyx_k_df_1[] = "df <= 1"; static char __pyx_k_exit[] = "__exit__"; static char __pyx_k_high[] = "high"; static char __pyx_k_intp[] = "intp"; static char __pyx_k_item[] = "item"; static char __pyx_k_left[] = "left"; static char __pyx_k_less[] = "less"; static char __pyx_k_main[] = "__main__"; static char __pyx_k_mean[] = "mean"; static char __pyx_k_mode[] = "mode"; static char __pyx_k_nbad[] = "nbad"; static char __pyx_k_ndim[] = "ndim"; static char __pyx_k_nonc[] = "nonc"; static char __pyx_k_prod[] = "prod"; static char __pyx_k_rand[] = "rand"; static char __pyx_k_safe[] = "safe"; static char __pyx_k_seed[] = "seed"; static char __pyx_k_side[] = "side"; static char __pyx_k_size[] = "size"; static char __pyx_k_sort[] = "sort"; static char __pyx_k_sqrt[] = "sqrt"; static char __pyx_k_take[] = "take"; static char __pyx_k_test[] = "__test__"; static char __pyx_k_uint[] = "uint"; static char __pyx_k_wald[] = "wald"; static char __pyx_k_warn[] = "warn"; static char __pyx_k_zipf[] = "zipf"; static char __pyx_k_a_1_0[] = "a <= 1.0"; static char __pyx_k_alpha[] = "alpha"; static char __pyx_k_array[] = "array"; static char __pyx_k_bytes[] = "bytes"; static char __pyx_k_dfden[] = "dfden"; static char __pyx_k_dfnum[] = "dfnum"; static char __pyx_k_dtype[] = "dtype"; static char __pyx_k_empty[] = "empty"; static char __pyx_k_enter[] = "__enter__"; static char __pyx_k_equal[] = "equal"; static char __pyx_k_gamma[] = "gamma"; static char __pyx_k_iinfo[] = "iinfo"; static char __pyx_k_index[] = "index"; static char __pyx_k_int64[] = "int64"; static char __pyx_k_isnan[] = "isnan"; static char __pyx_k_kappa[] = "kappa"; static char __pyx_k_lam_0[] = "lam < 0"; static char __pyx_k_n_0_2[] = "n <= 0"; static char __pyx_k_ngood[] = "ngood"; static char __pyx_k_numpy[] = "numpy"; static char __pyx_k_p_0_0[] = "p < 0.0"; static char __pyx_k_p_1_0[] = "p > 1.0"; static char __pyx_k_power[] = "power"; static char __pyx_k_pvals[] = "pvals"; static char __pyx_k_randn[] = "randn"; static char __pyx_k_ravel[] = "ravel"; static char __pyx_k_right[] = "right"; static char __pyx_k_scale[] = "scale"; static char __pyx_k_shape[] = "shape"; static char __pyx_k_sigma[] = "sigma"; static char __pyx_k_zeros[] = "zeros"; static char __pyx_k_arange[] = "arange"; static char __pyx_k_astype[] = "astype"; static char __pyx_k_choice[] = "choice"; static char __pyx_k_cumsum[] = "cumsum"; static char __pyx_k_fields[] = "fields"; static char __pyx_k_gumbel[] = "gumbel"; static char __pyx_k_import[] = "__import__"; static char __pyx_k_mean_0[] = "mean <= 0"; static char __pyx_k_mtrand[] = "mtrand"; static char __pyx_k_nbad_0[] = "nbad < 0"; static char __pyx_k_nonc_0[] = "nonc < 0"; static char __pyx_k_normal[] = "normal"; static char __pyx_k_pareto[] = "pareto"; static char __pyx_k_rand_2[] = "_rand"; static char __pyx_k_random[] = "random"; static char __pyx_k_reduce[] = "reduce"; static char __pyx_k_uint32[] = "uint32"; static char __pyx_k_unique[] = "unique"; static char __pyx_k_unsafe[] = "unsafe"; static char __pyx_k_MT19937[] = "MT19937"; static char __pyx_k_asarray[] = "asarray"; static char __pyx_k_casting[] = "casting"; static char __pyx_k_dfden_0[] = "dfden <= 0"; static char __pyx_k_dfnum_0[] = "dfnum <= 0"; static char __pyx_k_dfnum_1[] = "dfnum <= 1"; static char __pyx_k_float64[] = "float64"; static char __pyx_k_greater[] = "greater"; static char __pyx_k_integer[] = "integer"; static char __pyx_k_kappa_0[] = "kappa < 0"; static char __pyx_k_laplace[] = "laplace"; static char __pyx_k_ndarray[] = "ndarray"; static char __pyx_k_ngood_0[] = "ngood < 0"; static char __pyx_k_nsample[] = "nsample"; static char __pyx_k_p_0_0_2[] = "p <= 0.0"; static char __pyx_k_p_1_0_2[] = "p >= 1.0"; static char __pyx_k_poisson[] = "poisson"; static char __pyx_k_randint[] = "randint"; static char __pyx_k_replace[] = "replace"; static char __pyx_k_reshape[] = "reshape"; static char __pyx_k_scale_0[] = "scale <= 0"; static char __pyx_k_shape_0[] = "shape <= 0"; static char __pyx_k_shuffle[] = "shuffle"; static char __pyx_k_sigma_0[] = "sigma <= 0"; static char __pyx_k_uniform[] = "uniform"; static char __pyx_k_weibull[] = "weibull"; static char __pyx_k_binomial[] = "binomial"; static char __pyx_k_logistic[] = "logistic"; static char __pyx_k_low_high[] = "low >= high"; static char __pyx_k_mean_0_0[] = "mean <= 0.0"; static char __pyx_k_nonc_0_2[] = "nonc <= 0"; static char __pyx_k_operator[] = "operator"; static char __pyx_k_p_is_nan[] = "p is nan"; static char __pyx_k_rayleigh[] = "rayleigh"; static char __pyx_k_subtract[] = "subtract"; static char __pyx_k_vonmises[] = "vonmises"; static char __pyx_k_warnings[] = "warnings"; static char __pyx_k_TypeError[] = "TypeError"; static char __pyx_k_chisquare[] = "chisquare"; static char __pyx_k_dirichlet[] = "dirichlet"; static char __pyx_k_geometric[] = "geometric"; static char __pyx_k_get_state[] = "get_state"; static char __pyx_k_left_mode[] = "left > mode"; static char __pyx_k_lognormal[] = "lognormal"; static char __pyx_k_logseries[] = "logseries"; static char __pyx_k_nsample_1[] = "nsample < 1"; static char __pyx_k_scale_0_0[] = "scale <= 0.0"; static char __pyx_k_set_state[] = "set_state"; static char __pyx_k_sigma_0_0[] = "sigma <= 0.0"; static char __pyx_k_threading[] = "threading"; static char __pyx_k_ValueError[] = "ValueError"; static char __pyx_k_empty_like[] = "empty_like"; static char __pyx_k_left_right[] = "left == right"; static char __pyx_k_less_equal[] = "less_equal"; static char __pyx_k_logical_or[] = "logical_or"; static char __pyx_k_mode_right[] = "mode > right"; static char __pyx_k_numpy_dual[] = "numpy.dual"; static char __pyx_k_standard_t[] = "standard_t"; static char __pyx_k_triangular[] = "triangular"; static char __pyx_k_exponential[] = "exponential"; static char __pyx_k_multinomial[] = "multinomial"; static char __pyx_k_permutation[] = "permutation"; static char __pyx_k_noncentral_f[] = "noncentral_f"; static char __pyx_k_return_index[] = "return_index"; static char __pyx_k_searchsorted[] = "searchsorted"; static char __pyx_k_count_nonzero[] = "count_nonzero"; static char __pyx_k_greater_equal[] = "greater_equal"; static char __pyx_k_random_sample[] = "random_sample"; static char __pyx_k_RuntimeWarning[] = "RuntimeWarning"; static char __pyx_k_hypergeometric[] = "hypergeometric"; static char __pyx_k_standard_gamma[] = "standard_gamma"; static char __pyx_k_poisson_lam_max[] = "poisson_lam_max"; static char __pyx_k_random_integers[] = "random_integers"; static char __pyx_k_shape_from_size[] = "_shape_from_size"; static char __pyx_k_standard_cauchy[] = "standard_cauchy"; static char __pyx_k_standard_normal[] = "standard_normal"; static char __pyx_k_sum_pvals_1_1_0[] = "sum(pvals[:-1]) > 1.0"; static char __pyx_k_RandomState_ctor[] = "__RandomState_ctor"; static char __pyx_k_negative_binomial[] = "negative_binomial"; static char __pyx_k_ngood_nbad_nsample[] = "ngood + nbad < nsample"; static char __pyx_k_a_must_be_non_empty[] = "a must be non-empty"; static char __pyx_k_lam_value_too_large[] = "lam value too large"; static char __pyx_k_multivariate_normal[] = "multivariate_normal"; static char __pyx_k_noncentral_chisquare[] = "noncentral_chisquare"; static char __pyx_k_standard_exponential[] = "standard_exponential"; static char __pyx_k_lam_value_too_large_2[] = "lam value too large."; static char __pyx_k_RandomState_f_line_1887[] = "RandomState.f (line 1887)"; static char __pyx_k_a_must_be_1_dimensional[] = "a must be 1-dimensional"; static char __pyx_k_p_must_be_1_dimensional[] = "p must be 1-dimensional"; static char __pyx_k_state_must_be_624_longs[] = "state must be 624 longs"; static char __pyx_k_a_must_be_greater_than_0[] = "a must be greater than 0"; static char __pyx_k_algorithm_must_be_MT19937[] = "algorithm must be 'MT19937'"; static char __pyx_k_RandomState_bytes_line_947[] = "RandomState.bytes (line 947)"; static char __pyx_k_RandomState_rand_line_1242[] = "RandomState.rand (line 1242)"; static char __pyx_k_RandomState_wald_line_3359[] = "RandomState.wald (line 3359)"; static char __pyx_k_RandomState_zipf_line_3822[] = "RandomState.zipf (line 3822)"; static char __pyx_k_mean_must_be_1_dimensional[] = "mean must be 1 dimensional"; static char __pyx_k_RandomState_choice_line_976[] = "RandomState.choice (line 976)"; static char __pyx_k_RandomState_gamma_line_1793[] = "RandomState.gamma (line 1793)"; static char __pyx_k_RandomState_power_line_2728[] = "RandomState.power (line 2728)"; static char __pyx_k_RandomState_randn_line_1286[] = "RandomState.randn (line 1286)"; static char __pyx_k_a_and_p_must_have_same_size[] = "a and p must have same size"; static char __pyx_k_RandomState_gumbel_line_2935[] = "RandomState.gumbel (line 2935)"; static char __pyx_k_RandomState_normal_line_1456[] = "RandomState.normal (line 1456)"; static char __pyx_k_RandomState_pareto_line_2527[] = "RandomState.pareto (line 2527)"; static char __pyx_k_RandomState_randint_line_865[] = "RandomState.randint (line 865)"; static char __pyx_k_RandomState_laplace_line_2839[] = "RandomState.laplace (line 2839)"; static char __pyx_k_RandomState_poisson_line_3744[] = "RandomState.poisson (line 3744)"; static char __pyx_k_RandomState_shuffle_line_4541[] = "RandomState.shuffle (line 4541)"; static char __pyx_k_RandomState_tomaxint_line_818[] = "RandomState.tomaxint (line 818)"; static char __pyx_k_RandomState_uniform_line_1152[] = "RandomState.uniform (line 1152)"; static char __pyx_k_RandomState_weibull_line_2625[] = "RandomState.weibull (line 2625)"; static char __pyx_k_probabilities_do_not_sum_to_1[] = "probabilities do not sum to 1"; static char __pyx_k_RandomState_binomial_line_3535[] = "RandomState.binomial (line 3535)"; static char __pyx_k_RandomState_logistic_line_3069[] = "RandomState.logistic (line 3069)"; static char __pyx_k_RandomState_rayleigh_line_3284[] = "RandomState.rayleigh (line 3284)"; static char __pyx_k_RandomState_vonmises_line_2430[] = "RandomState.vonmises (line 2430)"; static char __pyx_k_dirichlet_alpha_size_None_Draw[] = "\n dirichlet(alpha, size=None)\n\n Draw samples from the Dirichlet distribution.\n\n Draw `size` samples of dimension k from a Dirichlet distribution. A\n Dirichlet-distributed random variable can be seen as a multivariate\n generalization of a Beta distribution. Dirichlet pdf is the conjugate\n prior of a multinomial in Bayesian inference.\n\n Parameters\n ----------\n alpha : array\n Parameter of the distribution (k dimension for sample of\n dimension k).\n size : array\n Number of samples to draw.\n\n Returns\n -------\n samples : ndarray,\n The drawn samples, of shape (alpha.ndim, size).\n\n Notes\n -----\n .. math:: X \\approx \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i}\n\n Uses the following property for computation: for each dimension,\n draw a random sample y_i from a standard gamma generator of shape\n `alpha_i`, then\n :math:`X = \\frac{1}{\\sum_{i=1}^k{y_i}} (y_1, \\ldots, y_n)` is\n Dirichlet distributed.\n\n References\n ----------\n .. [1] David McKay, \"Information Theory, Inference and Learning\n Algorithms,\" chapter 23,\n http://www.inference.phy.cam.ac.uk/mackay/\n .. [2] Wikipedia, \"Dirichlet distribution\",\n http://en.wikipedia.org/wiki/Dirichlet_distribution\n\n Examples\n --------\n Taking an example cited in Wikipedia, this distribution can be used if\n one wanted to cut strings (each of initial length 1.0) into K pieces\n with different lengths, where each piece had, on average, a designated\n average length, but allowing some variation in the relative sizes of the\n pieces.\n\n >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()\n\n >>> plt.barh(range(20), s[0])\n >>> plt.barh(range(20), s[1], left=s[0], color='g')""\n >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')\n >>> plt.title(\"Lengths of Strings\")\n\n "; static char __pyx_k_home_vagrant_repos_numpy_numpy[] = "/home/vagrant/repos/numpy/numpy/random/mtrand/mtrand.pyx"; static char __pyx_k_laplace_loc_0_0_scale_1_0_size[] = "\n laplace(loc=0.0, scale=1.0, size=None)\n\n Draw samples from the Laplace or double exponential distribution with\n specified location (or mean) and scale (decay).\n\n The Laplace distribution is similar to the Gaussian/normal distribution,\n but is sharper at the peak and has fatter tails. It represents the\n difference between two independent, identically distributed exponential\n random variables.\n\n Parameters\n ----------\n loc : float\n The position, :math:`\\mu`, of the distribution peak.\n scale : float\n :math:`\\lambda`, the exponential decay.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n It has the probability density function\n\n .. math:: f(x; \\mu, \\lambda) = \\frac{1}{2\\lambda}\n \\exp\\left(-\\frac{|x - \\mu|}{\\lambda}\\right).\n\n The first law of Laplace, from 1774, states that the frequency of an error\n can be expressed as an exponential function of the absolute magnitude of\n the error, which leads to the Laplace distribution. For many problems in\n Economics and Health sciences, this distribution seems to model the data\n better than the standard Gaussian distribution\n\n\n References\n ----------\n .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical\n Functions with Formulas, Graphs, and Mathematical Tables, 9th\n printing. New York: Dover, 1972.\n\n .. [2] The Laplace distribution and generalizations\n By Samuel Kotz, Tomasz J. Kozubowski, Krzysztof Podgorski,\n Birkhauser, 2001.\n\n .. [3] Weisstein, Eric W. \"Lapla""ce Distribution.\"\n From MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LaplaceDistribution.html\n\n .. [4] Wikipedia, \"Laplace distribution\",\n http://en.wikipedia.org/wiki/Laplace_distribution\n\n Examples\n --------\n Draw samples from the distribution\n\n >>> loc, scale = 0., 1.\n >>> s = np.random.laplace(loc, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, normed=True)\n >>> x = np.arange(-8., 8., .01)\n >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)\n >>> plt.plot(x, pdf)\n\n Plot Gaussian for comparison:\n\n >>> g = (1/(scale * np.sqrt(2 * np.pi)) * \n ... np.exp(-(x - loc)**2 / (2 * scale**2)))\n >>> plt.plot(x,g)\n\n "; static char __pyx_k_permutation_x_Randomly_permute[] = "\n permutation(x)\n\n Randomly permute a sequence, or return a permuted range.\n\n If `x` is a multi-dimensional array, it is only shuffled along its\n first index.\n\n Parameters\n ----------\n x : int or array_like\n If `x` is an integer, randomly permute ``np.arange(x)``.\n If `x` is an array, make a copy and shuffle the elements\n randomly.\n\n Returns\n -------\n out : ndarray\n Permuted sequence or array range.\n\n Examples\n --------\n >>> np.random.permutation(10)\n array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])\n\n >>> np.random.permutation([1, 4, 9, 12, 15])\n array([15, 1, 9, 4, 12])\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.permutation(arr)\n array([[6, 7, 8],\n [0, 1, 2],\n [3, 4, 5]])\n\n "; static char __pyx_k_poisson_lam_1_0_size_None_Draw[] = "\n poisson(lam=1.0, size=None)\n\n Draw samples from a Poisson distribution.\n\n The Poisson distribution is the limit of the Binomial\n distribution for large N.\n\n Parameters\n ----------\n lam : float or sequence of float\n Expectation of interval, should be >= 0. A sequence of expectation\n intervals must be broadcastable over the requested size.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n The Poisson distribution\n\n .. math:: f(k; \\lambda)=\\frac{\\lambda^k e^{-\\lambda}}{k!}\n\n For events with an expected separation :math:`\\lambda` the Poisson\n distribution :math:`f(k; \\lambda)` describes the probability of\n :math:`k` events occurring within the observed interval :math:`\\lambda`.\n\n Because the output is limited to the range of the C long type, a\n ValueError is raised when `lam` is within 10 sigma of the maximum\n representable value.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Poisson Distribution.\" From MathWorld--A Wolfram\n Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html\n .. [2] Wikipedia, \"Poisson distribution\",\n http://en.wikipedia.org/wiki/Poisson_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> import numpy as np\n >>> s = np.random.poisson(5, 10000)\n\n Display histogram of the sample:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 14, normed=True)\n >>> plt.show()\n\n Draw each 100 values for lambda 100 and 500:\n\n >>> s = np.random.poisson(lam=(100., 50""0.), size=(100, 2))\n\n "; static char __pyx_k_rand_d0_d1_dn_Random_values_in[] = "\n rand(d0, d1, ..., dn)\n\n Random values in a given shape.\n\n Create an array of the given shape and propagate it with\n random samples from a uniform distribution\n over ``[0, 1)``.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, should all be positive.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n out : ndarray, shape ``(d0, d1, ..., dn)``\n Random values.\n\n See Also\n --------\n random\n\n Notes\n -----\n This is a convenience function. If you want an interface that\n takes a shape-tuple as the first argument, refer to\n np.random.random_sample .\n\n Examples\n --------\n >>> np.random.rand(3,2)\n array([[ 0.14022471, 0.96360618], #random\n [ 0.37601032, 0.25528411], #random\n [ 0.49313049, 0.94909878]]) #random\n\n "; static char __pyx_k_randn_d0_d1_dn_Return_a_sample[] = "\n randn(d0, d1, ..., dn)\n\n Return a sample (or samples) from the \"standard normal\" distribution.\n\n If positive, int_like or int-convertible arguments are provided,\n `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled\n with random floats sampled from a univariate \"normal\" (Gaussian)\n distribution of mean 0 and variance 1 (if any of the :math:`d_i` are\n floats, they are first converted to integers by truncation). A single\n float randomly sampled from the distribution is returned if no\n argument is provided.\n\n This is a convenience function. If you want an interface that takes a\n tuple as the first argument, use `numpy.random.standard_normal` instead.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, should be all positive.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n Z : ndarray or float\n A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from\n the standard normal distribution, or a single such float if\n no parameters were supplied.\n\n See Also\n --------\n random.standard_normal : Similar, but takes a tuple as its argument.\n\n Notes\n -----\n For random samples from :math:`N(\\mu, \\sigma^2)`, use:\n\n ``sigma * np.random.randn(...) + mu``\n\n Examples\n --------\n >>> np.random.randn()\n 2.1923875335537315 #random\n\n Two-by-four array of samples from N(3, 6.25):\n\n >>> 2.5 * np.random.randn(2, 4) + 3\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random\n\n "; static char __pyx_k_random_sample_size_None_Return[] = "\n random_sample(size=None)\n\n Return random floats in the half-open interval [0.0, 1.0).\n\n Results are from the \"continuous uniform\" distribution over the\n stated interval. To sample :math:`Unif[a, b), b > a` multiply\n the output of `random_sample` by `(b-a)` and add `a`::\n\n (b - a) * random_sample() + a\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray of floats\n Array of random floats of shape `size` (unless ``size=None``, in which\n case a single float is returned).\n\n Examples\n --------\n >>> np.random.random_sample()\n 0.47108547995356098\n >>> type(np.random.random_sample())\n \n >>> np.random.random_sample((5,))\n array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])\n\n Three-by-two array of random numbers from [-5, 0):\n\n >>> 5 * np.random.random_sample((3, 2)) - 5\n array([[-3.99149989, -0.52338984],\n [-2.99091858, -0.79479508],\n [-1.23204345, -1.75224494]])\n\n "; static char __pyx_k_shuffle_x_Modify_a_sequence_in[] = "\n shuffle(x)\n\n Modify a sequence in-place by shuffling its contents.\n\n Parameters\n ----------\n x : array_like\n The array or list to be shuffled.\n\n Returns\n -------\n None\n\n Examples\n --------\n >>> arr = np.arange(10)\n >>> np.random.shuffle(arr)\n >>> arr\n [1 7 5 2 9 4 3 6 0 8]\n\n This function only shuffles the array along the first index of a\n multi-dimensional array:\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.shuffle(arr)\n >>> arr\n array([[3, 4, 5],\n [6, 7, 8],\n [0, 1, 2]])\n\n "; static char __pyx_k_standard_exponential_size_None[] = "\n standard_exponential(size=None)\n\n Draw samples from the standard exponential distribution.\n\n `standard_exponential` is identical to the exponential distribution\n with a scale parameter of 1.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n Drawn samples.\n\n Examples\n --------\n Output a 3x8000 array:\n\n >>> n = np.random.standard_exponential((3, 8000))\n\n "; static char __pyx_k_standard_gamma_shape_size_None[] = "\n standard_gamma(shape, size=None)\n\n Draw samples from a Standard Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n shape (sometimes designated \"k\") and scale=1.\n\n Parameters\n ----------\n shape : float\n Parameter, should be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The drawn samples.\n\n See Also\n --------\n scipy.stats.distributions.gamma : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma-distribution\",\n http://en.wikipedia.org/wiki/Gamma-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> shape, scale = 2., 1. # mean and width\n >>> s = np.random.standard_gamma(shape, 1000000)\n\n Display the histogram of the samples, along with\n "" the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps\n >>> count, bins, ignored = plt.hist(s, 50, normed=True)\n >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \\\n ... (sps.gamma(shape) * scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_wald_mean_scale_size_None_Draw[] = "\n wald(mean, scale, size=None)\n\n Draw samples from a Wald, or Inverse Gaussian, distribution.\n\n As the scale approaches infinity, the distribution becomes more like a\n Gaussian.\n\n Some references claim that the Wald is an Inverse Gaussian with mean=1, but\n this is by no means universal.\n\n The Inverse Gaussian distribution was first studied in relationship to\n Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian\n because there is an inverse relationship between the time to cover a unit\n distance and distance covered in unit time.\n\n Parameters\n ----------\n mean : scalar\n Distribution mean, should be > 0.\n scale : scalar\n Scale parameter, should be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n Drawn sample, all greater than zero.\n\n Notes\n -----\n The probability density function for the Wald distribution is\n\n .. math:: P(x;mean,scale) = \\sqrt{\\frac{scale}{2\\pi x^3}}e^\n \\frac{-scale(x-mean)^2}{2\\cdotp mean^2x}\n\n As noted above the Inverse Gaussian distribution first arise from attempts\n to model Brownian Motion. It is also a competitor to the Weibull for use in\n reliability modeling and modeling stock returns and interest rate\n processes.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., Wald Distribution,\n http://www.brighton-webs.co.uk/distributions/wald.asp\n .. [2] Chhikara, Raj S., and Folks, J. Leroy, \"The Inverse Gaussian\n Distribution: Theory : Methodolog""y, and Applications\", CRC Press,\n 1988.\n .. [3] Wikipedia, \"Wald distribution\"\n http://en.wikipedia.org/wiki/Wald_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)\n >>> plt.show()\n\n "; static char __pyx_k_RandomState_chisquare_line_2087[] = "RandomState.chisquare (line 2087)"; static char __pyx_k_RandomState_dirichlet_line_4427[] = "RandomState.dirichlet (line 4427)"; static char __pyx_k_RandomState_geometric_line_3909[] = "RandomState.geometric (line 3909)"; static char __pyx_k_RandomState_hypergeometric_line[] = "RandomState.hypergeometric (line 3977)"; static char __pyx_k_RandomState_lognormal_line_3160[] = "RandomState.lognormal (line 3160)"; static char __pyx_k_RandomState_logseries_line_4097[] = "RandomState.logseries (line 4097)"; static char __pyx_k_RandomState_multivariate_normal[] = "RandomState.multivariate_normal (line 4194)"; static char __pyx_k_RandomState_standard_gamma_line[] = "RandomState.standard_gamma (line 1709)"; static char __pyx_k_binomial_n_p_size_None_Draw_sam[] = "\n binomial(n, p, size=None)\n\n Draw samples from a binomial distribution.\n\n Samples are drawn from a Binomial distribution with specified\n parameters, n trials and p probability of success where\n n an integer >= 0 and p is in the interval [0,1]. (n may be\n input as a float, but it is truncated to an integer in use)\n\n Parameters\n ----------\n n : float (but truncated to an integer)\n parameter, >= 0.\n p : float\n parameter, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n where the values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.binom : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Binomial distribution is\n\n .. math:: P(N) = \\binom{n}{N}p^N(1-p)^{n-N},\n\n where :math:`n` is the number of trials, :math:`p` is the probability\n of success, and :math:`N` is the number of successes.\n\n When estimating the standard error of a proportion in a population by\n using a random sample, the normal distribution works well unless the\n product p*n <=5, where p = population proportion estimate, and n =\n number of samples, in which case the binomial distribution is used\n instead. For example, a sample of 15 people shows 4 who are left\n handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,\n so the binomial distribution should be used in this case.\n\n References\n ----------\n .. [1] Dalg""aard, Peter, \"Introductory Statistics with R\",\n Springer-Verlag, 2002.\n .. [2] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n Fifth Edition, 2002.\n .. [3] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [4] Weisstein, Eric W. \"Binomial Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/BinomialDistribution.html\n .. [5] Wikipedia, \"Binomial-distribution\",\n http://en.wikipedia.org/wiki/Binomial_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> n, p = 10, .5 # number of trials, probability of each trial\n >>> s = np.random.binomial(n, p, 1000)\n # result of flipping a coin 10 times, tested 1000 times.\n\n A real world example. A company drills 9 wild-cat oil exploration\n wells, each with an estimated probability of success of 0.1. All nine\n wells fail. What is the probability of that happening?\n\n Let's do 20,000 trials of the model, and count the number that\n generate zero positive results.\n\n >>> sum(np.random.binomial(9,0.1,20000)==0)/20000.\n answer = 0.38885, or 38%.\n\n "; static char __pyx_k_bytes_length_Return_random_byte[] = "\n bytes(length)\n\n Return random bytes.\n\n Parameters\n ----------\n length : int\n Number of random bytes.\n\n Returns\n -------\n out : str\n String of length `length`.\n\n Examples\n --------\n >>> np.random.bytes(10)\n ' eh\\x85\\x022SZ\\xbf\\xa4' #random\n\n "; static char __pyx_k_chisquare_df_size_None_Draw_sam[] = "\n chisquare(df, size=None)\n\n Draw samples from a chi-square distribution.\n\n When `df` independent random variables, each with standard normal\n distributions (mean 0, variance 1), are squared and summed, the\n resulting distribution is chi-square (see Notes). This distribution\n is often used in hypothesis testing.\n\n Parameters\n ----------\n df : int\n Number of degrees of freedom.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n output : ndarray\n Samples drawn from the distribution, packed in a `size`-shaped\n array.\n\n Raises\n ------\n ValueError\n When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)\n is given.\n\n Notes\n -----\n The variable obtained by summing the squares of `df` independent,\n standard normally distributed random variables:\n\n .. math:: Q = \\sum_{i=0}^{\\mathtt{df}} X^2_i\n\n is chi-square distributed, denoted\n\n .. math:: Q \\sim \\chi^2_k.\n\n The probability density function of the chi-squared distribution is\n\n .. math:: p(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}\n x^{k/2 - 1} e^{-x/2},\n\n where :math:`\\Gamma` is the gamma function,\n\n .. math:: \\Gamma(x) = \\int_0^{-\\infty} t^{x - 1} e^{-t} dt.\n\n References\n ----------\n `NIST/SEMATECH e-Handbook of Statistical Methods\n `_\n\n Examples\n --------\n >>> np.random.chisquare(2,4)\n array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272])\n\n "; static char __pyx_k_choice_a_size_None_replace_True[] = "\n choice(a, size=None, replace=True, p=None)\n\n Generates a random sample from a given 1-D array\n\n .. versionadded:: 1.7.0\n\n Parameters\n -----------\n a : 1-D array-like or int\n If an ndarray, a random sample is generated from its elements.\n If an int, the random sample is generated as if a was np.arange(n)\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n replace : boolean, optional\n Whether the sample is with or without replacement\n p : 1-D array-like, optional\n The probabilities associated with each entry in a.\n If not given the sample assumes a uniform distribution over all\n entries in a.\n\n Returns\n --------\n samples : 1-D ndarray, shape (size,)\n The generated random samples\n\n Raises\n -------\n ValueError\n If a is an int and less than zero, if a or p are not 1-dimensional,\n if a is an array-like of size 0, if p is not a vector of\n probabilities, if a and p have different lengths, or if\n replace=False and the sample size is greater than the population\n size\n\n See Also\n ---------\n randint, shuffle, permutation\n\n Examples\n ---------\n Generate a uniform random sample from np.arange(5) of size 3:\n\n >>> np.random.choice(5, 3)\n array([0, 3, 4])\n >>> #This is equivalent to np.random.randint(0,5,3)\n\n Generate a non-uniform random sample from np.arange(5) of size 3:\n\n >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])\n array([3, 3, 0])\n\n Generate a uniform random sample from np.arange(5) of size 3 without\n "" replacement:\n\n >>> np.random.choice(5, 3, replace=False)\n array([3,1,0])\n >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]\n\n Generate a non-uniform random sample from np.arange(5) of size\n 3 without replacement:\n\n >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])\n array([2, 3, 0])\n\n Any of the above can be repeated with an arbitrary array-like\n instead of just integers. For instance:\n\n >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']\n >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])\n array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],\n dtype='|S11')\n\n "; static char __pyx_k_f_dfnum_dfden_size_None_Draw_sa[] = "\n f(dfnum, dfden, size=None)\n\n Draw samples from a F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom\n in denominator), where both parameters should be greater than zero.\n\n The random variate of the F distribution (also known as the\n Fisher distribution) is a continuous probability distribution\n that arises in ANOVA tests, and is the ratio of two chi-square\n variates.\n\n Parameters\n ----------\n dfnum : float\n Degrees of freedom in numerator. Should be greater than zero.\n dfden : float\n Degrees of freedom in denominator. Should be greater than zero.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n Samples from the Fisher distribution.\n\n See Also\n --------\n scipy.stats.distributions.f : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The F statistic is used to compare in-group variances to between-group\n variances. Calculating the distribution depends on the sampling, and\n so it is a function of the respective degrees of freedom in the\n problem. The variable `dfnum` is the number of samples minus one, the\n between-groups degrees of freedom, while `dfden` is the within-groups\n degrees of freedom, the sum of the number of samples in each group\n minus the number of groups.\n\n References\n ----------\n .. [1] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n "" Fifth Edition, 2002.\n .. [2] Wikipedia, \"F-distribution\",\n http://en.wikipedia.org/wiki/F-distribution\n\n Examples\n --------\n An example from Glantz[1], pp 47-40.\n Two groups, children of diabetics (25 people) and children from people\n without diabetes (25 controls). Fasting blood glucose was measured,\n case group had a mean value of 86.1, controls had a mean value of\n 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these\n data consistent with the null hypothesis that the parents diabetic\n status does not affect their children's blood glucose levels?\n Calculating the F statistic from the data gives a value of 36.01.\n\n Draw samples from the distribution:\n\n >>> dfnum = 1. # between group degrees of freedom\n >>> dfden = 48. # within groups degrees of freedom\n >>> s = np.random.f(dfnum, dfden, 1000)\n\n The lower bound for the top 1% of the samples is :\n\n >>> sort(s)[-10]\n 7.61988120985\n\n So there is about a 1% chance that the F statistic will exceed 7.62,\n the measured value is 36, so the null hypothesis is rejected at the 1%\n level.\n\n "; static char __pyx_k_gamma_shape_scale_1_0_size_None[] = "\n gamma(shape, scale=1.0, size=None)\n\n Draw samples from a Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n `shape` (sometimes designated \"k\") and `scale` (sometimes designated\n \"theta\"), where both parameters are > 0.\n\n Parameters\n ----------\n shape : scalar > 0\n The shape of the gamma distribution.\n scale : scalar > 0, optional\n The scale of the gamma distribution. Default is equal to 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray, float\n Returns one sample unless `size` parameter is specified.\n\n See Also\n --------\n scipy.stats.distributions.gamma : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma-distribution\",\n http://en.wikipedia.org/wiki/Gamma-distribution\n\n Examples\n -----""---\n Draw samples from the distribution:\n\n >>> shape, scale = 2., 2. # mean and dispersion\n >>> s = np.random.gamma(shape, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps\n >>> count, bins, ignored = plt.hist(s, 50, normed=True)\n >>> y = bins**(shape-1)*(np.exp(-bins/scale) /\n ... (sps.gamma(shape)*scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_geometric_p_size_None_Draw_samp[] = "\n geometric(p, size=None)\n\n Draw samples from the geometric distribution.\n\n Bernoulli trials are experiments with one of two outcomes:\n success or failure (an example of such an experiment is flipping\n a coin). The geometric distribution models the number of trials\n that must be run in order to achieve success. It is therefore\n supported on the positive integers, ``k = 1, 2, ...``.\n\n The probability mass function of the geometric distribution is\n\n .. math:: f(k) = (1 - p)^{k - 1} p\n\n where `p` is the probability of success of an individual trial.\n\n Parameters\n ----------\n p : float\n The probability of success of an individual trial.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Samples from the geometric distribution, shaped according to\n `size`.\n\n Examples\n --------\n Draw ten thousand values from the geometric distribution,\n with the probability of an individual success equal to 0.35:\n\n >>> z = np.random.geometric(p=0.35, size=10000)\n\n How many trials succeeded after a single run?\n\n >>> (z == 1).sum() / 10000.\n 0.34889999999999999 #random\n\n "; static char __pyx_k_gumbel_loc_0_0_scale_1_0_size_N[] = "\n gumbel(loc=0.0, scale=1.0, size=None)\n\n Gumbel distribution.\n\n Draw samples from a Gumbel distribution with specified location and scale.\n For more information on the Gumbel distribution, see Notes and References\n below.\n\n Parameters\n ----------\n loc : float\n The location of the mode of the distribution.\n scale : float\n The scale parameter of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n The samples\n\n See Also\n --------\n scipy.stats.gumbel_l\n scipy.stats.gumbel_r\n scipy.stats.genextreme\n probability density function, distribution, or cumulative density\n function, etc. for each of the above\n weibull\n\n Notes\n -----\n The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value\n Type I) distribution is one of a class of Generalized Extreme Value (GEV)\n distributions used in modeling extreme value problems. The Gumbel is a\n special case of the Extreme Value Type I distribution for maximums from\n distributions with \"exponential-like\" tails.\n\n The probability density for the Gumbel distribution is\n\n .. math:: p(x) = \\frac{e^{-(x - \\mu)/ \\beta}}{\\beta} e^{ -e^{-(x - \\mu)/\n \\beta}},\n\n where :math:`\\mu` is the mode, a location parameter, and :math:`\\beta` is\n the scale parameter.\n\n The Gumbel (named for German mathematician Emil Julius Gumbel) was used\n very early in the hydrology literature, for modeling the occurrence of\n flood events. It is also used for modeling m""aximum wind speed and rainfall\n rates. It is a \"fat-tailed\" distribution - the probability of an event in\n the tail of the distribution is larger than if one used a Gaussian, hence\n the surprisingly frequent occurrence of 100-year floods. Floods were\n initially modeled as a Gaussian process, which underestimated the frequency\n of extreme events.\n\n\n It is one of a class of extreme value distributions, the Generalized\n Extreme Value (GEV) distributions, which also includes the Weibull and\n Frechet.\n\n The function has a mean of :math:`\\mu + 0.57721\\beta` and a variance of\n :math:`\\frac{\\pi^2}{6}\\beta^2`.\n\n References\n ----------\n Gumbel, E. J., *Statistics of Extremes*, New York: Columbia University\n Press, 1958.\n\n Reiss, R.-D. and Thomas, M., *Statistical Analysis of Extreme Values from\n Insurance, Finance, Hydrology and Other Fields*, Basel: Birkhauser Verlag,\n 2001.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, beta = 0, 0.1 # location and scale\n >>> s = np.random.gumbel(mu, beta, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, normed=True)\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp( -np.exp( -(bins - mu) /beta) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n Show how an extreme value distribution can arise from a Gaussian process\n and compare to a Gaussian:\n\n >>> means = []\n >>> maxima = []\n >>> for i in range(0,1000) :\n ... a = np.random.normal(mu, beta, 1000)\n ... means.append(a.mean())\n ... maxima.append(a.max())\n >>> count, bins, ignored"" = plt.hist(maxima, 30, normed=True)\n >>> beta = np.std(maxima)*np.pi/np.sqrt(6)\n >>> mu = np.mean(maxima) - 0.57721*beta\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp(-np.exp(-(bins - mu)/beta)),\n ... linewidth=2, color='r')\n >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))\n ... * np.exp(-(bins - mu)**2 / (2 * beta**2)),\n ... linewidth=2, color='g')\n >>> plt.show()\n\n "; static char __pyx_k_hypergeometric_ngood_nbad_nsamp[] = "\n hypergeometric(ngood, nbad, nsample, size=None)\n\n Draw samples from a Hypergeometric distribution.\n\n Samples are drawn from a Hypergeometric distribution with specified\n parameters, ngood (ways to make a good selection), nbad (ways to make\n a bad selection), and nsample = number of items sampled, which is less\n than or equal to the sum ngood + nbad.\n\n Parameters\n ----------\n ngood : int or array_like\n Number of ways to make a good selection. Must be nonnegative.\n nbad : int or array_like\n Number of ways to make a bad selection. Must be nonnegative.\n nsample : int or array_like\n Number of items sampled. Must be at least 1 and at most\n ``ngood + nbad``.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.hypergeom : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Hypergeometric distribution is\n\n .. math:: P(x) = \\frac{\\binom{m}{n}\\binom{N-m}{n-x}}{\\binom{N}{n}},\n\n where :math:`0 \\le x \\le m` and :math:`n+m-N \\le x \\le n`\n\n for P(x) the probability of x successes, n = ngood, m = nbad, and\n N = number of samples.\n\n Consider an urn with black and white marbles in it, ngood of them\n black and nbad are white. If you draw nsample balls without\n replacement, then the Hypergeometric distribution describes the\n distribution of black balls in the drawn sample.""\n\n Note that this distribution is very similar to the Binomial\n distribution, except that in this case, samples are drawn without\n replacement, whereas in the Binomial case samples are drawn with\n replacement (or the sample space is infinite). As the sample space\n becomes large, this distribution approaches the Binomial.\n\n References\n ----------\n .. [1] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [2] Weisstein, Eric W. \"Hypergeometric Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/HypergeometricDistribution.html\n .. [3] Wikipedia, \"Hypergeometric-distribution\",\n http://en.wikipedia.org/wiki/Hypergeometric-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> ngood, nbad, nsamp = 100, 2, 10\n # number of good, number of bad, and number of samples\n >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)\n >>> hist(s)\n # note that it is very unlikely to grab both bad items\n\n Suppose you have an urn with 15 white and 15 black marbles.\n If you pull 15 marbles at random, how likely is it that\n 12 or more of them are one color?\n\n >>> s = np.random.hypergeometric(15, 15, 15, 100000)\n >>> sum(s>=12)/100000. + sum(s<=3)/100000.\n # answer = 0.003 ... pretty unlikely!\n\n "; static char __pyx_k_logistic_loc_0_0_scale_1_0_size[] = "\n logistic(loc=0.0, scale=1.0, size=None)\n\n Draw samples from a Logistic distribution.\n\n Samples are drawn from a Logistic distribution with specified\n parameters, loc (location or mean, also median), and scale (>0).\n\n Parameters\n ----------\n loc : float\n\n scale : float > 0.\n\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n where the values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.logistic : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Logistic distribution is\n\n .. math:: P(x) = P(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2},\n\n where :math:`\\mu` = location and :math:`s` = scale.\n\n The Logistic distribution is used in Extreme Value problems where it\n can act as a mixture of Gumbel distributions, in Epidemiology, and by\n the World Chess Federation (FIDE) where it is used in the Elo ranking\n system, assuming the performance of each player is a logistically\n distributed random variable.\n\n References\n ----------\n .. [1] Reiss, R.-D. and Thomas M. (2001), Statistical Analysis of Extreme\n Values, from Insurance, Finance, Hydrology and Other Fields,\n Birkhauser Verlag, Basel, pp 132-133.\n .. [2] Weisstein, Eric W. \"Logistic Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LogisticDistribution.html\n .. [3] Wikipedia, \"Logistic-distribution""\",\n http://en.wikipedia.org/wiki/Logistic-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> loc, scale = 10, 1\n >>> s = np.random.logistic(loc, scale, 10000)\n >>> count, bins, ignored = plt.hist(s, bins=50)\n\n # plot against distribution\n\n >>> def logist(x, loc, scale):\n ... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)\n >>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\\\n ... logist(bins, loc, scale).max())\n >>> plt.show()\n\n "; static char __pyx_k_lognormal_mean_0_0_sigma_1_0_si[] = "\n lognormal(mean=0.0, sigma=1.0, size=None)\n\n Return samples drawn from a log-normal distribution.\n\n Draw samples from a log-normal distribution with specified mean,\n standard deviation, and array shape. Note that the mean and standard\n deviation are not the values for the distribution itself, but of the\n underlying normal distribution it is derived from.\n\n Parameters\n ----------\n mean : float\n Mean value of the underlying normal distribution\n sigma : float, > 0.\n Standard deviation of the underlying normal distribution\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or float\n The desired samples. An array of the same shape as `size` if given,\n if `size` is None a float is returned.\n\n See Also\n --------\n scipy.stats.lognorm : probability density function, distribution,\n cumulative density function, etc.\n\n Notes\n -----\n A variable `x` has a log-normal distribution if `log(x)` is normally\n distributed. The probability density function for the log-normal\n distribution is:\n\n .. math:: p(x) = \\frac{1}{\\sigma x \\sqrt{2\\pi}}\n e^{(-\\frac{(ln(x)-\\mu)^2}{2\\sigma^2})}\n\n where :math:`\\mu` is the mean and :math:`\\sigma` is the standard\n deviation of the normally distributed logarithm of the variable.\n A log-normal distribution results if a random variable is the *product*\n of a large number of independent, identically-distributed variables in\n the same way that a normal distribution results if the variable is the\n *sum* of a lar""ge number of independent, identically-distributed\n variables.\n\n References\n ----------\n Limpert, E., Stahel, W. A., and Abbt, M., \"Log-normal Distributions\n across the Sciences: Keys and Clues,\" *BioScience*, Vol. 51, No. 5,\n May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf\n\n Reiss, R.D. and Thomas, M., *Statistical Analysis of Extreme Values*,\n Basel: Birkhauser Verlag, 2001, pp. 31-32.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 3., 1. # mean and standard deviation\n >>> s = np.random.lognormal(mu, sigma, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, linewidth=2, color='r')\n >>> plt.axis('tight')\n >>> plt.show()\n\n Demonstrate that taking the products of random samples from a uniform\n distribution can be fit well by a log-normal probability density function.\n\n >>> # Generate a thousand samples: each is the product of 100 random\n >>> # values, drawn from a normal distribution.\n >>> b = []\n >>> for i in range(1000):\n ... a = 10. + np.random.random(100)\n ... b.append(np.product(a))\n\n >>> b = np.array(b) / np.min(b) # scale values to be positive\n >>> count, bins, ignored = plt.hist(b, 100, normed=True, align='center')\n >>> sigma = np.std(np.log(b))\n >>> mu = np.mean(np.log(b))\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))""\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, color='r', linewidth=2)\n >>> plt.show()\n\n "; static char __pyx_k_logseries_p_size_None_Draw_samp[] = "\n logseries(p, size=None)\n\n Draw samples from a Logarithmic Series distribution.\n\n Samples are drawn from a Log Series distribution with specified\n parameter, p (probability, 0 < p < 1).\n\n Parameters\n ----------\n loc : float\n\n scale : float > 0.\n\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n where the values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.logser : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Log Series distribution is\n\n .. math:: P(k) = \\frac{-p^k}{k \\ln(1-p)},\n\n where p = probability.\n\n The Log Series distribution is frequently used to represent species\n richness and occurrence, first proposed by Fisher, Corbet, and\n Williams in 1943 [2]. It may also be used to model the numbers of\n occupants seen in cars [3].\n\n References\n ----------\n .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional\n species diversity through the log series distribution of\n occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,\n Volume 5, Number 5, September 1999 , pp. 187-195(9).\n .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The\n relation between the number of species and the number of\n individuals in a random sample of an animal population.\n Journal of Animal Ecology, 12:42-58.\n .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Han""dbook of Small\n Data Sets, CRC Press, 1994.\n .. [4] Wikipedia, \"Logarithmic-distribution\",\n http://en.wikipedia.org/wiki/Logarithmic-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = .6\n >>> s = np.random.logseries(a, 10000)\n >>> count, bins, ignored = plt.hist(s)\n\n # plot against distribution\n\n >>> def logseries(k, p):\n ... return -p**k/(k*log(1-p))\n >>> plt.plot(bins, logseries(bins, a)*count.max()/\n logseries(bins, a).max(), 'r')\n >>> plt.show()\n\n "; static char __pyx_k_multinomial_n_pvals_size_None_D[] = "\n multinomial(n, pvals, size=None)\n\n Draw samples from a multinomial distribution.\n\n The multinomial distribution is a multivariate generalisation of the\n binomial distribution. Take an experiment with one of ``p``\n possible outcomes. An example of such an experiment is throwing a dice,\n where the outcome can be 1 through 6. Each sample drawn from the\n distribution represents `n` such experiments. Its values,\n ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome\n was ``i``.\n\n Parameters\n ----------\n n : int\n Number of experiments.\n pvals : sequence of floats, length p\n Probabilities of each of the ``p`` different outcomes. These\n should sum to 1 (however, the last element is always assumed to\n account for the remaining probability, as long as\n ``sum(pvals[:-1]) <= 1)``.\n size : tuple of ints\n Given a `size` of ``(M, N, K)``, then ``M*N*K`` samples are drawn,\n and the output shape becomes ``(M, N, K, p)``, since each sample\n has shape ``(p,)``.\n\n Examples\n --------\n Throw a dice 20 times:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=1)\n array([[4, 1, 7, 5, 2, 1]])\n\n It landed 4 times on 1, once on 2, etc.\n\n Now, throw the dice 20 times, and 20 times again:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=2)\n array([[3, 4, 3, 3, 4, 3],\n [2, 4, 3, 4, 0, 7]])\n\n For the first run, we threw 3 times 1, 4 times 2, etc. For the second,\n we threw 2 times 1, 4 times 2, etc.\n\n A loaded dice is more likely to land on number 6:\n\n >>> np.random.multinomial(100, [1/7.]*5)\n array([13, 16, 13, 16, 42])\n\n "; static char __pyx_k_multivariate_normal_mean_cov_si[] = "\n multivariate_normal(mean, cov[, size])\n\n Draw random samples from a multivariate normal distribution.\n\n The multivariate normal, multinormal or Gaussian distribution is a\n generalization of the one-dimensional normal distribution to higher\n dimensions. Such a distribution is specified by its mean and\n covariance matrix. These parameters are analogous to the mean\n (average or \"center\") and variance (standard deviation, or \"width,\"\n squared) of the one-dimensional normal distribution.\n\n Parameters\n ----------\n mean : 1-D array_like, of length N\n Mean of the N-dimensional distribution.\n cov : 2-D array_like, of shape (N, N)\n Covariance matrix of the distribution. Must be symmetric and\n positive-semidefinite for \"physically meaningful\" results.\n size : int or tuple of ints, optional\n Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are\n generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because\n each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.\n If no shape is specified, a single (`N`-D) sample is returned.\n\n Returns\n -------\n out : ndarray\n The drawn samples, of shape *size*, if that was provided. If not,\n the shape is ``(N,)``.\n\n In other words, each entry ``out[i,j,...,:]`` is an N-dimensional\n value drawn from the distribution.\n\n Notes\n -----\n The mean is a coordinate in N-dimensional space, which represents the\n location where samples are most likely to be generated. This is\n analogous to the peak of the bell curve for the one-dimensional or\n univariate normal distribution.\n\n Covariance indicates the level to which two variables vary together.\n From the multivariate normal distribution, we"" draw N-dimensional\n samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix\n element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.\n The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its\n \"spread\").\n\n Instead of specifying the full covariance matrix, popular\n approximations include:\n\n - Spherical covariance (*cov* is a multiple of the identity matrix)\n - Diagonal covariance (*cov* has non-negative elements, and only on\n the diagonal)\n\n This geometrical property can be seen in two dimensions by plotting\n generated data-points:\n\n >>> mean = [0,0]\n >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis\n\n >>> import matplotlib.pyplot as plt\n >>> x,y = np.random.multivariate_normal(mean,cov,5000).T\n >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()\n\n Note that the covariance matrix must be non-negative definite.\n\n References\n ----------\n Papoulis, A., *Probability, Random Variables, and Stochastic Processes*,\n 3rd ed., New York: McGraw-Hill, 1991.\n\n Duda, R. O., Hart, P. E., and Stork, D. G., *Pattern Classification*,\n 2nd ed., New York: Wiley, 2001.\n\n Examples\n --------\n >>> mean = (1,2)\n >>> cov = [[1,0],[1,0]]\n >>> x = np.random.multivariate_normal(mean,cov,(3,3))\n >>> x.shape\n (3, 3, 2)\n\n The following is probably true, given that 0.6 is roughly twice the\n standard deviation:\n\n >>> print list( (x[0,0,:] - mean) < 0.6 )\n [True, True]\n\n "; static char __pyx_k_negative_binomial_n_p_size_None[] = "\n negative_binomial(n, p, size=None)\n\n Draw samples from a negative_binomial distribution.\n\n Samples are drawn from a negative_Binomial distribution with specified\n parameters, `n` trials and `p` probability of success where `n` is an\n integer > 0 and `p` is in the interval [0, 1].\n\n Parameters\n ----------\n n : int\n Parameter, > 0.\n p : float\n Parameter, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : int or ndarray of ints\n Drawn samples.\n\n Notes\n -----\n The probability density for the Negative Binomial distribution is\n\n .. math:: P(N;n,p) = \\binom{N+n-1}{n-1}p^{n}(1-p)^{N},\n\n where :math:`n-1` is the number of successes, :math:`p` is the probability\n of success, and :math:`N+n-1` is the number of trials.\n\n The negative binomial distribution gives the probability of n-1 successes\n and N failures in N+n-1 trials, and success on the (N+n)th trial.\n\n If one throws a die repeatedly until the third time a \"1\" appears, then the\n probability distribution of the number of non-\"1\"s that appear before the\n third \"1\" is a negative binomial distribution.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Negative Binomial Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/NegativeBinomialDistribution.html\n .. [2] Wikipedia, \"Negative binomial distribution\",\n http://en.wikipedia.org/wiki/Negative_binomial_distribution\n\n Examples\n --------\n Draw samples from the distribut""ion:\n\n A real world example. A company drills wild-cat oil exploration wells, each\n with an estimated probability of success of 0.1. What is the probability\n of having one success for each successive well, that is what is the\n probability of a single success after drilling 5 wells, after 6 wells,\n etc.?\n\n >>> s = np.random.negative_binomial(1, 0.1, 100000)\n >>> for i in range(1, 11):\n ... probability = sum(s>> import matplotlib.pyplot as plt\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, normed=True)\n >>> plt.show()\n\n Draw values from a noncentral chisquare with very smal""l noncentrality,\n and compare to a chisquare.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),\n ... bins=np.arange(0., 25, .1), normed=True)\n >>> values2 = plt.hist(np.random.chisquare(3, 100000),\n ... bins=np.arange(0., 25, .1), normed=True)\n >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')\n >>> plt.show()\n\n Demonstrate how large values of non-centrality lead to a more symmetric\n distribution.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, normed=True)\n >>> plt.show()\n\n "; static char __pyx_k_noncentral_f_dfnum_dfden_nonc_s[] = "\n noncentral_f(dfnum, dfden, nonc, size=None)\n\n Draw samples from the noncentral F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of\n freedom in denominator), where both parameters > 1.\n `nonc` is the non-centrality parameter.\n\n Parameters\n ----------\n dfnum : int\n Parameter, should be > 1.\n dfden : int\n Parameter, should be > 1.\n nonc : float\n Parameter, should be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : scalar or ndarray\n Drawn samples.\n\n Notes\n -----\n When calculating the power of an experiment (power = probability of\n rejecting the null hypothesis when a specific alternative is true) the\n non-central F statistic becomes important. When the null hypothesis is\n true, the F statistic follows a central F distribution. When the null\n hypothesis is not true, then it follows a non-central F statistic.\n\n References\n ----------\n Weisstein, Eric W. \"Noncentral F-Distribution.\" From MathWorld--A Wolfram\n Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html\n\n Wikipedia, \"Noncentral F distribution\",\n http://en.wikipedia.org/wiki/Noncentral_F-distribution\n\n Examples\n --------\n In a study, testing for a specific alternative to the null hypothesis\n requires use of the Noncentral F distribution. We need to calculate the\n area in the tail of the distribution that exceeds the value of the F\n distribution for ""the null hypothesis. We'll plot the two probability\n distributions for comparison.\n\n >>> dfnum = 3 # between group deg of freedom\n >>> dfden = 20 # within groups degrees of freedom\n >>> nonc = 3.0\n >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)\n >>> NF = np.histogram(nc_vals, bins=50, normed=True)\n >>> c_vals = np.random.f(dfnum, dfden, 1000000)\n >>> F = np.histogram(c_vals, bins=50, normed=True)\n >>> plt.plot(F[1][1:], F[0])\n >>> plt.plot(NF[1][1:], NF[0])\n >>> plt.show()\n\n "; static char __pyx_k_normal_loc_0_0_scale_1_0_size_N[] = "\n normal(loc=0.0, scale=1.0, size=None)\n\n Draw random samples from a normal (Gaussian) distribution.\n\n The probability density function of the normal distribution, first\n derived by De Moivre and 200 years later by both Gauss and Laplace\n independently [2]_, is often called the bell curve because of\n its characteristic shape (see the example below).\n\n The normal distributions occurs often in nature. For example, it\n describes the commonly occurring distribution of samples influenced\n by a large number of tiny, random disturbances, each with its own\n unique distribution [2]_.\n\n Parameters\n ----------\n loc : float\n Mean (\"centre\") of the distribution.\n scale : float\n Standard deviation (spread or \"width\") of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n See Also\n --------\n scipy.stats.distributions.norm : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gaussian distribution is\n\n .. math:: p(x) = \\frac{1}{\\sqrt{ 2 \\pi \\sigma^2 }}\n e^{ - \\frac{ (x - \\mu)^2 } {2 \\sigma^2} },\n\n where :math:`\\mu` is the mean and :math:`\\sigma` the standard deviation.\n The square of the standard deviation, :math:`\\sigma^2`, is called the\n variance.\n\n The function has its peak at the mean, and its \"spread\" increases with\n the standard deviation (the function reaches 0.607 times its maximum at\n :math:`x + \\sigma` and :math:`x - \\sigma` [2]_). This implies that\n `numpy.random.normal` is more l""ikely to return samples lying close to the\n mean, rather than those far away.\n\n References\n ----------\n .. [1] Wikipedia, \"Normal distribution\",\n http://en.wikipedia.org/wiki/Normal_distribution\n .. [2] P. R. Peebles Jr., \"Central Limit Theorem\" in \"Probability, Random\n Variables and Random Signal Principles\", 4th ed., 2001,\n pp. 51, 51, 125.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 0, 0.1 # mean and standard deviation\n >>> s = np.random.normal(mu, sigma, 1000)\n\n Verify the mean and the variance:\n\n >>> abs(mu - np.mean(s)) < 0.01\n True\n\n >>> abs(sigma - np.std(s, ddof=1)) < 0.01\n True\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, normed=True)\n >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *\n ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_pareto_a_size_None_Draw_samples[] = "\n pareto(a, size=None)\n\n Draw samples from a Pareto II or Lomax distribution with specified shape.\n\n The Lomax or Pareto II distribution is a shifted Pareto distribution. The\n classical Pareto distribution can be obtained from the Lomax distribution\n by adding the location parameter m, see below. The smallest value of the\n Lomax distribution is zero while for the classical Pareto distribution it\n is m, where the standard Pareto distribution has location m=1.\n Lomax can also be considered as a simplified version of the Generalized\n Pareto distribution (available in SciPy), with the scale set to one and\n the location set to zero.\n\n The Pareto distribution must be greater than zero, and is unbounded above.\n It is also known as the \"80-20 rule\". In this distribution, 80 percent of\n the weights are in the lowest 20 percent of the range, while the other 20\n percent fill the remaining 80 percent of the range.\n\n Parameters\n ----------\n shape : float, > 0.\n Shape of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n See Also\n --------\n scipy.stats.distributions.lomax.pdf : probability density function,\n distribution or cumulative density function, etc.\n scipy.stats.distributions.genpareto.pdf : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Pareto distribution is\n\n .. math:: p(x) = \\frac{am^a}{x^{a+1}}\n\n where :math:`a` is the shape and :math:`m` the location\n\n The Pareto distribution, named after the Italian economist Vilfred""o Pareto,\n is a power law probability distribution useful in many real world problems.\n Outside the field of economics it is generally referred to as the Bradford\n distribution. Pareto developed the distribution to describe the\n distribution of wealth in an economy. It has also found use in insurance,\n web page access statistics, oil field sizes, and many other problems,\n including the download frequency for projects in Sourceforge [1]. It is\n one of the so-called \"fat-tailed\" distributions.\n\n\n References\n ----------\n .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of\n Sourceforge projects.\n .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.\n .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme\n Values, Birkhauser Verlag, Basel, pp 23-30.\n .. [4] Wikipedia, \"Pareto distribution\",\n http://en.wikipedia.org/wiki/Pareto_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a, m = 3., 1. # shape and mode\n >>> s = np.random.pareto(a, 1000) + m\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='center')\n >>> fit = a*m**a/bins**(a+1)\n >>> plt.plot(bins, max(count)*fit/max(fit),linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_power_a_size_None_Draws_samples[] = "\n power(a, size=None)\n\n Draws samples in [0, 1] from a power distribution with positive\n exponent a - 1.\n\n Also known as the power function distribution.\n\n Parameters\n ----------\n a : float\n parameter, > 0\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n The returned samples lie in [0, 1].\n\n Raises\n ------\n ValueError\n If a<1.\n\n Notes\n -----\n The probability density function is\n\n .. math:: P(x; a) = ax^{a-1}, 0 \\le x \\le 1, a>0.\n\n The power function distribution is just the inverse of the Pareto\n distribution. It may also be seen as a special case of the Beta\n distribution.\n\n It is used, for example, in modeling the over-reporting of insurance\n claims.\n\n References\n ----------\n .. [1] Christian Kleiber, Samuel Kotz, \"Statistical size distributions\n in economics and actuarial sciences\", Wiley, 2003.\n .. [2] Heckert, N. A. and Filliben, James J. (2003). NIST Handbook 148:\n Dataplot Reference Manual, Volume 2: Let Subcommands and Library\n Functions\", National Institute of Standards and Technology Handbook\n Series, June 2003.\n http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> samples = 1000\n >>> s = np.random.power(a, samples)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> imp""ort matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, bins=30)\n >>> x = np.linspace(0, 1, 100)\n >>> y = a*x**(a-1.)\n >>> normed_y = samples*np.diff(bins)[0]*y\n >>> plt.plot(x, normed_y)\n >>> plt.show()\n\n Compare the power function distribution to the inverse of the Pareto.\n\n >>> from scipy import stats\n >>> rvs = np.random.power(5, 1000000)\n >>> rvsp = np.random.pareto(5, 1000000)\n >>> xx = np.linspace(0,1,100)\n >>> powpdf = stats.powerlaw.pdf(xx,5)\n\n >>> plt.figure()\n >>> plt.hist(rvs, bins=50, normed=True)\n >>> plt.plot(xx,powpdf,'r-')\n >>> plt.title('np.random.power(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, normed=True)\n >>> plt.plot(xx,powpdf,'r-')\n >>> plt.title('inverse of 1 + np.random.pareto(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, normed=True)\n >>> plt.plot(xx,powpdf,'r-')\n >>> plt.title('inverse of stats.pareto(5)')\n\n "; static char __pyx_k_randint_low_high_None_size_None[] = "\n randint(low, high=None, size=None)\n\n Return random integers from `low` (inclusive) to `high` (exclusive).\n\n Return random integers from the \"discrete uniform\" distribution in the\n \"half-open\" interval [`low`, `high`). If `high` is None (the default),\n then results are from [0, `low`).\n\n Parameters\n ----------\n low : int\n Lowest (signed) integer to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is the *highest* such\n integer).\n high : int, optional\n If provided, one above the largest (signed) integer to be drawn\n from the distribution (see above for behavior if ``high=None``).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n random.random_integers : similar to `randint`, only for the closed\n interval [`low`, `high`], and 1 is the lowest value if `high` is\n omitted. In particular, this other one is the one to use to generate\n uniformly distributed discrete non-integers.\n\n Examples\n --------\n >>> np.random.randint(2, size=10)\n array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])\n >>> np.random.randint(1, size=10)\n array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n\n Generate a 2 x 4 array of ints between 0 and 4, inclusive:\n\n >>> np.random.randint(5, size=(2, 4))\n array([[4, 0, 2, 1],\n [3, 2, 2, 0]])\n\n "; static char __pyx_k_random_integers_low_high_None_s[] = "\n random_integers(low, high=None, size=None)\n\n Return random integers between `low` and `high`, inclusive.\n\n Return random integers from the \"discrete uniform\" distribution in the\n closed interval [`low`, `high`]. If `high` is None (the default),\n then results are from [1, `low`].\n\n Parameters\n ----------\n low : int\n Lowest (signed) integer to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is the *highest* such\n integer).\n high : int, optional\n If provided, the largest (signed) integer to be drawn from the\n distribution (see above for behavior if ``high=None``).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n random.randint : Similar to `random_integers`, only for the half-open\n interval [`low`, `high`), and 0 is the lowest value if `high` is\n omitted.\n\n Notes\n -----\n To sample from N evenly spaced floating-point numbers between a and b,\n use::\n\n a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)\n\n Examples\n --------\n >>> np.random.random_integers(5)\n 4\n >>> type(np.random.random_integers(5))\n \n >>> np.random.random_integers(5, size=(3.,2.))\n array([[5, 4],\n [3, 3],\n [4, 5]])\n\n Choose five random numbers from the set of five evenly-spaced\n "" numbers between 0 and 2.5, inclusive (*i.e.*, from the set\n :math:`{0, 5/8, 10/8, 15/8, 20/8}`):\n\n >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.\n array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])\n\n Roll two six sided dice 1000 times and sum the results:\n\n >>> d1 = np.random.random_integers(1, 6, 1000)\n >>> d2 = np.random.random_integers(1, 6, 1000)\n >>> dsums = d1 + d2\n\n Display results as a histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(dsums, 11, normed=True)\n >>> plt.show()\n\n "; static char __pyx_k_rayleigh_scale_1_0_size_None_Dr[] = "\n rayleigh(scale=1.0, size=None)\n\n Draw samples from a Rayleigh distribution.\n\n The :math:`\\chi` and Weibull distributions are generalizations of the\n Rayleigh.\n\n Parameters\n ----------\n scale : scalar\n Scale, also equals the mode. Should be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n The probability density function for the Rayleigh distribution is\n\n .. math:: P(x;scale) = \\frac{x}{scale^2}e^{\\frac{-x^2}{2 \\cdotp scale^2}}\n\n The Rayleigh distribution arises if the wind speed and wind direction are\n both gaussian variables, then the vector wind velocity forms a Rayleigh\n distribution. The Rayleigh distribution is used to model the expected\n output from wind turbines.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., Rayleigh Distribution,\n http://www.brighton-webs.co.uk/distributions/rayleigh.asp\n .. [2] Wikipedia, \"Rayleigh distribution\"\n http://en.wikipedia.org/wiki/Rayleigh_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram\n\n >>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)\n\n Wave heights tend to follow a Rayleigh distribution. If the mean wave\n height is 1 meter, what fraction of waves are likely to be larger than 3\n meters?\n\n >>> meanvalue = 1\n >>> modevalue = np.sqrt(2 / np.pi) * meanvalue\n >>> s = np.random.rayleigh(modevalue, 1000000)\n\n The percentage of waves larger than 3 meters is:\n\n >>> 100.*sum(s>3)/1000000.\n 0.087300000000000003\n\n "; static char __pyx_k_standard_cauchy_size_None_Stand[] = "\n standard_cauchy(size=None)\n\n Standard Cauchy distribution with mode = 0.\n\n Also known as the Lorentz distribution.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The drawn samples.\n\n Notes\n -----\n The probability density function for the full Cauchy distribution is\n\n .. math:: P(x; x_0, \\gamma) = \\frac{1}{\\pi \\gamma \\bigl[ 1+\n (\\frac{x-x_0}{\\gamma})^2 \\bigr] }\n\n and the Standard Cauchy distribution just sets :math:`x_0=0` and\n :math:`\\gamma=1`\n\n The Cauchy distribution arises in the solution to the driven harmonic\n oscillator problem, and also describes spectral line broadening. It\n also describes the distribution of values at which a line tilted at\n a random angle will cut the x axis.\n\n When studying hypothesis tests that assume normality, seeing how the\n tests perform on data from a Cauchy distribution is a good indicator of\n their sensitivity to a heavy-tailed distribution, since the Cauchy looks\n very much like a Gaussian distribution, but with heavier tails.\n\n References\n ----------\n .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, \"Cauchy\n Distribution\",\n http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm\n .. [2] Weisstein, Eric W. \"Cauchy Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/CauchyDistribution.html\n .. [3] Wikipedia, \"Cauchy distribution\"\n http://en.wikipedia.org/wiki/Cauchy_distribution""\n\n Examples\n --------\n Draw samples and plot the distribution:\n\n >>> s = np.random.standard_cauchy(1000000)\n >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well\n >>> plt.hist(s, bins=100)\n >>> plt.show()\n\n "; static char __pyx_k_standard_normal_size_None_Retur[] = "\n standard_normal(size=None)\n\n Returns samples from a Standard Normal distribution (mean=0, stdev=1).\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n Drawn samples.\n\n Examples\n --------\n >>> s = np.random.standard_normal(8000)\n >>> s\n array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random\n -0.38672696, -0.4685006 ]) #random\n >>> s.shape\n (8000,)\n >>> s = np.random.standard_normal(size=(3, 4, 2))\n >>> s.shape\n (3, 4, 2)\n\n "; static char __pyx_k_standard_t_df_size_None_Standar[] = "\n standard_t(df, size=None)\n\n Standard Student's t distribution with df degrees of freedom.\n\n A special case of the hyperbolic distribution.\n As `df` gets large, the result resembles that of the standard normal\n distribution (`standard_normal`).\n\n Parameters\n ----------\n df : int\n Degrees of freedom, should be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n Drawn samples.\n\n Notes\n -----\n The probability density function for the t distribution is\n\n .. math:: P(x, df) = \\frac{\\Gamma(\\frac{df+1}{2})}{\\sqrt{\\pi df}\n \\Gamma(\\frac{df}{2})}\\Bigl( 1+\\frac{x^2}{df} \\Bigr)^{-(df+1)/2}\n\n The t test is based on an assumption that the data come from a Normal\n distribution. The t test provides a way to test whether the sample mean\n (that is the mean calculated from the data) is a good estimate of the true\n mean.\n\n The derivation of the t-distribution was forst published in 1908 by William\n Gisset while working for the Guinness Brewery in Dublin. Due to proprietary\n issues, he had to publish under a pseudonym, and so he used the name\n Student.\n\n References\n ----------\n .. [1] Dalgaard, Peter, \"Introductory Statistics With R\",\n Springer, 2002.\n .. [2] Wikipedia, \"Student's t-distribution\"\n http://en.wikipedia.org/wiki/Student's_t-distribution\n\n Examples\n --------\n From Dalgaard page 83 [1]_, suppose the daily energy intake for 11\n women in Kj is:\n\n >>> intake = np.array([5260., 5470, 5640, 6""180, 6390, 6515, 6805, 7515, \\\n ... 7515, 8230, 8770])\n\n Does their energy intake deviate systematically from the recommended\n value of 7725 kJ?\n\n We have 10 degrees of freedom, so is the sample mean within 95% of the\n recommended value?\n\n >>> s = np.random.standard_t(10, size=100000)\n >>> np.mean(intake)\n 6753.636363636364\n >>> intake.std(ddof=1)\n 1142.1232221373727\n\n Calculate the t statistic, setting the ddof parameter to the unbiased\n value so the divisor in the standard deviation will be degrees of\n freedom, N-1.\n\n >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(s, bins=100, normed=True)\n\n For a one-sided t-test, how far out in the distribution does the t\n statistic appear?\n\n >>> >>> np.sum(s>> import"" matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,\n ... normed=True)\n >>> plt.show()\n\n "; static char __pyx_k_uniform_low_0_0_high_1_0_size_N[] = "\n uniform(low=0.0, high=1.0, size=None)\n\n Draw samples from a uniform distribution.\n\n Samples are uniformly distributed over the half-open interval\n ``[low, high)`` (includes low, but excludes high). In other words,\n any value within the given interval is equally likely to be drawn\n by `uniform`.\n\n Parameters\n ----------\n low : float, optional\n Lower boundary of the output interval. All values generated will be\n greater than or equal to low. The default value is 0.\n high : float\n Upper boundary of the output interval. All values generated will be\n less than high. The default value is 1.0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Drawn samples, with shape `size`.\n\n See Also\n --------\n randint : Discrete uniform distribution, yielding integers.\n random_integers : Discrete uniform distribution over the closed\n interval ``[low, high]``.\n random_sample : Floats uniformly distributed over ``[0, 1)``.\n random : Alias for `random_sample`.\n rand : Convenience function that accepts dimensions as input, e.g.,\n ``rand(2,2)`` would generate a 2-by-2 array of floats,\n uniformly distributed over ``[0, 1)``.\n\n Notes\n -----\n The probability density function of the uniform distribution is\n\n .. math:: p(x) = \\frac{1}{b - a}\n\n anywhere within the interval ``[a, b)``, and zero elsewhere.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> s = np.random.uniform(-1,0,1000)\n\n All"" values are within the given interval:\n\n >>> np.all(s >= -1)\n True\n >>> np.all(s < 0)\n True\n\n Display the histogram of the samples, along with the\n probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 15, normed=True)\n >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_vonmises_mu_kappa_size_None_Dra[] = "\n vonmises(mu, kappa, size=None)\n\n Draw samples from a von Mises distribution.\n\n Samples are drawn from a von Mises distribution with specified mode\n (mu) and dispersion (kappa), on the interval [-pi, pi].\n\n The von Mises distribution (also known as the circular normal\n distribution) is a continuous probability distribution on the unit\n circle. It may be thought of as the circular analogue of the normal\n distribution.\n\n Parameters\n ----------\n mu : float\n Mode (\"center\") of the distribution.\n kappa : float\n Dispersion of the distribution, has to be >=0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : scalar or ndarray\n The returned samples, which are in the interval [-pi, pi].\n\n See Also\n --------\n scipy.stats.distributions.vonmises : probability density function,\n distribution, or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the von Mises distribution is\n\n .. math:: p(x) = \\frac{e^{\\kappa cos(x-\\mu)}}{2\\pi I_0(\\kappa)},\n\n where :math:`\\mu` is the mode and :math:`\\kappa` the dispersion,\n and :math:`I_0(\\kappa)` is the modified Bessel function of order 0.\n\n The von Mises is named for Richard Edler von Mises, who was born in\n Austria-Hungary, in what is now the Ukraine. He fled to the United\n States in 1939 and became a professor at Harvard. He worked in\n probability theory, aerodynamics, fluid mechanics, and philosophy of\n science.\n\n References\n ----------\n Abramowitz, M. and Stegun, I. A. (e""d.), *Handbook of Mathematical\n Functions*, New York: Dover, 1965.\n\n von Mises, R., *Mathematical Theory of Probability and Statistics*,\n New York: Academic Press, 1964.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, kappa = 0.0, 4.0 # mean and dispersion\n >>> s = np.random.vonmises(mu, kappa, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps\n >>> count, bins, ignored = plt.hist(s, 50, normed=True)\n >>> x = np.arange(-np.pi, np.pi, 2*np.pi/50.)\n >>> y = -np.exp(kappa*np.cos(x-mu))/(2*np.pi*sps.jn(0,kappa))\n >>> plt.plot(x, y/max(y), linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_weibull_a_size_None_Weibull_dis[] = "\n weibull(a, size=None)\n\n Weibull distribution.\n\n Draw samples from a 1-parameter Weibull distribution with the given\n shape parameter `a`.\n\n .. math:: X = (-ln(U))^{1/a}\n\n Here, U is drawn from the uniform distribution over (0,1].\n\n The more common 2-parameter Weibull, including a scale parameter\n :math:`\\lambda` is just :math:`X = \\lambda(-ln(U))^{1/a}`.\n\n Parameters\n ----------\n a : float\n Shape of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n See Also\n --------\n scipy.stats.distributions.weibull_max\n scipy.stats.distributions.weibull_min\n scipy.stats.distributions.genextreme\n gumbel\n\n Notes\n -----\n The Weibull (or Type III asymptotic extreme value distribution for smallest\n values, SEV Type III, or Rosin-Rammler distribution) is one of a class of\n Generalized Extreme Value (GEV) distributions used in modeling extreme\n value problems. This class includes the Gumbel and Frechet distributions.\n\n The probability density for the Weibull distribution is\n\n .. math:: p(x) = \\frac{a}\n {\\lambda}(\\frac{x}{\\lambda})^{a-1}e^{-(x/\\lambda)^a},\n\n where :math:`a` is the shape and :math:`\\lambda` the scale.\n\n The function has its peak (the mode) at\n :math:`\\lambda(\\frac{a-1}{a})^{1/a}`.\n\n When ``a = 1``, the Weibull distribution reduces to the exponential\n distribution.\n\n References\n ----------\n .. [1] Waloddi Weibull, Professor, Royal Technical University, Stockholm,\n 1939 \"A Statistical Theory Of The Strength Of Materials\",\n "" Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,\n Generalstabens Litografiska Anstalts Forlag, Stockholm.\n .. [2] Waloddi Weibull, 1951 \"A Statistical Distribution Function of Wide\n Applicability\", Journal Of Applied Mechanics ASME Paper.\n .. [3] Wikipedia, \"Weibull distribution\",\n http://en.wikipedia.org/wiki/Weibull_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> s = np.random.weibull(a, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> x = np.arange(1,100.)/50.\n >>> def weib(x,n,a):\n ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)\n\n >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))\n >>> x = np.arange(1,100.)/50.\n >>> scale = count.max()/weib(x, 1., 5.).max()\n >>> plt.plot(x, weib(x, 1., 5.)*scale)\n >>> plt.show()\n\n "; static char __pyx_k_zipf_a_size_None_Draw_samples_f[] = "\n zipf(a, size=None)\n\n Draw samples from a Zipf distribution.\n\n Samples are drawn from a Zipf distribution with specified parameter\n `a` > 1.\n\n The Zipf distribution (also known as the zeta distribution) is a\n continuous probability distribution that satisfies Zipf's law: the\n frequency of an item is inversely proportional to its rank in a\n frequency table.\n\n Parameters\n ----------\n a : float > 1\n Distribution parameter.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : scalar or ndarray\n The returned samples are greater than or equal to one.\n\n See Also\n --------\n scipy.stats.distributions.zipf : probability density function,\n distribution, or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Zipf distribution is\n\n .. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)},\n\n where :math:`\\zeta` is the Riemann Zeta function.\n\n It is named for the American linguist George Kingsley Zipf, who noted\n that the frequency of any word in a sample of a language is inversely\n proportional to its rank in the frequency table.\n\n References\n ----------\n Zipf, G. K., *Selected Studies of the Principle of Relative Frequency\n in Language*, Cambridge, MA: Harvard Univ. Press, 1932.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 2. # parameter\n >>> s = np.random.zipf(a, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pypl""ot as plt\n >>> import scipy.special as sps\n Truncate s values at 50 so plot is interesting\n >>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)\n >>> x = np.arange(1., 50.)\n >>> y = x**(-a)/sps.zetac(a)\n >>> plt.plot(x, y/max(y), linewidth=2, color='r')\n >>> plt.show()\n\n "; static char __pyx_k_Cannot_take_a_larger_sample_than[] = "Cannot take a larger sample than population when 'replace=False'"; static char __pyx_k_Fewer_non_zero_entries_in_p_than[] = "Fewer non-zero entries in p than size"; static char __pyx_k_RandomState_multinomial_line_433[] = "RandomState.multinomial (line 4337)"; static char __pyx_k_RandomState_negative_binomial_li[] = "RandomState.negative_binomial (line 3648)"; static char __pyx_k_RandomState_noncentral_chisquare[] = "RandomState.noncentral_chisquare (line 2168)"; static char __pyx_k_RandomState_noncentral_f_line_19[] = "RandomState.noncentral_f (line 1991)"; static char __pyx_k_RandomState_permutation_line_460[] = "RandomState.permutation (line 4600)"; static char __pyx_k_RandomState_random_integers_line[] = "RandomState.random_integers (line 1343)"; static char __pyx_k_RandomState_random_sample_line_7[] = "RandomState.random_sample (line 774)"; static char __pyx_k_RandomState_standard_cauchy_line[] = "RandomState.standard_cauchy (line 2262)"; static char __pyx_k_RandomState_standard_exponential[] = "RandomState.standard_exponential (line 1678)"; static char __pyx_k_RandomState_standard_normal_line[] = "RandomState.standard_normal (line 1423)"; static char __pyx_k_RandomState_standard_t_line_2326[] = "RandomState.standard_t (line 2326)"; static char __pyx_k_RandomState_triangular_line_3446[] = "RandomState.triangular (line 3446)"; static char __pyx_k_Seed_must_be_between_0_and_42949[] = "Seed must be between 0 and 4294967295"; static char __pyx_k_a_must_be_1_dimensional_or_an_in[] = "a must be 1-dimensional or an integer"; static char __pyx_k_cov_must_be_2_dimensional_and_sq[] = "cov must be 2 dimensional and square"; static char __pyx_k_covariance_is_not_positive_semid[] = "covariance is not positive-semidefinite."; static char __pyx_k_mean_and_cov_must_have_same_leng[] = "mean and cov must have same length"; static char __pyx_k_probabilities_are_not_non_negati[] = "probabilities are not non-negative"; static char __pyx_k_size_is_not_compatible_with_inpu[] = "size is not compatible with inputs"; static PyObject *__pyx_kp_s_Cannot_take_a_larger_sample_than; static PyObject *__pyx_kp_s_Fewer_non_zero_entries_in_p_than; static PyObject *__pyx_n_s_L; static PyObject *__pyx_n_s_Lock; static PyObject *__pyx_n_s_MT19937; static PyObject *__pyx_kp_u_RandomState_binomial_line_3535; static PyObject *__pyx_kp_u_RandomState_bytes_line_947; static PyObject *__pyx_kp_u_RandomState_chisquare_line_2087; static PyObject *__pyx_kp_u_RandomState_choice_line_976; static PyObject *__pyx_n_s_RandomState_ctor; static PyObject *__pyx_kp_u_RandomState_dirichlet_line_4427; static PyObject *__pyx_kp_u_RandomState_f_line_1887; static PyObject *__pyx_kp_u_RandomState_gamma_line_1793; static PyObject *__pyx_kp_u_RandomState_geometric_line_3909; static PyObject *__pyx_kp_u_RandomState_gumbel_line_2935; static PyObject *__pyx_kp_u_RandomState_hypergeometric_line; static PyObject *__pyx_kp_u_RandomState_laplace_line_2839; static PyObject *__pyx_kp_u_RandomState_logistic_line_3069; static PyObject *__pyx_kp_u_RandomState_lognormal_line_3160; static PyObject *__pyx_kp_u_RandomState_logseries_line_4097; static PyObject *__pyx_kp_u_RandomState_multinomial_line_433; static PyObject *__pyx_kp_u_RandomState_multivariate_normal; static PyObject *__pyx_kp_u_RandomState_negative_binomial_li; static PyObject *__pyx_kp_u_RandomState_noncentral_chisquare; static PyObject *__pyx_kp_u_RandomState_noncentral_f_line_19; static PyObject *__pyx_kp_u_RandomState_normal_line_1456; static PyObject *__pyx_kp_u_RandomState_pareto_line_2527; static PyObject *__pyx_kp_u_RandomState_permutation_line_460; static PyObject *__pyx_kp_u_RandomState_poisson_line_3744; static PyObject *__pyx_kp_u_RandomState_power_line_2728; static PyObject *__pyx_kp_u_RandomState_rand_line_1242; static PyObject *__pyx_kp_u_RandomState_randint_line_865; static PyObject *__pyx_kp_u_RandomState_randn_line_1286; static PyObject *__pyx_kp_u_RandomState_random_integers_line; static PyObject *__pyx_kp_u_RandomState_random_sample_line_7; static PyObject *__pyx_kp_u_RandomState_rayleigh_line_3284; static PyObject *__pyx_kp_u_RandomState_shuffle_line_4541; static PyObject *__pyx_kp_u_RandomState_standard_cauchy_line; static PyObject *__pyx_kp_u_RandomState_standard_exponential; static PyObject *__pyx_kp_u_RandomState_standard_gamma_line; static PyObject *__pyx_kp_u_RandomState_standard_normal_line; static PyObject *__pyx_kp_u_RandomState_standard_t_line_2326; static PyObject *__pyx_kp_u_RandomState_tomaxint_line_818; static PyObject *__pyx_kp_u_RandomState_triangular_line_3446; static PyObject *__pyx_kp_u_RandomState_uniform_line_1152; static PyObject *__pyx_kp_u_RandomState_vonmises_line_2430; static PyObject *__pyx_kp_u_RandomState_wald_line_3359; static PyObject *__pyx_kp_u_RandomState_weibull_line_2625; static PyObject *__pyx_kp_u_RandomState_zipf_line_3822; static PyObject *__pyx_n_s_RuntimeWarning; static PyObject *__pyx_kp_s_Seed_must_be_between_0_and_42949; static PyObject *__pyx_n_s_T; static PyObject *__pyx_n_s_TypeError; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_a; static PyObject *__pyx_kp_s_a_0; static PyObject *__pyx_kp_s_a_1_0; static PyObject *__pyx_kp_s_a_and_p_must_have_same_size; static PyObject *__pyx_kp_s_a_must_be_1_dimensional; static PyObject *__pyx_kp_s_a_must_be_1_dimensional_or_an_in; static PyObject *__pyx_kp_s_a_must_be_greater_than_0; static PyObject *__pyx_kp_s_a_must_be_non_empty; static PyObject *__pyx_n_s_add; static PyObject *__pyx_kp_s_algorithm_must_be_MT19937; static PyObject *__pyx_n_s_alpha; static PyObject *__pyx_n_s_any; static PyObject *__pyx_n_s_arange; static PyObject *__pyx_n_s_array; static PyObject *__pyx_n_s_asarray; static PyObject *__pyx_n_s_astype; static PyObject *__pyx_n_s_axis; static PyObject *__pyx_n_s_b; static PyObject *__pyx_kp_s_b_0; static PyObject *__pyx_n_s_beta; static PyObject *__pyx_n_s_binomial; static PyObject *__pyx_kp_u_binomial_n_p_size_None_Draw_sam; static PyObject *__pyx_n_s_bytes; static PyObject *__pyx_kp_u_bytes_length_Return_random_byte; static PyObject *__pyx_n_s_casting; static PyObject *__pyx_n_s_chisquare; static PyObject *__pyx_kp_u_chisquare_df_size_None_Draw_sam; static PyObject *__pyx_n_s_choice; static PyObject *__pyx_kp_u_choice_a_size_None_replace_True; static PyObject *__pyx_n_s_copy; static PyObject *__pyx_n_s_count_nonzero; static PyObject *__pyx_n_s_cov; static PyObject *__pyx_kp_s_cov_must_be_2_dimensional_and_sq; static PyObject *__pyx_kp_s_covariance_is_not_positive_semid; static PyObject *__pyx_n_s_cumsum; static PyObject *__pyx_n_s_d; static PyObject *__pyx_n_s_df; static PyObject *__pyx_kp_s_df_0; static PyObject *__pyx_kp_s_df_1; static PyObject *__pyx_n_s_dfden; static PyObject *__pyx_kp_s_dfden_0; static PyObject *__pyx_n_s_dfnum; static PyObject *__pyx_kp_s_dfnum_0; static PyObject *__pyx_kp_s_dfnum_1; static PyObject *__pyx_n_s_dirichlet; static PyObject *__pyx_kp_u_dirichlet_alpha_size_None_Draw; static PyObject *__pyx_n_s_dot; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_empty; static PyObject *__pyx_n_s_empty_like; static PyObject *__pyx_n_s_enter; static PyObject *__pyx_n_s_equal; static PyObject *__pyx_n_s_exit; static PyObject *__pyx_n_s_exponential; static PyObject *__pyx_n_s_f; static PyObject *__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa; static PyObject *__pyx_n_s_fields; static PyObject *__pyx_n_s_float64; static PyObject *__pyx_n_s_gamma; static PyObject *__pyx_kp_u_gamma_shape_scale_1_0_size_None; static PyObject *__pyx_n_s_geometric; static PyObject *__pyx_kp_u_geometric_p_size_None_Draw_samp; static PyObject *__pyx_n_s_get_state; static PyObject *__pyx_n_s_greater; static PyObject *__pyx_n_s_greater_equal; static PyObject *__pyx_n_s_gumbel; static PyObject *__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N; static PyObject *__pyx_n_s_high; static PyObject *__pyx_kp_s_home_vagrant_repos_numpy_numpy; static PyObject *__pyx_n_s_hypergeometric; static PyObject *__pyx_kp_u_hypergeometric_ngood_nbad_nsamp; static PyObject *__pyx_n_s_iinfo; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_index; static PyObject *__pyx_n_s_int; static PyObject *__pyx_n_s_int64; static PyObject *__pyx_n_s_integer; static PyObject *__pyx_n_s_intp; static PyObject *__pyx_n_s_isnan; static PyObject *__pyx_n_s_item; static PyObject *__pyx_n_s_kappa; static PyObject *__pyx_kp_s_kappa_0; static PyObject *__pyx_n_s_l; static PyObject *__pyx_n_s_lam; static PyObject *__pyx_kp_s_lam_0; static PyObject *__pyx_kp_s_lam_value_too_large; static PyObject *__pyx_kp_s_lam_value_too_large_2; static PyObject *__pyx_n_s_laplace; static PyObject *__pyx_kp_u_laplace_loc_0_0_scale_1_0_size; static PyObject *__pyx_n_s_left; static PyObject *__pyx_kp_s_left_mode; static PyObject *__pyx_kp_s_left_right; static PyObject *__pyx_n_s_less; static PyObject *__pyx_n_s_less_equal; static PyObject *__pyx_n_s_loc; static PyObject *__pyx_n_s_logical_or; static PyObject *__pyx_n_s_logistic; static PyObject *__pyx_kp_u_logistic_loc_0_0_scale_1_0_size; static PyObject *__pyx_n_s_lognormal; static PyObject *__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si; static PyObject *__pyx_n_s_logseries; static PyObject *__pyx_kp_u_logseries_p_size_None_Draw_samp; static PyObject *__pyx_n_s_low; static PyObject *__pyx_kp_s_low_high; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_max; static PyObject *__pyx_n_s_mean; static PyObject *__pyx_kp_s_mean_0; static PyObject *__pyx_kp_s_mean_0_0; static PyObject *__pyx_kp_s_mean_and_cov_must_have_same_leng; static PyObject *__pyx_kp_s_mean_must_be_1_dimensional; static PyObject *__pyx_n_s_mode; static PyObject *__pyx_kp_s_mode_right; static PyObject *__pyx_n_s_mtrand; static PyObject *__pyx_n_s_mu; static PyObject *__pyx_n_s_multinomial; static PyObject *__pyx_kp_u_multinomial_n_pvals_size_None_D; static PyObject *__pyx_n_s_multivariate_normal; static PyObject *__pyx_kp_u_multivariate_normal_mean_cov_si; static PyObject *__pyx_n_s_n; static PyObject *__pyx_kp_s_n_0; static PyObject *__pyx_kp_s_n_0_2; static PyObject *__pyx_n_s_nbad; static PyObject *__pyx_kp_s_nbad_0; static PyObject *__pyx_n_s_ndarray; static PyObject *__pyx_n_s_ndim; static PyObject *__pyx_n_s_negative_binomial; static PyObject *__pyx_kp_u_negative_binomial_n_p_size_None; static PyObject *__pyx_n_s_ngood; static PyObject *__pyx_kp_s_ngood_0; static PyObject *__pyx_kp_s_ngood_nbad_nsample; static PyObject *__pyx_n_s_nonc; static PyObject *__pyx_kp_s_nonc_0; static PyObject *__pyx_kp_s_nonc_0_2; static PyObject *__pyx_n_s_noncentral_chisquare; static PyObject *__pyx_kp_u_noncentral_chisquare_df_nonc_si; static PyObject *__pyx_n_s_noncentral_f; static PyObject *__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s; static PyObject *__pyx_n_s_normal; static PyObject *__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N; static PyObject *__pyx_n_s_np; static PyObject *__pyx_n_s_nsample; static PyObject *__pyx_kp_s_nsample_1; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_n_s_numpy_dual; static PyObject *__pyx_n_s_operator; static PyObject *__pyx_n_s_p; static PyObject *__pyx_kp_s_p_0; static PyObject *__pyx_kp_s_p_0_0; static PyObject *__pyx_kp_s_p_0_0_2; static PyObject *__pyx_kp_s_p_1; static PyObject *__pyx_kp_s_p_1_0; static PyObject *__pyx_kp_s_p_1_0_2; static PyObject *__pyx_kp_s_p_is_nan; static PyObject *__pyx_kp_s_p_must_be_1_dimensional; static PyObject *__pyx_n_s_pareto; static PyObject *__pyx_kp_u_pareto_a_size_None_Draw_samples; static PyObject *__pyx_n_s_permutation; static PyObject *__pyx_kp_u_permutation_x_Randomly_permute; static PyObject *__pyx_n_s_poisson; static PyObject *__pyx_kp_u_poisson_lam_1_0_size_None_Draw; static PyObject *__pyx_n_s_poisson_lam_max; static PyObject *__pyx_n_s_power; static PyObject *__pyx_kp_u_power_a_size_None_Draws_samples; static PyObject *__pyx_kp_s_probabilities_are_not_non_negati; static PyObject *__pyx_kp_s_probabilities_do_not_sum_to_1; static PyObject *__pyx_n_s_prod; static PyObject *__pyx_n_s_pvals; static PyObject *__pyx_n_s_rand; static PyObject *__pyx_n_s_rand_2; static PyObject *__pyx_kp_u_rand_d0_d1_dn_Random_values_in; static PyObject *__pyx_n_s_randint; static PyObject *__pyx_kp_u_randint_low_high_None_size_None; static PyObject *__pyx_n_s_randn; static PyObject *__pyx_kp_u_randn_d0_d1_dn_Return_a_sample; static PyObject *__pyx_n_s_random; static PyObject *__pyx_n_s_random_integers; static PyObject *__pyx_kp_u_random_integers_low_high_None_s; static PyObject *__pyx_n_s_random_sample; static PyObject *__pyx_kp_u_random_sample_size_None_Return; static PyObject *__pyx_n_s_ravel; static PyObject *__pyx_n_s_rayleigh; static PyObject *__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr; static PyObject *__pyx_n_s_reduce; static PyObject *__pyx_n_s_replace; static PyObject *__pyx_n_s_reshape; static PyObject *__pyx_n_s_return_index; static PyObject *__pyx_n_s_right; static PyObject *__pyx_n_s_safe; static PyObject *__pyx_n_s_scale; static PyObject *__pyx_kp_s_scale_0; static PyObject *__pyx_kp_s_scale_0_0; static PyObject *__pyx_n_s_searchsorted; static PyObject *__pyx_n_s_seed; static PyObject *__pyx_n_s_set_state; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_kp_s_shape_0; static PyObject *__pyx_n_s_shape_from_size; static PyObject *__pyx_n_s_shuffle; static PyObject *__pyx_kp_u_shuffle_x_Modify_a_sequence_in; static PyObject *__pyx_n_s_side; static PyObject *__pyx_n_s_sigma; static PyObject *__pyx_kp_s_sigma_0; static PyObject *__pyx_kp_s_sigma_0_0; static PyObject *__pyx_n_s_size; static PyObject *__pyx_kp_s_size_is_not_compatible_with_inpu; static PyObject *__pyx_n_s_sort; static PyObject *__pyx_n_s_sqrt; static PyObject *__pyx_n_s_standard_cauchy; static PyObject *__pyx_kp_u_standard_cauchy_size_None_Stand; static PyObject *__pyx_n_s_standard_exponential; static PyObject *__pyx_kp_u_standard_exponential_size_None; static PyObject *__pyx_n_s_standard_gamma; static PyObject *__pyx_kp_u_standard_gamma_shape_size_None; static PyObject *__pyx_n_s_standard_normal; static PyObject *__pyx_kp_u_standard_normal_size_None_Retur; static PyObject *__pyx_n_s_standard_t; static PyObject *__pyx_kp_u_standard_t_df_size_None_Standar; static PyObject *__pyx_kp_s_state_must_be_624_longs; static PyObject *__pyx_n_s_subtract; static PyObject *__pyx_n_s_sum; static PyObject *__pyx_kp_s_sum_pvals_1_1_0; static PyObject *__pyx_n_s_svd; static PyObject *__pyx_n_s_take; static PyObject *__pyx_n_s_test; static PyObject *__pyx_n_s_threading; static PyObject *__pyx_kp_u_tomaxint_size_None_Random_integ; static PyObject *__pyx_n_s_triangular; static PyObject *__pyx_kp_u_triangular_left_mode_right_size; static PyObject *__pyx_n_s_uint; static PyObject *__pyx_n_s_uint32; static PyObject *__pyx_n_s_uniform; static PyObject *__pyx_kp_u_uniform_low_0_0_high_1_0_size_N; static PyObject *__pyx_n_s_unique; static PyObject *__pyx_n_s_unsafe; static PyObject *__pyx_n_s_vonmises; static PyObject *__pyx_kp_u_vonmises_mu_kappa_size_None_Dra; static PyObject *__pyx_n_s_wald; static PyObject *__pyx_kp_u_wald_mean_scale_size_None_Draw; static PyObject *__pyx_n_s_warn; static PyObject *__pyx_n_s_warnings; static PyObject *__pyx_n_s_weibull; static PyObject *__pyx_kp_u_weibull_a_size_None_Weibull_dis; static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_n_s_zipf; static PyObject *__pyx_kp_u_zipf_a_size_None_Draw_samples_f; static PyObject *__pyx_float_0_; static PyObject *__pyx_float_0_0; static PyObject *__pyx_float_1_0; static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; static PyObject *__pyx_int_3; static PyObject *__pyx_int_5; static PyObject *__pyx_int_10; static PyObject *__pyx_int_624; static PyObject *__pyx_int_4294967295; static PyObject *__pyx_int_neg_1; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__3; static PyObject *__pyx_tuple__4; static PyObject *__pyx_tuple__5; static PyObject *__pyx_tuple__6; static PyObject *__pyx_tuple__7; static PyObject *__pyx_tuple__8; static PyObject *__pyx_tuple__9; static PyObject *__pyx_slice__35; static PyObject *__pyx_slice__36; static PyObject *__pyx_tuple__10; static PyObject *__pyx_tuple__11; static PyObject *__pyx_tuple__12; static PyObject *__pyx_tuple__13; static PyObject *__pyx_tuple__14; static PyObject *__pyx_tuple__15; static PyObject *__pyx_tuple__16; static PyObject *__pyx_tuple__17; static PyObject *__pyx_tuple__18; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__20; static PyObject *__pyx_tuple__21; static PyObject *__pyx_tuple__22; static PyObject *__pyx_tuple__23; static PyObject *__pyx_tuple__24; static PyObject *__pyx_tuple__25; static PyObject *__pyx_tuple__26; static PyObject *__pyx_tuple__27; static PyObject *__pyx_tuple__28; static PyObject *__pyx_tuple__29; static PyObject *__pyx_tuple__30; static PyObject *__pyx_tuple__31; static PyObject *__pyx_tuple__32; static PyObject *__pyx_tuple__33; static PyObject *__pyx_tuple__34; static PyObject *__pyx_tuple__37; static PyObject *__pyx_tuple__38; static PyObject *__pyx_tuple__39; static PyObject *__pyx_tuple__40; static PyObject *__pyx_tuple__41; static PyObject *__pyx_tuple__42; static PyObject *__pyx_tuple__43; static PyObject *__pyx_tuple__44; static PyObject *__pyx_tuple__45; static PyObject *__pyx_tuple__46; static PyObject *__pyx_tuple__47; static PyObject *__pyx_tuple__48; static PyObject *__pyx_tuple__49; static PyObject *__pyx_tuple__50; static PyObject *__pyx_tuple__51; static PyObject *__pyx_tuple__52; static PyObject *__pyx_tuple__53; static PyObject *__pyx_tuple__54; static PyObject *__pyx_tuple__55; static PyObject *__pyx_tuple__56; static PyObject *__pyx_tuple__57; static PyObject *__pyx_tuple__58; static PyObject *__pyx_tuple__59; static PyObject *__pyx_tuple__60; static PyObject *__pyx_tuple__61; static PyObject *__pyx_tuple__62; static PyObject *__pyx_tuple__63; static PyObject *__pyx_tuple__64; static PyObject *__pyx_tuple__65; static PyObject *__pyx_tuple__66; static PyObject *__pyx_tuple__67; static PyObject *__pyx_tuple__68; static PyObject *__pyx_tuple__69; static PyObject *__pyx_tuple__70; static PyObject *__pyx_tuple__71; static PyObject *__pyx_tuple__72; static PyObject *__pyx_tuple__73; static PyObject *__pyx_tuple__74; static PyObject *__pyx_tuple__75; static PyObject *__pyx_tuple__76; static PyObject *__pyx_tuple__77; static PyObject *__pyx_tuple__78; static PyObject *__pyx_tuple__79; static PyObject *__pyx_tuple__80; static PyObject *__pyx_tuple__81; static PyObject *__pyx_tuple__82; static PyObject *__pyx_tuple__83; static PyObject *__pyx_tuple__84; static PyObject *__pyx_tuple__85; static PyObject *__pyx_tuple__86; static PyObject *__pyx_tuple__87; static PyObject *__pyx_tuple__88; static PyObject *__pyx_tuple__89; static PyObject *__pyx_tuple__90; static PyObject *__pyx_tuple__91; static PyObject *__pyx_tuple__92; static PyObject *__pyx_tuple__93; static PyObject *__pyx_tuple__94; static PyObject *__pyx_tuple__95; static PyObject *__pyx_tuple__96; static PyObject *__pyx_tuple__97; static PyObject *__pyx_tuple__98; static PyObject *__pyx_tuple__99; static PyObject *__pyx_slice__151; static PyObject *__pyx_slice__152; static PyObject *__pyx_tuple__100; static PyObject *__pyx_tuple__101; static PyObject *__pyx_tuple__102; static PyObject *__pyx_tuple__103; static PyObject *__pyx_tuple__104; static PyObject *__pyx_tuple__105; static PyObject *__pyx_tuple__106; static PyObject *__pyx_tuple__107; static PyObject *__pyx_tuple__108; static PyObject *__pyx_tuple__109; static PyObject *__pyx_tuple__110; static PyObject *__pyx_tuple__111; static PyObject *__pyx_tuple__112; static PyObject *__pyx_tuple__113; static PyObject *__pyx_tuple__114; static PyObject *__pyx_tuple__115; static PyObject *__pyx_tuple__116; static PyObject *__pyx_tuple__117; static PyObject *__pyx_tuple__118; static PyObject *__pyx_tuple__119; static PyObject *__pyx_tuple__120; static PyObject *__pyx_tuple__121; static PyObject *__pyx_tuple__122; static PyObject *__pyx_tuple__123; static PyObject *__pyx_tuple__124; static PyObject *__pyx_tuple__125; static PyObject *__pyx_tuple__126; static PyObject *__pyx_tuple__127; static PyObject *__pyx_tuple__128; static PyObject *__pyx_tuple__129; static PyObject *__pyx_tuple__130; static PyObject *__pyx_tuple__131; static PyObject *__pyx_tuple__132; static PyObject *__pyx_tuple__133; static PyObject *__pyx_tuple__134; static PyObject *__pyx_tuple__135; static PyObject *__pyx_tuple__136; static PyObject *__pyx_tuple__137; static PyObject *__pyx_tuple__138; static PyObject *__pyx_tuple__139; static PyObject *__pyx_tuple__140; static PyObject *__pyx_tuple__141; static PyObject *__pyx_tuple__142; static PyObject *__pyx_tuple__143; static PyObject *__pyx_tuple__144; static PyObject *__pyx_tuple__145; static PyObject *__pyx_tuple__146; static PyObject *__pyx_tuple__147; static PyObject *__pyx_tuple__148; static PyObject *__pyx_tuple__149; static PyObject *__pyx_tuple__150; static PyObject *__pyx_tuple__153; static PyObject *__pyx_tuple__154; static PyObject *__pyx_tuple__155; static PyObject *__pyx_tuple__156; static PyObject *__pyx_tuple__157; static PyObject *__pyx_tuple__159; static PyObject *__pyx_tuple__160; static PyObject *__pyx_codeobj__158; /* "mtrand.pyx":132 * from threading import Lock * * cdef object cont0_array(rk_state *state, rk_cont0 func, object size, # <<<<<<<<<<<<<< * object lock): * cdef double *array_data */ static PyObject *__pyx_f_6mtrand_cont0_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont0 __pyx_v_func, PyObject *__pyx_v_size, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont0_array", 0); /* "mtrand.pyx":139 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":140 * * if size is None: * return func(state) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyFloat_FromDouble(__pyx_v_func(__pyx_v_state)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 140; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":142 * return func(state) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":143 * else: * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":144 * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":145 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":146 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":147 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state); } } /* "mtrand.pyx":145 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple_, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":148 * for i from 0 <= i < length: * array_data[i] = func(state) * return array # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":132 * from threading import Lock * * cdef object cont0_array(rk_state *state, rk_cont0 func, object size, # <<<<<<<<<<<<<< * object lock): * cdef double *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.cont0_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":151 * * * cdef object cont1_array_sc(rk_state *state, rk_cont1 func, object size, double a, # <<<<<<<<<<<<<< * object lock): * cdef double *array_data */ static PyObject *__pyx_f_6mtrand_cont1_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont1 __pyx_v_func, PyObject *__pyx_v_size, double __pyx_v_a, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont1_array_sc", 0); /* "mtrand.pyx":158 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, a) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":159 * * if size is None: * return func(state, a) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyFloat_FromDouble(__pyx_v_func(__pyx_v_state, __pyx_v_a)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 159; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":161 * return func(state, a) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 161; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 161; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 161; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 161; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 161; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 161; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":162 * else: * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":163 * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":164 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":165 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, a) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":166 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, a) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_a); } } /* "mtrand.pyx":164 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__2, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":167 * for i from 0 <= i < length: * array_data[i] = func(state, a) * return array # <<<<<<<<<<<<<< * * cdef object cont1_array(rk_state *state, rk_cont1 func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":151 * * * cdef object cont1_array_sc(rk_state *state, rk_cont1 func, object size, double a, # <<<<<<<<<<<<<< * object lock): * cdef double *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.cont1_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":169 * return array * * cdef object cont1_array(rk_state *state, rk_cont1 func, object size, # <<<<<<<<<<<<<< * ndarray oa, object lock): * cdef double *array_data */ static PyObject *__pyx_f_6mtrand_cont1_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont1 __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_oa, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; double *__pyx_v_oa_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyArrayIterObject *__pyx_v_itera = 0; PyArrayMultiIterObject *__pyx_v_multi = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont1_array", 0); /* "mtrand.pyx":179 * cdef broadcast multi * * if size is None: # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(PyArray_NDIM(oa), * PyArray_DIMS(oa) , NPY_DOUBLE) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":180 * * if size is None: * array = PyArray_SimpleNew(PyArray_NDIM(oa), # <<<<<<<<<<<<<< * PyArray_DIMS(oa) , NPY_DOUBLE) * length = PyArray_SIZE(array) */ __pyx_t_3 = PyArray_SimpleNew(PyArray_NDIM(__pyx_v_oa), PyArray_DIMS(__pyx_v_oa), NPY_DOUBLE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 180; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":182 * array = PyArray_SimpleNew(PyArray_NDIM(oa), * PyArray_DIMS(oa) , NPY_DOUBLE) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":183 * PyArray_DIMS(oa) , NPY_DOUBLE) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * itera = PyArray_IterNew(oa) * with lock, nogil: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":184 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_t_4 = PyArray_IterNew(((PyObject *)__pyx_v_oa)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 184; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_itera = ((PyArrayIterObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":185 * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 185; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 185; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 185; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":186 * itera = PyArray_IterNew(oa) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, ((itera.dataptr))[0]) * PyArray_ITER_NEXT(itera) */ __pyx_t_9 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":187 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) # <<<<<<<<<<<<<< * PyArray_ITER_NEXT(itera) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (((double *)__pyx_v_itera->dataptr)[0])); /* "mtrand.pyx":188 * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) * PyArray_ITER_NEXT(itera) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ PyArray_ITER_NEXT(__pyx_v_itera); } } /* "mtrand.pyx":185 * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__3, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 185; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":190 * PyArray_ITER_NEXT(itera) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(2, array, */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_10); __Pyx_GIVEREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":191 * else: * array = np.empty(size, np.float64) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(2, array, * oa) */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":192 * array = np.empty(size, np.float64) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(2, array, # <<<<<<<<<<<<<< * oa) * if (multi.size != PyArray_SIZE(array)): */ __pyx_t_4 = PyArray_MultiIterNew(2, ((void *)arrayObject), ((void *)__pyx_v_oa)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 192; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":194 * multi = PyArray_MultiIterNew(2, array, * oa) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":195 * oa) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":196 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 196; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 196; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 196; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":197 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * oa_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0]) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":198 * with lock, nogil: * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * array_data[i] = func(state, oa_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) */ __pyx_v_oa_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":199 * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 1) * return array */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_oa_data[0])); /* "mtrand.pyx":200 * oa_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) # <<<<<<<<<<<<<< * return array * */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 1); } } /* "mtrand.pyx":196 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__5, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 196; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":201 * array_data[i] = func(state, oa_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) * return array # <<<<<<<<<<<<<< * * cdef object cont2_array_sc(rk_state *state, rk_cont2 func, object size, double a, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":169 * return array * * cdef object cont1_array(rk_state *state, rk_cont1 func, object size, # <<<<<<<<<<<<<< * ndarray oa, object lock): * cdef double *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.cont1_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_itera); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":203 * return array * * cdef object cont2_array_sc(rk_state *state, rk_cont2 func, object size, double a, # <<<<<<<<<<<<<< * double b, object lock): * cdef double *array_data */ static PyObject *__pyx_f_6mtrand_cont2_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont2 __pyx_v_func, PyObject *__pyx_v_size, double __pyx_v_a, double __pyx_v_b, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont2_array_sc", 0); /* "mtrand.pyx":210 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, a, b) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":211 * * if size is None: * return func(state, a, b) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyFloat_FromDouble(__pyx_v_func(__pyx_v_state, __pyx_v_a, __pyx_v_b)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 211; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":213 * return func(state, a, b) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 213; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 213; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 213; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 213; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 213; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 213; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":214 * else: * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":215 * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":216 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a, b) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 216; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 216; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 216; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":217 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, a, b) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":218 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, a, b) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_a, __pyx_v_b); } } /* "mtrand.pyx":216 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a, b) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__6, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 216; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":219 * for i from 0 <= i < length: * array_data[i] = func(state, a, b) * return array # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":203 * return array * * cdef object cont2_array_sc(rk_state *state, rk_cont2 func, object size, double a, # <<<<<<<<<<<<<< * double b, object lock): * cdef double *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.cont2_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":222 * * * cdef object cont2_array(rk_state *state, rk_cont2 func, object size, # <<<<<<<<<<<<<< * ndarray oa, ndarray ob, object lock): * cdef double *array_data */ static PyObject *__pyx_f_6mtrand_cont2_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont2 __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_oa, PyArrayObject *__pyx_v_ob, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; double *__pyx_v_oa_data; double *__pyx_v_ob_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_i; PyArrayMultiIterObject *__pyx_v_multi = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont2_array", 0); /* "mtrand.pyx":232 * cdef broadcast multi * * if size is None: # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(2, oa, ob) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":233 * * if size is None: * multi = PyArray_MultiIterNew(2, oa, ob) # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) */ __pyx_t_3 = PyArray_MultiIterNew(2, ((void *)__pyx_v_oa), ((void *)__pyx_v_ob)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 233; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":234 * if size is None: * multi = PyArray_MultiIterNew(2, oa, ob) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_t_4 = PyArray_SimpleNew(__pyx_v_multi->nd, __pyx_v_multi->dimensions, NPY_DOUBLE); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 234; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":235 * multi = PyArray_MultiIterNew(2, oa, ob) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":236 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 236; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 236; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 236; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":237 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * oa_data = PyArray_MultiIter_DATA(multi, 0) * ob_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":238 * with lock, nogil: * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) # <<<<<<<<<<<<<< * ob_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0], ob_data[0]) */ __pyx_v_oa_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 0)); /* "mtrand.pyx":239 * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) * ob_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * array_data[i] = func(state, oa_data[0], ob_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_ob_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":240 * oa_data = PyArray_MultiIter_DATA(multi, 0) * ob_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0], ob_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_oa_data[0]), (__pyx_v_ob_data[0])); /* "mtrand.pyx":241 * ob_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0], ob_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":236 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__7, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 236; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":243 * PyArray_MultiIter_NEXT(multi) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, oa, ob) */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 243; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 243; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 243; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 243; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 243; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_10); __Pyx_GIVEREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 243; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":244 * else: * array = np.empty(size, np.float64) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(3, array, oa, ob) * if (multi.size != PyArray_SIZE(array)): */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":245 * array = np.empty(size, np.float64) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, oa, ob) # <<<<<<<<<<<<<< * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") */ __pyx_t_4 = PyArray_MultiIterNew(3, ((void *)arrayObject), ((void *)__pyx_v_oa), ((void *)__pyx_v_ob)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 245; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":246 * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, oa, ob) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":247 * multi = PyArray_MultiIterNew(3, array, oa, ob) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 247; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 247; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":248 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 248; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 248; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 248; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":249 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * oa_data = PyArray_MultiIter_DATA(multi, 1) * ob_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":250 * with lock, nogil: * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * ob_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, oa_data[0], ob_data[0]) */ __pyx_v_oa_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":251 * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) * ob_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * array_data[i] = func(state, oa_data[0], ob_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) */ __pyx_v_ob_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":252 * oa_data = PyArray_MultiIter_DATA(multi, 1) * ob_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, oa_data[0], ob_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_oa_data[0]), (__pyx_v_ob_data[0])); /* "mtrand.pyx":253 * ob_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, oa_data[0], ob_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 2) * return array */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 1); /* "mtrand.pyx":254 * array_data[i] = func(state, oa_data[0], ob_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) # <<<<<<<<<<<<<< * return array * */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 2); } } /* "mtrand.pyx":248 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__9, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 248; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":255 * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) * return array # <<<<<<<<<<<<<< * * cdef object cont3_array_sc(rk_state *state, rk_cont3 func, object size, double a, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":222 * * * cdef object cont2_array(rk_state *state, rk_cont2 func, object size, # <<<<<<<<<<<<<< * ndarray oa, ndarray ob, object lock): * cdef double *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.cont2_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":257 * return array * * cdef object cont3_array_sc(rk_state *state, rk_cont3 func, object size, double a, # <<<<<<<<<<<<<< * double b, double c, object lock): * */ static PyObject *__pyx_f_6mtrand_cont3_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont3 __pyx_v_func, PyObject *__pyx_v_size, double __pyx_v_a, double __pyx_v_b, double __pyx_v_c, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont3_array_sc", 0); /* "mtrand.pyx":265 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, a, b, c) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":266 * * if size is None: * return func(state, a, b, c) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyFloat_FromDouble(__pyx_v_func(__pyx_v_state, __pyx_v_a, __pyx_v_b, __pyx_v_c)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 266; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":268 * return func(state, a, b, c) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":269 * else: * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":270 * array = np.empty(size, np.float64) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":271 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a, b, c) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":272 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, a, b, c) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":273 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, a, b, c) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_a, __pyx_v_b, __pyx_v_c); } } /* "mtrand.pyx":271 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a, b, c) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__10, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":274 * for i from 0 <= i < length: * array_data[i] = func(state, a, b, c) * return array # <<<<<<<<<<<<<< * * cdef object cont3_array(rk_state *state, rk_cont3 func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":257 * return array * * cdef object cont3_array_sc(rk_state *state, rk_cont3 func, object size, double a, # <<<<<<<<<<<<<< * double b, double c, object lock): * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.cont3_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":276 * return array * * cdef object cont3_array(rk_state *state, rk_cont3 func, object size, # <<<<<<<<<<<<<< * ndarray oa, ndarray ob, ndarray oc, object lock): * */ static PyObject *__pyx_f_6mtrand_cont3_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_cont3 __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_oa, PyArrayObject *__pyx_v_ob, PyArrayObject *__pyx_v_oc, PyObject *__pyx_v_lock) { double *__pyx_v_array_data; double *__pyx_v_oa_data; double *__pyx_v_ob_data; double *__pyx_v_oc_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_i; PyArrayMultiIterObject *__pyx_v_multi = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("cont3_array", 0); /* "mtrand.pyx":288 * cdef broadcast multi * * if size is None: # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(3, oa, ob, oc) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":289 * * if size is None: * multi = PyArray_MultiIterNew(3, oa, ob, oc) # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) */ __pyx_t_3 = PyArray_MultiIterNew(3, ((void *)__pyx_v_oa), ((void *)__pyx_v_ob), ((void *)__pyx_v_oc)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 289; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":290 * if size is None: * multi = PyArray_MultiIterNew(3, oa, ob, oc) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_t_4 = PyArray_SimpleNew(__pyx_v_multi->nd, __pyx_v_multi->dimensions, NPY_DOUBLE); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 290; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":291 * multi = PyArray_MultiIterNew(3, oa, ob, oc) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":292 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 292; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 292; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":293 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * oa_data = PyArray_MultiIter_DATA(multi, 0) * ob_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":294 * with lock, nogil: * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) # <<<<<<<<<<<<<< * ob_data = PyArray_MultiIter_DATA(multi, 1) * oc_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_v_oa_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 0)); /* "mtrand.pyx":295 * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) * ob_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * oc_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) */ __pyx_v_ob_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":296 * oa_data = PyArray_MultiIter_DATA(multi, 0) * ob_data = PyArray_MultiIter_DATA(multi, 1) * oc_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_oc_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":297 * ob_data = PyArray_MultiIter_DATA(multi, 1) * oc_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_oa_data[0]), (__pyx_v_ob_data[0]), (__pyx_v_oc_data[0])); /* "mtrand.pyx":298 * oc_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * else: * array = np.empty(size, np.float64) */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":292 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__11, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":300 * PyArray_MultiIter_NEXT(multi) * else: * array = np.empty(size, np.float64) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(4, array, oa, */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_10); __Pyx_GIVEREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":301 * else: * array = np.empty(size, np.float64) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(4, array, oa, * ob, oc) */ __pyx_v_array_data = ((double *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":302 * array = np.empty(size, np.float64) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(4, array, oa, # <<<<<<<<<<<<<< * ob, oc) * if (multi.size != PyArray_SIZE(array)): */ __pyx_t_4 = PyArray_MultiIterNew(4, ((void *)arrayObject), ((void *)__pyx_v_oa), ((void *)__pyx_v_ob), ((void *)__pyx_v_oc)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 302; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":304 * multi = PyArray_MultiIterNew(4, array, oa, * ob, oc) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":305 * ob, oc) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 305; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 305; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":306 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":307 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * oa_data = PyArray_MultiIter_DATA(multi, 1) * ob_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":308 * with lock, nogil: * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * ob_data = PyArray_MultiIter_DATA(multi, 2) * oc_data = PyArray_MultiIter_DATA(multi, 3) */ __pyx_v_oa_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":309 * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) * ob_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * oc_data = PyArray_MultiIter_DATA(multi, 3) * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) */ __pyx_v_ob_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":310 * oa_data = PyArray_MultiIter_DATA(multi, 1) * ob_data = PyArray_MultiIter_DATA(multi, 2) * oc_data = PyArray_MultiIter_DATA(multi, 3) # <<<<<<<<<<<<<< * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_oc_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 3)); /* "mtrand.pyx":311 * ob_data = PyArray_MultiIter_DATA(multi, 2) * oc_data = PyArray_MultiIter_DATA(multi, 3) * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * return array */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_oa_data[0]), (__pyx_v_ob_data[0]), (__pyx_v_oc_data[0])); /* "mtrand.pyx":312 * oc_data = PyArray_MultiIter_DATA(multi, 3) * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * return array * */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":306 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":313 * array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0]) * PyArray_MultiIter_NEXT(multi) * return array # <<<<<<<<<<<<<< * * cdef object disc0_array(rk_state *state, rk_disc0 func, object size, object lock): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":276 * return array * * cdef object cont3_array(rk_state *state, rk_cont3 func, object size, # <<<<<<<<<<<<<< * ndarray oa, ndarray ob, ndarray oc, object lock): * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.cont3_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":315 * return array * * cdef object disc0_array(rk_state *state, rk_disc0 func, object size, object lock): # <<<<<<<<<<<<<< * cdef long *array_data * cdef ndarray array "arrayObject" */ static PyObject *__pyx_f_6mtrand_disc0_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_disc0 __pyx_v_func, PyObject *__pyx_v_size, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("disc0_array", 0); /* "mtrand.pyx":321 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":322 * * if size is None: * return func(state) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyInt_From_long(__pyx_v_func(__pyx_v_state)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 322; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":324 * return func(state) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":325 * else: * array = np.empty(size, int) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":326 * array = np.empty(size, int) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":327 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":328 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":329 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state); } } /* "mtrand.pyx":327 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__14, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":330 * for i from 0 <= i < length: * array_data[i] = func(state) * return array # <<<<<<<<<<<<<< * * cdef object discnp_array_sc(rk_state *state, rk_discnp func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":315 * return array * * cdef object disc0_array(rk_state *state, rk_disc0 func, object size, object lock): # <<<<<<<<<<<<<< * cdef long *array_data * cdef ndarray array "arrayObject" */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.disc0_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":332 * return array * * cdef object discnp_array_sc(rk_state *state, rk_discnp func, object size, # <<<<<<<<<<<<<< * long n, double p, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discnp_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discnp __pyx_v_func, PyObject *__pyx_v_size, long __pyx_v_n, double __pyx_v_p, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discnp_array_sc", 0); /* "mtrand.pyx":339 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, n, p) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":340 * * if size is None: * return func(state, n, p) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyInt_From_long(__pyx_v_func(__pyx_v_state, __pyx_v_n, __pyx_v_p)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 340; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":342 * return func(state, n, p) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 342; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 342; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 342; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 342; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":343 * else: * array = np.empty(size, int) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":344 * array = np.empty(size, int) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":345 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, p) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 345; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 345; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 345; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":346 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, n, p) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":347 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, n, p) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_n, __pyx_v_p); } } /* "mtrand.pyx":345 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, p) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__15, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 345; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":348 * for i from 0 <= i < length: * array_data[i] = func(state, n, p) * return array # <<<<<<<<<<<<<< * * cdef object discnp_array(rk_state *state, rk_discnp func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":332 * return array * * cdef object discnp_array_sc(rk_state *state, rk_discnp func, object size, # <<<<<<<<<<<<<< * long n, double p, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.discnp_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":350 * return array * * cdef object discnp_array(rk_state *state, rk_discnp func, object size, # <<<<<<<<<<<<<< * ndarray on, ndarray op, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discnp_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discnp __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_on, PyArrayObject *__pyx_v_op, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_i; double *__pyx_v_op_data; long *__pyx_v_on_data; PyArrayMultiIterObject *__pyx_v_multi = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discnp_array", 0); /* "mtrand.pyx":360 * cdef broadcast multi * * if size is None: # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(2, on, op) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":361 * * if size is None: * multi = PyArray_MultiIterNew(2, on, op) # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) */ __pyx_t_3 = PyArray_MultiIterNew(2, ((void *)__pyx_v_on), ((void *)__pyx_v_op)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 361; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":362 * if size is None: * multi = PyArray_MultiIterNew(2, on, op) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_t_4 = PyArray_SimpleNew(__pyx_v_multi->nd, __pyx_v_multi->dimensions, NPY_LONG); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 362; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":363 * multi = PyArray_MultiIterNew(2, on, op) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":364 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 364; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 364; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 364; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":365 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * on_data = PyArray_MultiIter_DATA(multi, 0) * op_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":366 * with lock, nogil: * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) # <<<<<<<<<<<<<< * op_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, on_data[0], op_data[0]) */ __pyx_v_on_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 0)); /* "mtrand.pyx":367 * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) * op_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_op_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":368 * on_data = PyArray_MultiIter_DATA(multi, 0) * op_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, on_data[0], op_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_on_data[0]), (__pyx_v_op_data[0])); /* "mtrand.pyx":369 * op_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":364 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__16, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 364; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":371 * PyArray_MultiIter_NEXT(multi) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, on, op) */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 371; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 371; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 371; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 371; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":372 * else: * array = np.empty(size, int) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":373 * array = np.empty(size, int) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, on, op) # <<<<<<<<<<<<<< * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") */ __pyx_t_4 = PyArray_MultiIterNew(3, ((void *)arrayObject), ((void *)__pyx_v_on), ((void *)__pyx_v_op)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 373; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":374 * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":375 * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 375; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 375; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":376 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 376; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 376; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 376; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":377 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * on_data = PyArray_MultiIter_DATA(multi, 1) * op_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":378 * with lock, nogil: * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * op_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], op_data[0]) */ __pyx_v_on_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":379 * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) * op_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) */ __pyx_v_op_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":380 * on_data = PyArray_MultiIter_DATA(multi, 1) * op_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], op_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_on_data[0]), (__pyx_v_op_data[0])); /* "mtrand.pyx":381 * op_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 2) * */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 1); /* "mtrand.pyx":382 * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) # <<<<<<<<<<<<<< * * return array */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 2); } } /* "mtrand.pyx":376 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__18, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 376; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":384 * PyArray_MultiIter_NEXTi(multi, 2) * * return array # <<<<<<<<<<<<<< * * cdef object discdd_array_sc(rk_state *state, rk_discdd func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":350 * return array * * cdef object discnp_array(rk_state *state, rk_discnp func, object size, # <<<<<<<<<<<<<< * ndarray on, ndarray op, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.discnp_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":386 * return array * * cdef object discdd_array_sc(rk_state *state, rk_discdd func, object size, # <<<<<<<<<<<<<< * double n, double p, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discdd_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discdd __pyx_v_func, PyObject *__pyx_v_size, double __pyx_v_n, double __pyx_v_p, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discdd_array_sc", 0); /* "mtrand.pyx":393 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, n, p) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":394 * * if size is None: * return func(state, n, p) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyInt_From_long(__pyx_v_func(__pyx_v_state, __pyx_v_n, __pyx_v_p)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 394; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":396 * return func(state, n, p) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 396; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 396; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 396; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 396; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":397 * else: * array = np.empty(size, int) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":398 * array = np.empty(size, int) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":399 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, p) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 399; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 399; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 399; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":400 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, n, p) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":401 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, n, p) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_n, __pyx_v_p); } } /* "mtrand.pyx":399 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, p) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__19, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 399; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":402 * for i from 0 <= i < length: * array_data[i] = func(state, n, p) * return array # <<<<<<<<<<<<<< * * cdef object discdd_array(rk_state *state, rk_discdd func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":386 * return array * * cdef object discdd_array_sc(rk_state *state, rk_discdd func, object size, # <<<<<<<<<<<<<< * double n, double p, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.discdd_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":404 * return array * * cdef object discdd_array(rk_state *state, rk_discdd func, object size, # <<<<<<<<<<<<<< * ndarray on, ndarray op, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discdd_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discdd __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_on, PyArrayObject *__pyx_v_op, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_i; double *__pyx_v_op_data; double *__pyx_v_on_data; PyArrayMultiIterObject *__pyx_v_multi = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discdd_array", 0); /* "mtrand.pyx":414 * cdef broadcast multi * * if size is None: # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(2, on, op) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":415 * * if size is None: * multi = PyArray_MultiIterNew(2, on, op) # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) */ __pyx_t_3 = PyArray_MultiIterNew(2, ((void *)__pyx_v_on), ((void *)__pyx_v_op)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 415; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":416 * if size is None: * multi = PyArray_MultiIterNew(2, on, op) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_t_4 = PyArray_SimpleNew(__pyx_v_multi->nd, __pyx_v_multi->dimensions, NPY_LONG); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 416; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":417 * multi = PyArray_MultiIterNew(2, on, op) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":418 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 418; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 418; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 418; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":419 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * on_data = PyArray_MultiIter_DATA(multi, 0) * op_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":420 * with lock, nogil: * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) # <<<<<<<<<<<<<< * op_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, on_data[0], op_data[0]) */ __pyx_v_on_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 0)); /* "mtrand.pyx":421 * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) * op_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_op_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":422 * on_data = PyArray_MultiIter_DATA(multi, 0) * op_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, on_data[0], op_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_on_data[0]), (__pyx_v_op_data[0])); /* "mtrand.pyx":423 * op_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":418 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__20, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 418; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":425 * PyArray_MultiIter_NEXT(multi) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, on, op) */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":426 * else: * array = np.empty(size, int) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":427 * array = np.empty(size, int) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, on, op) # <<<<<<<<<<<<<< * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") */ __pyx_t_4 = PyArray_MultiIterNew(3, ((void *)arrayObject), ((void *)__pyx_v_on), ((void *)__pyx_v_op)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 427; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":428 * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":429 * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 429; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 429; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":430 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 430; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 430; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 430; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":431 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * on_data = PyArray_MultiIter_DATA(multi, 1) * op_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":432 * with lock, nogil: * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * op_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], op_data[0]) */ __pyx_v_on_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":433 * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) * op_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) */ __pyx_v_op_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":434 * on_data = PyArray_MultiIter_DATA(multi, 1) * op_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], op_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_on_data[0]), (__pyx_v_op_data[0])); /* "mtrand.pyx":435 * op_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 2) * */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 1); /* "mtrand.pyx":436 * array_data[i] = func(state, on_data[0], op_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) * PyArray_MultiIter_NEXTi(multi, 2) # <<<<<<<<<<<<<< * * return array */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 2); } } /* "mtrand.pyx":430 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__22, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 430; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":438 * PyArray_MultiIter_NEXTi(multi, 2) * * return array # <<<<<<<<<<<<<< * * cdef object discnmN_array_sc(rk_state *state, rk_discnmN func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":404 * return array * * cdef object discdd_array(rk_state *state, rk_discdd func, object size, # <<<<<<<<<<<<<< * ndarray on, ndarray op, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.discdd_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":440 * return array * * cdef object discnmN_array_sc(rk_state *state, rk_discnmN func, object size, # <<<<<<<<<<<<<< * long n, long m, long N, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discnmN_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discnmN __pyx_v_func, PyObject *__pyx_v_size, long __pyx_v_n, long __pyx_v_m, long __pyx_v_N, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discnmN_array_sc", 0); /* "mtrand.pyx":447 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, n, m, N) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":448 * * if size is None: * return func(state, n, m, N) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyInt_From_long(__pyx_v_func(__pyx_v_state, __pyx_v_n, __pyx_v_m, __pyx_v_N)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 448; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":450 * return func(state, n, m, N) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 450; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 450; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 450; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 450; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":451 * else: * array = np.empty(size, int) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":452 * array = np.empty(size, int) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":453 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, m, N) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 453; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 453; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 453; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":454 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, n, m, N) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":455 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, n, m, N) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_n, __pyx_v_m, __pyx_v_N); } } /* "mtrand.pyx":453 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, m, N) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__23, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 453; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":456 * for i from 0 <= i < length: * array_data[i] = func(state, n, m, N) * return array # <<<<<<<<<<<<<< * * cdef object discnmN_array(rk_state *state, rk_discnmN func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":440 * return array * * cdef object discnmN_array_sc(rk_state *state, rk_discnmN func, object size, # <<<<<<<<<<<<<< * long n, long m, long N, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.discnmN_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":458 * return array * * cdef object discnmN_array(rk_state *state, rk_discnmN func, object size, # <<<<<<<<<<<<<< * ndarray on, ndarray om, ndarray oN, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discnmN_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discnmN __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_on, PyArrayObject *__pyx_v_om, PyArrayObject *__pyx_v_oN, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; long *__pyx_v_on_data; long *__pyx_v_om_data; long *__pyx_v_oN_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_i; PyArrayMultiIterObject *__pyx_v_multi = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discnmN_array", 0); /* "mtrand.pyx":469 * cdef broadcast multi * * if size is None: # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(3, on, om, oN) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":470 * * if size is None: * multi = PyArray_MultiIterNew(3, on, om, oN) # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) */ __pyx_t_3 = PyArray_MultiIterNew(3, ((void *)__pyx_v_on), ((void *)__pyx_v_om), ((void *)__pyx_v_oN)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 470; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":471 * if size is None: * multi = PyArray_MultiIterNew(3, on, om, oN) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_t_4 = PyArray_SimpleNew(__pyx_v_multi->nd, __pyx_v_multi->dimensions, NPY_LONG); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 471; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":472 * multi = PyArray_MultiIterNew(3, on, om, oN) * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":473 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 473; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 473; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 473; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":474 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * on_data = PyArray_MultiIter_DATA(multi, 0) * om_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":475 * with lock, nogil: * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) # <<<<<<<<<<<<<< * om_data = PyArray_MultiIter_DATA(multi, 1) * oN_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_v_on_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 0)); /* "mtrand.pyx":476 * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) * om_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * oN_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) */ __pyx_v_om_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":477 * on_data = PyArray_MultiIter_DATA(multi, 0) * om_data = PyArray_MultiIter_DATA(multi, 1) * oN_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_oN_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":478 * om_data = PyArray_MultiIter_DATA(multi, 1) * oN_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_on_data[0]), (__pyx_v_om_data[0]), (__pyx_v_oN_data[0])); /* "mtrand.pyx":479 * oN_data = PyArray_MultiIter_DATA(multi, 2) * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":473 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__24, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 473; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":481 * PyArray_MultiIter_NEXT(multi) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(4, array, on, om, */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 481; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 481; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 481; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 481; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":482 * else: * array = np.empty(size, int) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(4, array, on, om, * oN) */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":483 * array = np.empty(size, int) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(4, array, on, om, # <<<<<<<<<<<<<< * oN) * if (multi.size != PyArray_SIZE(array)): */ __pyx_t_4 = PyArray_MultiIterNew(4, ((void *)arrayObject), ((void *)__pyx_v_on), ((void *)__pyx_v_om), ((void *)__pyx_v_oN)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 483; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":485 * multi = PyArray_MultiIterNew(4, array, on, om, * oN) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":486 * oN) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__25, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 486; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 486; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":487 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 487; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 487; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 487; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":488 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * on_data = PyArray_MultiIter_DATA(multi, 1) * om_data = PyArray_MultiIter_DATA(multi, 2) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":489 * with lock, nogil: * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * om_data = PyArray_MultiIter_DATA(multi, 2) * oN_data = PyArray_MultiIter_DATA(multi, 3) */ __pyx_v_on_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":490 * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) * om_data = PyArray_MultiIter_DATA(multi, 2) # <<<<<<<<<<<<<< * oN_data = PyArray_MultiIter_DATA(multi, 3) * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) */ __pyx_v_om_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 2)); /* "mtrand.pyx":491 * on_data = PyArray_MultiIter_DATA(multi, 1) * om_data = PyArray_MultiIter_DATA(multi, 2) * oN_data = PyArray_MultiIter_DATA(multi, 3) # <<<<<<<<<<<<<< * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) * PyArray_MultiIter_NEXT(multi) */ __pyx_v_oN_data = ((long *)PyArray_MultiIter_DATA(__pyx_v_multi, 3)); /* "mtrand.pyx":492 * om_data = PyArray_MultiIter_DATA(multi, 2) * oN_data = PyArray_MultiIter_DATA(multi, 3) * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXT(multi) * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_on_data[0]), (__pyx_v_om_data[0]), (__pyx_v_oN_data[0])); /* "mtrand.pyx":493 * oN_data = PyArray_MultiIter_DATA(multi, 3) * array_data[i] = func(state, on_data[0], om_data[0], oN_data[0]) * PyArray_MultiIter_NEXT(multi) # <<<<<<<<<<<<<< * * return array */ PyArray_MultiIter_NEXT(__pyx_v_multi); } } /* "mtrand.pyx":487 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__26, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 487; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":495 * PyArray_MultiIter_NEXT(multi) * * return array # <<<<<<<<<<<<<< * * cdef object discd_array_sc(rk_state *state, rk_discd func, object size, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":458 * return array * * cdef object discnmN_array(rk_state *state, rk_discnmN func, object size, # <<<<<<<<<<<<<< * ndarray on, ndarray om, ndarray oN, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.discnmN_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":497 * return array * * cdef object discd_array_sc(rk_state *state, rk_discd func, object size, # <<<<<<<<<<<<<< * double a, object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discd_array_sc(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discd __pyx_v_func, PyObject *__pyx_v_size, double __pyx_v_a, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; npy_intp __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discd_array_sc", 0); /* "mtrand.pyx":504 * cdef npy_intp i * * if size is None: # <<<<<<<<<<<<<< * return func(state, a) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":505 * * if size is None: * return func(state, a) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyInt_From_long(__pyx_v_func(__pyx_v_state, __pyx_v_a)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 505; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":507 * return func(state, a) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_5; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; arrayObject = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":508 * else: * array = np.empty(size, int) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":509 * array = np.empty(size, int) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":510 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a) */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 510; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 510; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 510; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { if (__pyx_t_7||__pyx_t_8||__pyx_t_9); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":511 * array_data = PyArray_DATA(array) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, a) * return array */ __pyx_t_10 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_10; __pyx_v_i++) { /* "mtrand.pyx":512 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, a) # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, __pyx_v_a); } } /* "mtrand.pyx":510 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__27, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 510; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L23:; } /* "mtrand.pyx":513 * for i from 0 <= i < length: * array_data[i] = func(state, a) * return array # <<<<<<<<<<<<<< * * cdef object discd_array(rk_state *state, rk_discd func, object size, ndarray oa, */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":497 * return array * * cdef object discd_array_sc(rk_state *state, rk_discd func, object size, # <<<<<<<<<<<<<< * double a, object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.discd_array_sc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":515 * return array * * cdef object discd_array(rk_state *state, rk_discd func, object size, ndarray oa, # <<<<<<<<<<<<<< * object lock): * cdef long *array_data */ static PyObject *__pyx_f_6mtrand_discd_array(rk_state *__pyx_v_state, __pyx_t_6mtrand_rk_discd __pyx_v_func, PyObject *__pyx_v_size, PyArrayObject *__pyx_v_oa, PyObject *__pyx_v_lock) { long *__pyx_v_array_data; double *__pyx_v_oa_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyArrayMultiIterObject *__pyx_v_multi = 0; PyArrayIterObject *__pyx_v_itera = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; npy_intp __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("discd_array", 0); /* "mtrand.pyx":525 * cdef flatiter itera * * if size is None: # <<<<<<<<<<<<<< * array = PyArray_SimpleNew(PyArray_NDIM(oa), * PyArray_DIMS(oa), NPY_LONG) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":526 * * if size is None: * array = PyArray_SimpleNew(PyArray_NDIM(oa), # <<<<<<<<<<<<<< * PyArray_DIMS(oa), NPY_LONG) * length = PyArray_SIZE(array) */ __pyx_t_3 = PyArray_SimpleNew(PyArray_NDIM(__pyx_v_oa), PyArray_DIMS(__pyx_v_oa), NPY_LONG); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":528 * array = PyArray_SimpleNew(PyArray_NDIM(oa), * PyArray_DIMS(oa), NPY_LONG) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":529 * PyArray_DIMS(oa), NPY_LONG) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * itera = PyArray_IterNew(oa) * with lock, nogil: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":530 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < length: */ __pyx_t_4 = PyArray_IterNew(((PyObject *)__pyx_v_oa)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 530; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_itera = ((PyArrayIterObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":531 * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_6||__pyx_t_7||__pyx_t_8); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":532 * itera = PyArray_IterNew(oa) * with lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * array_data[i] = func(state, ((itera.dataptr))[0]) * PyArray_ITER_NEXT(itera) */ __pyx_t_9 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":533 * with lock, nogil: * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) # <<<<<<<<<<<<<< * PyArray_ITER_NEXT(itera) * else: */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (((double *)__pyx_v_itera->dataptr)[0])); /* "mtrand.pyx":534 * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) * PyArray_ITER_NEXT(itera) # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ PyArray_ITER_NEXT(__pyx_v_itera); } } /* "mtrand.pyx":531 * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L20:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__28, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L23; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L23:; } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":536 * PyArray_ITER_NEXT(itera) * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(2, array, oa) */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 536; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 536; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 536; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 536; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_10; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":537 * else: * array = np.empty(size, int) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * multi = PyArray_MultiIterNew(2, array, oa) * if (multi.size != PyArray_SIZE(array)): */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":538 * array = np.empty(size, int) * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(2, array, oa) # <<<<<<<<<<<<<< * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") */ __pyx_t_4 = PyArray_MultiIterNew(2, ((void *)arrayObject), ((void *)__pyx_v_oa)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 538; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __pyx_t_4; __Pyx_INCREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_multi = ((PyArrayMultiIterObject *)__pyx_t_10); __pyx_t_10 = 0; /* "mtrand.pyx":539 * array_data = PyArray_DATA(array) * multi = PyArray_MultiIterNew(2, array, oa) * if (multi.size != PyArray_SIZE(array)): # <<<<<<<<<<<<<< * raise ValueError("size is not compatible with inputs") * with lock, nogil: */ __pyx_t_2 = ((__pyx_v_multi->size != PyArray_SIZE(arrayObject)) != 0); if (__pyx_t_2) { /* "mtrand.pyx":540 * multi = PyArray_MultiIterNew(2, array, oa) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__29, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 540; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 540; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":541 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 541; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_10 = __Pyx_PyObject_LookupSpecial(__pyx_v_lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 541; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 541; __pyx_clineno = __LINE__; goto __pyx_L25_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_7||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":542 * raise ValueError("size is not compatible with inputs") * with lock, nogil: * for i from 0 <= i < multi.size: # <<<<<<<<<<<<<< * oa_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0]) */ __pyx_t_9 = __pyx_v_multi->size; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { /* "mtrand.pyx":543 * with lock, nogil: * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) # <<<<<<<<<<<<<< * array_data[i] = func(state, oa_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) */ __pyx_v_oa_data = ((double *)PyArray_MultiIter_DATA(__pyx_v_multi, 1)); /* "mtrand.pyx":544 * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0]) # <<<<<<<<<<<<<< * PyArray_MultiIter_NEXTi(multi, 1) * return array */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_func(__pyx_v_state, (__pyx_v_oa_data[0])); /* "mtrand.pyx":545 * oa_data = PyArray_MultiIter_DATA(multi, 1) * array_data[i] = func(state, oa_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) # <<<<<<<<<<<<<< * return array * */ PyArray_MultiIter_NEXTi(__pyx_v_multi, 1); } } /* "mtrand.pyx":541 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L41; } __pyx_L41:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__30, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 541; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L44; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L44:; } } __pyx_L3:; /* "mtrand.pyx":546 * array_data[i] = func(state, oa_data[0]) * PyArray_MultiIter_NEXTi(multi, 1) * return array # <<<<<<<<<<<<<< * * cdef double kahan_sum(double *darr, npy_intp n): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; /* "mtrand.pyx":515 * return array * * cdef object discd_array(rk_state *state, rk_discd func, object size, ndarray oa, # <<<<<<<<<<<<<< * object lock): * cdef long *array_data */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.discd_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XDECREF((PyObject *)__pyx_v_multi); __Pyx_XDECREF((PyObject *)__pyx_v_itera); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":548 * return array * * cdef double kahan_sum(double *darr, npy_intp n): # <<<<<<<<<<<<<< * cdef double c, y, t, sum * cdef npy_intp i */ static double __pyx_f_6mtrand_kahan_sum(double *__pyx_v_darr, npy_intp __pyx_v_n) { double __pyx_v_c; double __pyx_v_y; double __pyx_v_t; double __pyx_v_sum; npy_intp __pyx_v_i; double __pyx_r; __Pyx_RefNannyDeclarations npy_intp __pyx_t_1; __Pyx_RefNannySetupContext("kahan_sum", 0); /* "mtrand.pyx":551 * cdef double c, y, t, sum * cdef npy_intp i * sum = darr[0] # <<<<<<<<<<<<<< * c = 0.0 * for i from 1 <= i < n: */ __pyx_v_sum = (__pyx_v_darr[0]); /* "mtrand.pyx":552 * cdef npy_intp i * sum = darr[0] * c = 0.0 # <<<<<<<<<<<<<< * for i from 1 <= i < n: * y = darr[i] - c */ __pyx_v_c = 0.0; /* "mtrand.pyx":553 * sum = darr[0] * c = 0.0 * for i from 1 <= i < n: # <<<<<<<<<<<<<< * y = darr[i] - c * t = sum + y */ __pyx_t_1 = __pyx_v_n; for (__pyx_v_i = 1; __pyx_v_i < __pyx_t_1; __pyx_v_i++) { /* "mtrand.pyx":554 * c = 0.0 * for i from 1 <= i < n: * y = darr[i] - c # <<<<<<<<<<<<<< * t = sum + y * c = (t-sum) - y */ __pyx_v_y = ((__pyx_v_darr[__pyx_v_i]) - __pyx_v_c); /* "mtrand.pyx":555 * for i from 1 <= i < n: * y = darr[i] - c * t = sum + y # <<<<<<<<<<<<<< * c = (t-sum) - y * sum = t */ __pyx_v_t = (__pyx_v_sum + __pyx_v_y); /* "mtrand.pyx":556 * y = darr[i] - c * t = sum + y * c = (t-sum) - y # <<<<<<<<<<<<<< * sum = t * return sum */ __pyx_v_c = ((__pyx_v_t - __pyx_v_sum) - __pyx_v_y); /* "mtrand.pyx":557 * t = sum + y * c = (t-sum) - y * sum = t # <<<<<<<<<<<<<< * return sum * */ __pyx_v_sum = __pyx_v_t; } /* "mtrand.pyx":558 * c = (t-sum) - y * sum = t * return sum # <<<<<<<<<<<<<< * * def _shape_from_size(size, d): */ __pyx_r = __pyx_v_sum; goto __pyx_L0; /* "mtrand.pyx":548 * return array * * cdef double kahan_sum(double *darr, npy_intp n): # <<<<<<<<<<<<<< * cdef double c, y, t, sum * cdef npy_intp i */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":560 * return sum * * def _shape_from_size(size, d): # <<<<<<<<<<<<<< * if size is None: * shape = (d,) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_1_shape_from_size(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_6mtrand_1_shape_from_size = {__Pyx_NAMESTR("_shape_from_size"), (PyCFunction)__pyx_pw_6mtrand_1_shape_from_size, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)}; static PyObject *__pyx_pw_6mtrand_1_shape_from_size(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_v_d = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_shape_from_size (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,&__pyx_n_s_d,0}; PyObject* values[2] = {0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_d)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_shape_from_size", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_shape_from_size") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); } __pyx_v_size = values[0]; __pyx_v_d = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_shape_from_size", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand._shape_from_size", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand__shape_from_size(__pyx_self, __pyx_v_size, __pyx_v_d); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand__shape_from_size(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_size, PyObject *__pyx_v_d) { PyObject *__pyx_v_shape = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_shape_from_size", 0); /* "mtrand.pyx":561 * * def _shape_from_size(size, d): * if size is None: # <<<<<<<<<<<<<< * shape = (d,) * else: */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":562 * def _shape_from_size(size, d): * if size is None: * shape = (d,) # <<<<<<<<<<<<<< * else: * try: */ __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 562; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_d); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_d); __Pyx_GIVEREF(__pyx_v_d); __pyx_v_shape = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":564 * shape = (d,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), d) * except TypeError: */ { __Pyx_ExceptionSave(&__pyx_t_4, &__pyx_t_5, &__pyx_t_6); __Pyx_XGOTREF(__pyx_t_4); __Pyx_XGOTREF(__pyx_t_5); __Pyx_XGOTREF(__pyx_t_6); /*try:*/ { /* "mtrand.pyx":565 * else: * try: * shape = (operator.index(size), d) # <<<<<<<<<<<<<< * except TypeError: * shape = tuple(size) + (d,) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_operator); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 565; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_index); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 565; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 565; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_3, NULL); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 565; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 565; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_8); __Pyx_GIVEREF(__pyx_t_8); __Pyx_INCREF(__pyx_v_d); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_d); __Pyx_GIVEREF(__pyx_v_d); __pyx_t_8 = 0; __pyx_v_shape = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; } __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L11_try_end; __pyx_L4_error:; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":566 * try: * shape = (operator.index(size), d) * except TypeError: # <<<<<<<<<<<<<< * shape = tuple(size) + (d,) * return shape */ __pyx_t_9 = PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_9) { __Pyx_AddTraceback("mtrand._shape_from_size", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_3, &__pyx_t_8, &__pyx_t_7) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 566; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_8); __Pyx_GOTREF(__pyx_t_7); /* "mtrand.pyx":567 * shape = (operator.index(size), d) * except TypeError: * shape = tuple(size) + (d,) # <<<<<<<<<<<<<< * return shape * */ __pyx_t_10 = PyTuple_New(1); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 567; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __pyx_t_11 = __Pyx_PyObject_Call(((PyObject *)((PyObject*)(&PyTuple_Type))), __pyx_t_10, NULL); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 567; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = PyTuple_New(1); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 567; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_INCREF(__pyx_v_d); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_v_d); __Pyx_GIVEREF(__pyx_v_d); __pyx_t_12 = PyNumber_Add(__pyx_t_11, __pyx_t_10); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 567; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF_SET(__pyx_v_shape, ((PyObject*)__pyx_t_12)); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; goto __pyx_L5_exception_handled; } goto __pyx_L6_except_error; __pyx_L6_except_error:; __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_XGIVEREF(__pyx_t_6); __Pyx_ExceptionReset(__pyx_t_4, __pyx_t_5, __pyx_t_6); goto __pyx_L1_error; __pyx_L5_exception_handled:; __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_XGIVEREF(__pyx_t_6); __Pyx_ExceptionReset(__pyx_t_4, __pyx_t_5, __pyx_t_6); __pyx_L11_try_end:; } } __pyx_L3:; /* "mtrand.pyx":568 * except TypeError: * shape = tuple(size) + (d,) * return shape # <<<<<<<<<<<<<< * * cdef class RandomState: */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_shape); __pyx_r = __pyx_v_shape; goto __pyx_L0; /* "mtrand.pyx":560 * return sum * * def _shape_from_size(size, d): # <<<<<<<<<<<<<< * if size is None: * shape = (d,) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_XDECREF(__pyx_t_12); __Pyx_AddTraceback("mtrand._shape_from_size", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_shape); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":607 * poisson_lam_max = np.iinfo('l').max - np.sqrt(np.iinfo('l').max)*10 * * def __init__(self, seed=None): # <<<<<<<<<<<<<< * self.internal_state = PyMem_Malloc(sizeof(rk_state)) * */ /* Python wrapper */ static int __pyx_pw_6mtrand_11RandomState_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_pw_6mtrand_11RandomState_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_seed = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_seed,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_seed); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 607; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_seed = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__init__", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 607; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState___init__(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_seed); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_pf_6mtrand_11RandomState___init__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__init__", 0); /* "mtrand.pyx":608 * * def __init__(self, seed=None): * self.internal_state = PyMem_Malloc(sizeof(rk_state)) # <<<<<<<<<<<<<< * * self.seed(seed) */ __pyx_v_self->internal_state = ((rk_state *)PyMem_Malloc((sizeof(rk_state)))); /* "mtrand.pyx":610 * self.internal_state = PyMem_Malloc(sizeof(rk_state)) * * self.seed(seed) # <<<<<<<<<<<<<< * self.lock = Lock() * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_seed); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 610; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 610; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_seed); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_seed); __Pyx_GIVEREF(__pyx_v_seed); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 610; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":611 * * self.seed(seed) * self.lock = Lock() # <<<<<<<<<<<<<< * * def __dealloc__(self): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_Lock); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 611; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 611; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GIVEREF(__pyx_t_2); __Pyx_GOTREF(__pyx_v_self->lock); __Pyx_DECREF(__pyx_v_self->lock); __pyx_v_self->lock = __pyx_t_2; __pyx_t_2 = 0; /* "mtrand.pyx":607 * poisson_lam_max = np.iinfo('l').max - np.sqrt(np.iinfo('l').max)*10 * * def __init__(self, seed=None): # <<<<<<<<<<<<<< * self.internal_state = PyMem_Malloc(sizeof(rk_state)) * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("mtrand.RandomState.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":613 * self.lock = Lock() * * def __dealloc__(self): # <<<<<<<<<<<<<< * if self.internal_state != NULL: * PyMem_Free(self.internal_state) */ /* Python wrapper */ static void __pyx_pw_6mtrand_11RandomState_3__dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_pw_6mtrand_11RandomState_3__dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_pf_6mtrand_11RandomState_2__dealloc__(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_pf_6mtrand_11RandomState_2__dealloc__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self) { __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "mtrand.pyx":614 * * def __dealloc__(self): * if self.internal_state != NULL: # <<<<<<<<<<<<<< * PyMem_Free(self.internal_state) * self.internal_state = NULL */ __pyx_t_1 = ((__pyx_v_self->internal_state != NULL) != 0); if (__pyx_t_1) { /* "mtrand.pyx":615 * def __dealloc__(self): * if self.internal_state != NULL: * PyMem_Free(self.internal_state) # <<<<<<<<<<<<<< * self.internal_state = NULL * */ PyMem_Free(__pyx_v_self->internal_state); /* "mtrand.pyx":616 * if self.internal_state != NULL: * PyMem_Free(self.internal_state) * self.internal_state = NULL # <<<<<<<<<<<<<< * * def seed(self, seed=None): */ __pyx_v_self->internal_state = NULL; goto __pyx_L3; } __pyx_L3:; /* "mtrand.pyx":613 * self.lock = Lock() * * def __dealloc__(self): # <<<<<<<<<<<<<< * if self.internal_state != NULL: * PyMem_Free(self.internal_state) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "mtrand.pyx":618 * self.internal_state = NULL * * def seed(self, seed=None): # <<<<<<<<<<<<<< * """ * seed(seed=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_5seed(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_4seed[] = "\n seed(seed=None)\n\n Seed the generator.\n\n This method is called when `RandomState` is initialized. It can be\n called again to re-seed the generator. For details, see `RandomState`.\n\n Parameters\n ----------\n seed : int or array_like, optional\n Seed for `RandomState`.\n Must be convertable to 32 bit unsigned integers.\n\n See Also\n --------\n RandomState\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_5seed(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_seed = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("seed (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_seed,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_seed); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "seed") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 618; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_seed = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("seed", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 618; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.seed", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_4seed(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_seed); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_4seed(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed) { CYTHON_UNUSED rk_error __pyx_v_errcode; PyArrayObject *arrayObject_obj = 0; PyObject *__pyx_v_idx = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; unsigned long __pyx_t_10; int __pyx_t_11; PyObject *__pyx_t_12 = NULL; PyObject *__pyx_t_13 = NULL; PyObject *__pyx_t_14 = NULL; PyObject *__pyx_t_15 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("seed", 0); /* "mtrand.pyx":640 * cdef rk_error errcode * cdef ndarray obj "arrayObject_obj" * try: # <<<<<<<<<<<<<< * if seed is None: * errcode = rk_randomseed(self.internal_state) */ { __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "mtrand.pyx":641 * cdef ndarray obj "arrayObject_obj" * try: * if seed is None: # <<<<<<<<<<<<<< * errcode = rk_randomseed(self.internal_state) * else: */ __pyx_t_4 = (__pyx_v_seed == Py_None); __pyx_t_5 = (__pyx_t_4 != 0); if (__pyx_t_5) { /* "mtrand.pyx":642 * try: * if seed is None: * errcode = rk_randomseed(self.internal_state) # <<<<<<<<<<<<<< * else: * idx = operator.index(seed) */ __pyx_v_errcode = rk_randomseed(__pyx_v_self->internal_state); goto __pyx_L11; } /*else*/ { /* "mtrand.pyx":644 * errcode = rk_randomseed(self.internal_state) * else: * idx = operator.index(seed) # <<<<<<<<<<<<<< * if idx > int(2**32 - 1) or idx < 0: * raise ValueError("Seed must be between 0 and 4294967295") */ __pyx_t_6 = __Pyx_GetModuleGlobalName(__pyx_n_s_operator); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 644; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_index); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 644; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 644; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_v_seed); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_v_seed); __Pyx_GIVEREF(__pyx_v_seed); __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_6, NULL); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 644; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_idx = __pyx_t_8; __pyx_t_8 = 0; /* "mtrand.pyx":645 * else: * idx = operator.index(seed) * if idx > int(2**32 - 1) or idx < 0: # <<<<<<<<<<<<<< * raise ValueError("Seed must be between 0 and 4294967295") * rk_seed(idx, self.internal_state) */ __pyx_t_8 = PyNumber_Int(__pyx_int_4294967295); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_8); __pyx_t_6 = PyObject_RichCompare(__pyx_v_idx, __pyx_t_8, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!__pyx_t_5) { __pyx_t_6 = PyObject_RichCompare(__pyx_v_idx, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_4 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_9 = __pyx_t_4; } else { __pyx_t_9 = __pyx_t_5; } if (__pyx_t_9) { /* "mtrand.pyx":646 * idx = operator.index(seed) * if idx > int(2**32 - 1) or idx < 0: * raise ValueError("Seed must be between 0 and 4294967295") # <<<<<<<<<<<<<< * rk_seed(idx, self.internal_state) * except TypeError: */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__31, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 646; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 646; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } /* "mtrand.pyx":647 * if idx > int(2**32 - 1) or idx < 0: * raise ValueError("Seed must be between 0 and 4294967295") * rk_seed(idx, self.internal_state) # <<<<<<<<<<<<<< * except TypeError: * obj = np.asarray(seed).astype(np.int64, casting='safe') */ __pyx_t_10 = __Pyx_PyInt_As_unsigned_long(__pyx_v_idx); if (unlikely((__pyx_t_10 == (unsigned long)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 647; __pyx_clineno = __LINE__; goto __pyx_L3_error;} rk_seed(__pyx_t_10, __pyx_v_self->internal_state); } __pyx_L11:; } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L10_try_end; __pyx_L3_error:; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; /* "mtrand.pyx":648 * raise ValueError("Seed must be between 0 and 4294967295") * rk_seed(idx, self.internal_state) * except TypeError: # <<<<<<<<<<<<<< * obj = np.asarray(seed).astype(np.int64, casting='safe') * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): */ __pyx_t_11 = PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_11) { __Pyx_AddTraceback("mtrand.RandomState.seed", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_6, &__pyx_t_8, &__pyx_t_7) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 648; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_8); __Pyx_GOTREF(__pyx_t_7); /* "mtrand.pyx":649 * rk_seed(idx, self.internal_state) * except TypeError: * obj = np.asarray(seed).astype(np.int64, casting='safe') # <<<<<<<<<<<<<< * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): * raise ValueError("Seed must be between 0 and 4294967295") */ __pyx_t_12 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_13 = __Pyx_PyObject_GetAttrStr(__pyx_t_12, __pyx_n_s_asarray); if (unlikely(!__pyx_t_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = PyTuple_New(1); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_INCREF(__pyx_v_seed); PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_v_seed); __Pyx_GIVEREF(__pyx_v_seed); __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_13, __pyx_t_12, NULL); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_14, __pyx_n_s_astype); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); __pyx_t_13 = __Pyx_PyObject_GetAttrStr(__pyx_t_14, __pyx_n_s_int64); if (unlikely(!__pyx_t_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = PyTuple_New(1); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); PyTuple_SET_ITEM(__pyx_t_14, 0, __pyx_t_13); __Pyx_GIVEREF(__pyx_t_13); __pyx_t_13 = 0; __pyx_t_13 = PyDict_New(); if (unlikely(!__pyx_t_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_13); if (PyDict_SetItem(__pyx_t_13, __pyx_n_s_casting, __pyx_n_s_safe) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __pyx_t_15 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_14, __pyx_t_13); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_15); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; if (!(likely(((__pyx_t_15) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_15, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 649; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} arrayObject_obj = ((PyArrayObject *)__pyx_t_15); __pyx_t_15 = 0; /* "mtrand.pyx":650 * except TypeError: * obj = np.asarray(seed).astype(np.int64, casting='safe') * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): # <<<<<<<<<<<<<< * raise ValueError("Seed must be between 0 and 4294967295") * obj = obj.astype('L', casting='unsafe') */ __pyx_t_15 = PyNumber_Int(__pyx_int_4294967295); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_15); __pyx_t_13 = PyObject_RichCompare(((PyObject *)arrayObject_obj), __pyx_t_15, Py_GT); __Pyx_XGOTREF(__pyx_t_13); if (unlikely(!__pyx_t_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; __pyx_t_15 = PyObject_RichCompare(((PyObject *)arrayObject_obj), __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_15); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __pyx_t_14 = PyNumber_Or(__pyx_t_13, __pyx_t_15); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; __pyx_t_15 = __Pyx_PyObject_GetAttrStr(__pyx_t_14, __pyx_n_s_any); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_15); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_15, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; __pyx_t_9 = __Pyx_PyObject_IsTrue(__pyx_t_14); if (unlikely(__pyx_t_9 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; if (__pyx_t_9) { /* "mtrand.pyx":651 * obj = np.asarray(seed).astype(np.int64, casting='safe') * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): * raise ValueError("Seed must be between 0 and 4294967295") # <<<<<<<<<<<<<< * obj = obj.astype('L', casting='unsafe') * init_by_array(self.internal_state, PyArray_DATA(obj), */ __pyx_t_14 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__32, NULL); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 651; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); __Pyx_Raise(__pyx_t_14, 0, 0, 0); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 651; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} } /* "mtrand.pyx":652 * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): * raise ValueError("Seed must be between 0 and 4294967295") * obj = obj.astype('L', casting='unsafe') # <<<<<<<<<<<<<< * init_by_array(self.internal_state, PyArray_DATA(obj), * PyArray_DIM(obj, 0)) */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(((PyObject *)arrayObject_obj), __pyx_n_s_astype); if (unlikely(!__pyx_t_14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_14); __pyx_t_15 = PyDict_New(); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_15); if (PyDict_SetItem(__pyx_t_15, __pyx_n_s_casting, __pyx_n_s_unsafe) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __pyx_t_13 = __Pyx_PyObject_Call(__pyx_t_14, __pyx_tuple__33, __pyx_t_15); if (unlikely(!__pyx_t_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; if (!(likely(((__pyx_t_13) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_13, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} __Pyx_DECREF_SET(arrayObject_obj, ((PyArrayObject *)__pyx_t_13)); __pyx_t_13 = 0; /* "mtrand.pyx":653 * raise ValueError("Seed must be between 0 and 4294967295") * obj = obj.astype('L', casting='unsafe') * init_by_array(self.internal_state, PyArray_DATA(obj), # <<<<<<<<<<<<<< * PyArray_DIM(obj, 0)) * */ init_by_array(__pyx_v_self->internal_state, ((unsigned long *)PyArray_DATA(arrayObject_obj)), PyArray_DIM(arrayObject_obj, 0)); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; goto __pyx_L4_exception_handled; } goto __pyx_L5_except_error; __pyx_L5_except_error:; __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L4_exception_handled:; __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); __pyx_L10_try_end:; } /* "mtrand.pyx":618 * self.internal_state = NULL * * def seed(self, seed=None): # <<<<<<<<<<<<<< * """ * seed(seed=None) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_12); __Pyx_XDECREF(__pyx_t_13); __Pyx_XDECREF(__pyx_t_14); __Pyx_XDECREF(__pyx_t_15); __Pyx_AddTraceback("mtrand.RandomState.seed", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject_obj); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":656 * PyArray_DIM(obj, 0)) * * def get_state(self): # <<<<<<<<<<<<<< * """ * get_state() */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_7get_state(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_6get_state[] = "\n get_state()\n\n Return a tuple representing the internal state of the generator.\n\n For more details, see `set_state`.\n\n Returns\n -------\n out : tuple(str, ndarray of 624 uints, int, int, float)\n The returned tuple has the following items:\n\n 1. the string 'MT19937'.\n 2. a 1-D array of 624 unsigned integer keys.\n 3. an integer ``pos``.\n 4. an integer ``has_gauss``.\n 5. a float ``cached_gaussian``.\n\n See Also\n --------\n set_state\n\n Notes\n -----\n `set_state` and `get_state` are not needed to work with any of the\n random distributions in NumPy. If the internal state is manually altered,\n the user should know exactly what he/she is doing.\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_7get_state(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("get_state (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_6get_state(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_6get_state(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self) { PyArrayObject *arrayObject_state = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_state", 0); /* "mtrand.pyx":687 * """ * cdef ndarray state "arrayObject_state" * state = np.empty(624, np.uint) # <<<<<<<<<<<<<< * memcpy(PyArray_DATA(state), (self.internal_state.key), 624*sizeof(long)) * state = np.asarray(state, np.uint32) */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 687; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 687; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 687; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_uint); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 687; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 687; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_int_624); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_int_624); __Pyx_GIVEREF(__pyx_int_624); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 687; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __pyx_t_3; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; arrayObject_state = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":688 * cdef ndarray state "arrayObject_state" * state = np.empty(624, np.uint) * memcpy(PyArray_DATA(state), (self.internal_state.key), 624*sizeof(long)) # <<<<<<<<<<<<<< * state = np.asarray(state, np.uint32) * return ('MT19937', state, self.internal_state.pos, */ memcpy(((void *)PyArray_DATA(arrayObject_state)), ((void *)__pyx_v_self->internal_state->key), (624 * (sizeof(long)))); /* "mtrand.pyx":689 * state = np.empty(624, np.uint) * memcpy(PyArray_DATA(state), (self.internal_state.key), 624*sizeof(long)) * state = np.asarray(state, np.uint32) # <<<<<<<<<<<<<< * return ('MT19937', state, self.internal_state.pos, * self.internal_state.has_gauss, self.internal_state.gauss) */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_asarray); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_uint32); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)arrayObject_state)); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)arrayObject_state)); __Pyx_GIVEREF(((PyObject *)arrayObject_state)); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_1, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __pyx_t_2; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(arrayObject_state, ((PyArrayObject *)__pyx_t_1)); __pyx_t_1 = 0; /* "mtrand.pyx":690 * memcpy(PyArray_DATA(state), (self.internal_state.key), 624*sizeof(long)) * state = np.asarray(state, np.uint32) * return ('MT19937', state, self.internal_state.pos, # <<<<<<<<<<<<<< * self.internal_state.has_gauss, self.internal_state.gauss) * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->internal_state->pos); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 690; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); /* "mtrand.pyx":691 * state = np.asarray(state, np.uint32) * return ('MT19937', state, self.internal_state.pos, * self.internal_state.has_gauss, self.internal_state.gauss) # <<<<<<<<<<<<<< * * def set_state(self, state): */ __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->internal_state->has_gauss); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 691; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyFloat_FromDouble(__pyx_v_self->internal_state->gauss); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 691; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); /* "mtrand.pyx":690 * memcpy(PyArray_DATA(state), (self.internal_state.key), 624*sizeof(long)) * state = np.asarray(state, np.uint32) * return ('MT19937', state, self.internal_state.pos, # <<<<<<<<<<<<<< * self.internal_state.has_gauss, self.internal_state.gauss) * */ __pyx_t_4 = PyTuple_New(5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 690; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_n_s_MT19937); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_n_s_MT19937); __Pyx_GIVEREF(__pyx_n_s_MT19937); __Pyx_INCREF(((PyObject *)arrayObject_state)); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)arrayObject_state)); __Pyx_GIVEREF(((PyObject *)arrayObject_state)); PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 3, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 4, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":656 * PyArray_DIM(obj, 0)) * * def get_state(self): # <<<<<<<<<<<<<< * """ * get_state() */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("mtrand.RandomState.get_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject_state); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":693 * self.internal_state.has_gauss, self.internal_state.gauss) * * def set_state(self, state): # <<<<<<<<<<<<<< * """ * set_state(state) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_9set_state(PyObject *__pyx_v_self, PyObject *__pyx_v_state); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_8set_state[] = "\n set_state(state)\n\n Set the internal state of the generator from a tuple.\n\n For use if one has reason to manually (re-)set the internal state of the\n \"Mersenne Twister\"[1]_ pseudo-random number generating algorithm.\n\n Parameters\n ----------\n state : tuple(str, ndarray of 624 uints, int, int, float)\n The `state` tuple has the following items:\n\n 1. the string 'MT19937', specifying the Mersenne Twister algorithm.\n 2. a 1-D array of 624 unsigned integers ``keys``.\n 3. an integer ``pos``.\n 4. an integer ``has_gauss``.\n 5. a float ``cached_gaussian``.\n\n Returns\n -------\n out : None\n Returns 'None' on success.\n\n See Also\n --------\n get_state\n\n Notes\n -----\n `set_state` and `get_state` are not needed to work with any of the\n random distributions in NumPy. If the internal state is manually altered,\n the user should know exactly what he/she is doing.\n\n For backwards compatibility, the form (str, array of 624 uints, int) is\n also accepted although it is missing some information about the cached\n Gaussian value: ``state = ('MT19937', keys, pos)``.\n\n References\n ----------\n .. [1] M. Matsumoto and T. Nishimura, \"Mersenne Twister: A\n 623-dimensionally equidistributed uniform pseudorandom number\n generator,\" *ACM Trans. on Modeling and Computer Simulation*,\n Vol. 8, No. 1, pp. 3-30, Jan. 1998.\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_9set_state(PyObject *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_state (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_8set_state(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_8set_state(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state) { PyArrayObject *arrayObject_obj = 0; int __pyx_v_pos; PyObject *__pyx_v_algorithm_name = NULL; PyObject *__pyx_v_key = NULL; PyObject *__pyx_v_has_gauss = NULL; PyObject *__pyx_v_cached_gaussian = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *(*__pyx_t_6)(PyObject *); int __pyx_t_7; Py_ssize_t __pyx_t_8; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; double __pyx_t_13; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("set_state", 0); /* "mtrand.pyx":742 * cdef ndarray obj "arrayObject_obj" * cdef int pos * algorithm_name = state[0] # <<<<<<<<<<<<<< * if algorithm_name != 'MT19937': * raise ValueError("algorithm must be 'MT19937'") */ __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 742; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_1); __pyx_v_algorithm_name = __pyx_t_1; __pyx_t_1 = 0; /* "mtrand.pyx":743 * cdef int pos * algorithm_name = state[0] * if algorithm_name != 'MT19937': # <<<<<<<<<<<<<< * raise ValueError("algorithm must be 'MT19937'") * key, pos = state[1:3] */ __pyx_t_2 = (__Pyx_PyString_Equals(__pyx_v_algorithm_name, __pyx_n_s_MT19937, Py_NE)); if (unlikely(__pyx_t_2 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 743; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (__pyx_t_2) { /* "mtrand.pyx":744 * algorithm_name = state[0] * if algorithm_name != 'MT19937': * raise ValueError("algorithm must be 'MT19937'") # <<<<<<<<<<<<<< * key, pos = state[1:3] * if len(state) == 3: */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__34, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 744; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 744; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":745 * if algorithm_name != 'MT19937': * raise ValueError("algorithm must be 'MT19937'") * key, pos = state[1:3] # <<<<<<<<<<<<<< * if len(state) == 3: * has_gauss = 0 */ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_state, 1, 3, NULL, NULL, &__pyx_slice__35, 1, 1, 1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { PyObject* sequence = __pyx_t_1; #if CYTHON_COMPILING_IN_CPYTHON Py_ssize_t size = Py_SIZE(sequence); #else Py_ssize_t size = PySequence_Size(sequence); #endif if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_3 = PyList_GET_ITEM(sequence, 0); __pyx_t_4 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); #endif __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else { Py_ssize_t index = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_6 = Py_TYPE(__pyx_t_5)->tp_iternext; index = 0; __pyx_t_3 = __pyx_t_6(__pyx_t_5); if (unlikely(!__pyx_t_3)) goto __pyx_L4_unpacking_failed; __Pyx_GOTREF(__pyx_t_3); index = 1; __pyx_t_4 = __pyx_t_6(__pyx_t_5); if (unlikely(!__pyx_t_4)) goto __pyx_L4_unpacking_failed; __Pyx_GOTREF(__pyx_t_4); if (__Pyx_IternextUnpackEndCheck(__pyx_t_6(__pyx_t_5), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_6 = NULL; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L5_unpacking_done; __pyx_L4_unpacking_failed:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_6 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L5_unpacking_done:; } __pyx_t_7 = __Pyx_PyInt_As_int(__pyx_t_4); if (unlikely((__pyx_t_7 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_key = __pyx_t_3; __pyx_t_3 = 0; __pyx_v_pos = __pyx_t_7; /* "mtrand.pyx":746 * raise ValueError("algorithm must be 'MT19937'") * key, pos = state[1:3] * if len(state) == 3: # <<<<<<<<<<<<<< * has_gauss = 0 * cached_gaussian = 0.0 */ __pyx_t_8 = PyObject_Length(__pyx_v_state); if (unlikely(__pyx_t_8 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 746; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_2 = ((__pyx_t_8 == 3) != 0); if (__pyx_t_2) { /* "mtrand.pyx":747 * key, pos = state[1:3] * if len(state) == 3: * has_gauss = 0 # <<<<<<<<<<<<<< * cached_gaussian = 0.0 * else: */ __Pyx_INCREF(__pyx_int_0); __pyx_v_has_gauss = __pyx_int_0; /* "mtrand.pyx":748 * if len(state) == 3: * has_gauss = 0 * cached_gaussian = 0.0 # <<<<<<<<<<<<<< * else: * has_gauss, cached_gaussian = state[3:5] */ __Pyx_INCREF(__pyx_float_0_0); __pyx_v_cached_gaussian = __pyx_float_0_0; goto __pyx_L6; } /*else*/ { /* "mtrand.pyx":750 * cached_gaussian = 0.0 * else: * has_gauss, cached_gaussian = state[3:5] # <<<<<<<<<<<<<< * try: * obj = PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1) */ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_state, 3, 5, NULL, NULL, &__pyx_slice__36, 1, 1, 1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { PyObject* sequence = __pyx_t_1; #if CYTHON_COMPILING_IN_CPYTHON Py_ssize_t size = Py_SIZE(sequence); #else Py_ssize_t size = PySequence_Size(sequence); #endif if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_4 = PyList_GET_ITEM(sequence, 0); __pyx_t_3 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(__pyx_t_3); #else __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); #endif __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else { Py_ssize_t index = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_6 = Py_TYPE(__pyx_t_5)->tp_iternext; index = 0; __pyx_t_4 = __pyx_t_6(__pyx_t_5); if (unlikely(!__pyx_t_4)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_4); index = 1; __pyx_t_3 = __pyx_t_6(__pyx_t_5); if (unlikely(!__pyx_t_3)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_3); if (__Pyx_IternextUnpackEndCheck(__pyx_t_6(__pyx_t_5), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_6 = NULL; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L8_unpacking_done; __pyx_L7_unpacking_failed:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_6 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L8_unpacking_done:; } __pyx_v_has_gauss = __pyx_t_4; __pyx_t_4 = 0; __pyx_v_cached_gaussian = __pyx_t_3; __pyx_t_3 = 0; } __pyx_L6:; /* "mtrand.pyx":751 * else: * has_gauss, cached_gaussian = state[3:5] * try: # <<<<<<<<<<<<<< * obj = PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1) * except TypeError: */ { __Pyx_ExceptionSave(&__pyx_t_9, &__pyx_t_10, &__pyx_t_11); __Pyx_XGOTREF(__pyx_t_9); __Pyx_XGOTREF(__pyx_t_10); __Pyx_XGOTREF(__pyx_t_11); /*try:*/ { /* "mtrand.pyx":752 * has_gauss, cached_gaussian = state[3:5] * try: * obj = PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1) # <<<<<<<<<<<<<< * except TypeError: * # compatibility -- could be an older pickle */ __pyx_t_1 = PyArray_ContiguousFromObject(__pyx_v_key, NPY_ULONG, 1, 1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 752; __pyx_clineno = __LINE__; goto __pyx_L9_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __pyx_t_1; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; arrayObject_obj = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; } __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; goto __pyx_L16_try_end; __pyx_L9_error:; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":753 * try: * obj = PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1) * except TypeError: # <<<<<<<<<<<<<< * # compatibility -- could be an older pickle * obj = PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1) */ __pyx_t_7 = PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_7) { __Pyx_AddTraceback("mtrand.RandomState.set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_3, &__pyx_t_1, &__pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 753; __pyx_clineno = __LINE__; goto __pyx_L11_except_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_1); __Pyx_GOTREF(__pyx_t_4); /* "mtrand.pyx":755 * except TypeError: * # compatibility -- could be an older pickle * obj = PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1) # <<<<<<<<<<<<<< * if PyArray_DIM(obj, 0) != 624: * raise ValueError("state must be 624 longs") */ __pyx_t_5 = PyArray_ContiguousFromObject(__pyx_v_key, NPY_LONG, 1, 1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 755; __pyx_clineno = __LINE__; goto __pyx_L11_except_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_12 = __pyx_t_5; __Pyx_INCREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF_SET(arrayObject_obj, ((PyArrayObject *)__pyx_t_12)); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; goto __pyx_L10_exception_handled; } goto __pyx_L11_except_error; __pyx_L11_except_error:; __Pyx_XGIVEREF(__pyx_t_9); __Pyx_XGIVEREF(__pyx_t_10); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_ExceptionReset(__pyx_t_9, __pyx_t_10, __pyx_t_11); goto __pyx_L1_error; __pyx_L10_exception_handled:; __Pyx_XGIVEREF(__pyx_t_9); __Pyx_XGIVEREF(__pyx_t_10); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_ExceptionReset(__pyx_t_9, __pyx_t_10, __pyx_t_11); __pyx_L16_try_end:; } /* "mtrand.pyx":756 * # compatibility -- could be an older pickle * obj = PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1) * if PyArray_DIM(obj, 0) != 624: # <<<<<<<<<<<<<< * raise ValueError("state must be 624 longs") * memcpy((self.internal_state.key), PyArray_DATA(obj), 624*sizeof(long)) */ __pyx_t_2 = ((PyArray_DIM(arrayObject_obj, 0) != 624) != 0); if (__pyx_t_2) { /* "mtrand.pyx":757 * obj = PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1) * if PyArray_DIM(obj, 0) != 624: * raise ValueError("state must be 624 longs") # <<<<<<<<<<<<<< * memcpy((self.internal_state.key), PyArray_DATA(obj), 624*sizeof(long)) * self.internal_state.pos = pos */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__37, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 757; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 757; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":758 * if PyArray_DIM(obj, 0) != 624: * raise ValueError("state must be 624 longs") * memcpy((self.internal_state.key), PyArray_DATA(obj), 624*sizeof(long)) # <<<<<<<<<<<<<< * self.internal_state.pos = pos * self.internal_state.has_gauss = has_gauss */ memcpy(((void *)__pyx_v_self->internal_state->key), ((void *)PyArray_DATA(arrayObject_obj)), (624 * (sizeof(long)))); /* "mtrand.pyx":759 * raise ValueError("state must be 624 longs") * memcpy((self.internal_state.key), PyArray_DATA(obj), 624*sizeof(long)) * self.internal_state.pos = pos # <<<<<<<<<<<<<< * self.internal_state.has_gauss = has_gauss * self.internal_state.gauss = cached_gaussian */ __pyx_v_self->internal_state->pos = __pyx_v_pos; /* "mtrand.pyx":760 * memcpy((self.internal_state.key), PyArray_DATA(obj), 624*sizeof(long)) * self.internal_state.pos = pos * self.internal_state.has_gauss = has_gauss # <<<<<<<<<<<<<< * self.internal_state.gauss = cached_gaussian * */ __pyx_t_7 = __Pyx_PyInt_As_int(__pyx_v_has_gauss); if (unlikely((__pyx_t_7 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 760; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_self->internal_state->has_gauss = __pyx_t_7; /* "mtrand.pyx":761 * self.internal_state.pos = pos * self.internal_state.has_gauss = has_gauss * self.internal_state.gauss = cached_gaussian # <<<<<<<<<<<<<< * * # Pickling support: */ __pyx_t_13 = __pyx_PyFloat_AsDouble(__pyx_v_cached_gaussian); if (unlikely((__pyx_t_13 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 761; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_self->internal_state->gauss = __pyx_t_13; /* "mtrand.pyx":693 * self.internal_state.has_gauss, self.internal_state.gauss) * * def set_state(self, state): # <<<<<<<<<<<<<< * """ * set_state(state) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_12); __Pyx_AddTraceback("mtrand.RandomState.set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject_obj); __Pyx_XDECREF(__pyx_v_algorithm_name); __Pyx_XDECREF(__pyx_v_key); __Pyx_XDECREF(__pyx_v_has_gauss); __Pyx_XDECREF(__pyx_v_cached_gaussian); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":764 * * # Pickling support: * def __getstate__(self): # <<<<<<<<<<<<<< * return self.get_state() * */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_11__getstate__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw_6mtrand_11RandomState_11__getstate__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getstate__ (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_10__getstate__(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_10__getstate__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getstate__", 0); /* "mtrand.pyx":765 * # Pickling support: * def __getstate__(self): * return self.get_state() # <<<<<<<<<<<<<< * * def __setstate__(self, state): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_get_state); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 765; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 765; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":764 * * # Pickling support: * def __getstate__(self): # <<<<<<<<<<<<<< * return self.get_state() * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("mtrand.RandomState.__getstate__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":767 * return self.get_state() * * def __setstate__(self, state): # <<<<<<<<<<<<<< * self.set_state(state) * */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_13__setstate__(PyObject *__pyx_v_self, PyObject *__pyx_v_state); /*proto*/ static PyObject *__pyx_pw_6mtrand_11RandomState_13__setstate__(PyObject *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate__ (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_12__setstate__(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_12__setstate__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate__", 0); /* "mtrand.pyx":768 * * def __setstate__(self, state): * self.set_state(state) # <<<<<<<<<<<<<< * * def __reduce__(self): */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_set_state); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 768; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 768; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 768; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":767 * return self.get_state() * * def __setstate__(self, state): # <<<<<<<<<<<<<< * self.set_state(state) * */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("mtrand.RandomState.__setstate__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":770 * self.set_state(state) * * def __reduce__(self): # <<<<<<<<<<<<<< * return (np.random.__RandomState_ctor, (), self.get_state()) * */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_15__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw_6mtrand_11RandomState_15__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_14__reduce__(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_14__reduce__(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce__", 0); /* "mtrand.pyx":771 * * def __reduce__(self): * return (np.random.__RandomState_ctor, (), self.get_state()) # <<<<<<<<<<<<<< * * # Basic distributions: */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 771; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_random); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 771; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_RandomState_ctor); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 771; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_get_state); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 771; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 771; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 771; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __Pyx_INCREF(__pyx_empty_tuple); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_empty_tuple); __Pyx_GIVEREF(__pyx_empty_tuple); PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_1 = 0; __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":770 * self.set_state(state) * * def __reduce__(self): # <<<<<<<<<<<<<< * return (np.random.__RandomState_ctor, (), self.get_state()) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("mtrand.RandomState.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":774 * * # Basic distributions: * def random_sample(self, size=None): # <<<<<<<<<<<<<< * """ * random_sample(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_17random_sample(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_16random_sample[] = "\n random_sample(size=None)\n\n Return random floats in the half-open interval [0.0, 1.0).\n\n Results are from the \"continuous uniform\" distribution over the\n stated interval. To sample :math:`Unif[a, b), b > a` multiply\n the output of `random_sample` by `(b-a)` and add `a`::\n\n (b - a) * random_sample() + a\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray of floats\n Array of random floats of shape `size` (unless ``size=None``, in which\n case a single float is returned).\n\n Examples\n --------\n >>> np.random.random_sample()\n 0.47108547995356098\n >>> type(np.random.random_sample())\n \n >>> np.random.random_sample((5,))\n array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])\n\n Three-by-two array of random numbers from [-5, 0):\n\n >>> 5 * np.random.random_sample((3, 2)) - 5\n array([[-3.99149989, -0.52338984],\n [-2.99091858, -0.79479508],\n [-1.23204345, -1.75224494]])\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_17random_sample(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("random_sample (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "random_sample") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 774; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("random_sample", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 774; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.random_sample", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_16random_sample(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_16random_sample(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("random_sample", 0); /* "mtrand.pyx":816 * * """ * return cont0_array(self.internal_state, rk_double, size, self.lock) # <<<<<<<<<<<<<< * * def tomaxint(self, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = __pyx_f_6mtrand_cont0_array(__pyx_v_self->internal_state, rk_double, __pyx_v_size, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":774 * * # Basic distributions: * def random_sample(self, size=None): # <<<<<<<<<<<<<< * """ * random_sample(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("mtrand.RandomState.random_sample", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":818 * return cont0_array(self.internal_state, rk_double, size, self.lock) * * def tomaxint(self, size=None): # <<<<<<<<<<<<<< * """ * tomaxint(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_19tomaxint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_18tomaxint[] = "\n tomaxint(size=None)\n\n Random integers between 0 and ``sys.maxint``, inclusive.\n\n Return a sample of uniformly distributed random integers in the interval\n [0, ``sys.maxint``].\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Drawn samples, with shape `size`.\n\n See Also\n --------\n randint : Uniform sampling over a given half-open interval of integers.\n random_integers : Uniform sampling over a given closed interval of\n integers.\n\n Examples\n --------\n >>> RS = np.random.mtrand.RandomState() # need a RandomState object\n >>> RS.tomaxint((2,2,2))\n array([[[1170048599, 1600360186],\n [ 739731006, 1947757578]],\n [[1871712945, 752307660],\n [1601631370, 1479324245]]])\n >>> import sys\n >>> sys.maxint\n 2147483647\n >>> RS.tomaxint((2,2,2)) < sys.maxint\n array([[[ True, True],\n [ True, True]],\n [[ True, True],\n [ True, True]]], dtype=bool)\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_19tomaxint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("tomaxint (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "tomaxint") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 818; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("tomaxint", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 818; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.tomaxint", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_18tomaxint(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_18tomaxint(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("tomaxint", 0); /* "mtrand.pyx":863 * * """ * return disc0_array(self.internal_state, rk_long, size, self.lock) # <<<<<<<<<<<<<< * * def randint(self, low, high=None, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = __pyx_f_6mtrand_disc0_array(__pyx_v_self->internal_state, rk_long, __pyx_v_size, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 863; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":818 * return cont0_array(self.internal_state, rk_double, size, self.lock) * * def tomaxint(self, size=None): # <<<<<<<<<<<<<< * """ * tomaxint(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("mtrand.RandomState.tomaxint", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":865 * return disc0_array(self.internal_state, rk_long, size, self.lock) * * def randint(self, low, high=None, size=None): # <<<<<<<<<<<<<< * """ * randint(low, high=None, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_21randint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_20randint[] = "\n randint(low, high=None, size=None)\n\n Return random integers from `low` (inclusive) to `high` (exclusive).\n\n Return random integers from the \"discrete uniform\" distribution in the\n \"half-open\" interval [`low`, `high`). If `high` is None (the default),\n then results are from [0, `low`).\n\n Parameters\n ----------\n low : int\n Lowest (signed) integer to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is the *highest* such\n integer).\n high : int, optional\n If provided, one above the largest (signed) integer to be drawn\n from the distribution (see above for behavior if ``high=None``).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n random.random_integers : similar to `randint`, only for the closed\n interval [`low`, `high`], and 1 is the lowest value if `high` is\n omitted. In particular, this other one is the one to use to generate\n uniformly distributed discrete non-integers.\n\n Examples\n --------\n >>> np.random.randint(2, size=10)\n array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])\n >>> np.random.randint(1, size=10)\n array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n\n Generate a 2 x 4 array of ints between 0 and 4, inclusive:\n\n >>> np.random.randint(5, size=(2, 4))\n array([[4, 0, 2, 1],\n [3, 2, 2, 0]])\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_21randint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_low = 0; PyObject *__pyx_v_high = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("randint (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_low,&__pyx_n_s_high,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[1] = ((PyObject *)Py_None); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_low)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_high); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "randint") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 865; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_low = values[0]; __pyx_v_high = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("randint", 0, 1, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 865; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.randint", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_20randint(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_low, __pyx_v_high, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_20randint(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size) { long __pyx_v_lo; long __pyx_v_hi; long __pyx_v_rv; unsigned long __pyx_v_diff; long *__pyx_v_array_data; PyArrayObject *arrayObject = 0; npy_intp __pyx_v_length; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; long __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; npy_intp __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("randint", 0); /* "mtrand.pyx":923 * cdef npy_intp i * * if high is None: # <<<<<<<<<<<<<< * lo = 0 * hi = low */ __pyx_t_1 = (__pyx_v_high == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":924 * * if high is None: * lo = 0 # <<<<<<<<<<<<<< * hi = low * else: */ __pyx_v_lo = 0; /* "mtrand.pyx":925 * if high is None: * lo = 0 * hi = low # <<<<<<<<<<<<<< * else: * lo = low */ __pyx_t_3 = __Pyx_PyInt_As_long(__pyx_v_low); if (unlikely((__pyx_t_3 == (long)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 925; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_hi = __pyx_t_3; goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":927 * hi = low * else: * lo = low # <<<<<<<<<<<<<< * hi = high * */ __pyx_t_3 = __Pyx_PyInt_As_long(__pyx_v_low); if (unlikely((__pyx_t_3 == (long)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 927; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_lo = __pyx_t_3; /* "mtrand.pyx":928 * else: * lo = low * hi = high # <<<<<<<<<<<<<< * * if lo >= hi : */ __pyx_t_3 = __Pyx_PyInt_As_long(__pyx_v_high); if (unlikely((__pyx_t_3 == (long)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 928; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_hi = __pyx_t_3; } __pyx_L3:; /* "mtrand.pyx":930 * hi = high * * if lo >= hi : # <<<<<<<<<<<<<< * raise ValueError("low >= high") * */ __pyx_t_2 = ((__pyx_v_lo >= __pyx_v_hi) != 0); if (__pyx_t_2) { /* "mtrand.pyx":931 * * if lo >= hi : * raise ValueError("low >= high") # <<<<<<<<<<<<<< * * diff = hi - lo - 1UL */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__38, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 931; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 931; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":933 * raise ValueError("low >= high") * * diff = hi - lo - 1UL # <<<<<<<<<<<<<< * if size is None: * rv = lo + rk_interval(diff, self. internal_state) */ __pyx_v_diff = ((((unsigned long)__pyx_v_hi) - ((unsigned long)__pyx_v_lo)) - 1UL); /* "mtrand.pyx":934 * * diff = hi - lo - 1UL * if size is None: # <<<<<<<<<<<<<< * rv = lo + rk_interval(diff, self. internal_state) * return rv */ __pyx_t_2 = (__pyx_v_size == Py_None); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "mtrand.pyx":935 * diff = hi - lo - 1UL * if size is None: * rv = lo + rk_interval(diff, self. internal_state) # <<<<<<<<<<<<<< * return rv * else: */ __pyx_v_rv = (__pyx_v_lo + ((long)rk_interval(__pyx_v_diff, __pyx_v_self->internal_state))); /* "mtrand.pyx":936 * if size is None: * rv = lo + rk_interval(diff, self. internal_state) * return rv # <<<<<<<<<<<<<< * else: * array = np.empty(size, int) */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __Pyx_PyInt_From_long(__pyx_v_rv); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 936; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":938 * return rv * else: * array = np.empty(size, int) # <<<<<<<<<<<<<< * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 938; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 938; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 938; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 938; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_6; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; arrayObject = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":939 * else: * array = np.empty(size, int) * length = PyArray_SIZE(array) # <<<<<<<<<<<<<< * array_data = PyArray_DATA(array) * with self.lock, nogil: */ __pyx_v_length = PyArray_SIZE(arrayObject); /* "mtrand.pyx":940 * array = np.empty(size, int) * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) # <<<<<<<<<<<<<< * with self.lock, nogil: * for i from 0 <= i < length: */ __pyx_v_array_data = ((long *)PyArray_DATA(arrayObject)); /* "mtrand.pyx":941 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with self.lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * rv = lo + rk_interval(diff, self. internal_state) */ /*with:*/ { __pyx_t_7 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 941; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_7); __pyx_t_4 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 941; __pyx_clineno = __LINE__; goto __pyx_L6_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 941; __pyx_clineno = __LINE__; goto __pyx_L6_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; /*try:*/ { { if (__pyx_t_8||__pyx_t_9||__pyx_t_10); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":942 * array_data = PyArray_DATA(array) * with self.lock, nogil: * for i from 0 <= i < length: # <<<<<<<<<<<<<< * rv = lo + rk_interval(diff, self. internal_state) * array_data[i] = rv */ __pyx_t_11 = __pyx_v_length; for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_11; __pyx_v_i++) { /* "mtrand.pyx":943 * with self.lock, nogil: * for i from 0 <= i < length: * rv = lo + rk_interval(diff, self. internal_state) # <<<<<<<<<<<<<< * array_data[i] = rv * return array */ __pyx_v_rv = (__pyx_v_lo + ((long)rk_interval(__pyx_v_diff, __pyx_v_self->internal_state))); /* "mtrand.pyx":944 * for i from 0 <= i < length: * rv = lo + rk_interval(diff, self. internal_state) * array_data[i] = rv # <<<<<<<<<<<<<< * return array * */ (__pyx_v_array_data[__pyx_v_i]) = __pyx_v_rv; } } /* "mtrand.pyx":941 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with self.lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * rv = lo + rk_interval(diff, self. internal_state) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L22; } __pyx_L22:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_7) { __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_tuple__39, NULL); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 941; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } goto __pyx_L9; } __pyx_L9:; } goto __pyx_L25; __pyx_L6_error:; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; goto __pyx_L1_error; __pyx_L25:; } /* "mtrand.pyx":945 * rv = lo + rk_interval(diff, self. internal_state) * array_data[i] = rv * return array # <<<<<<<<<<<<<< * * def bytes(self, npy_intp length): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)arrayObject)); __pyx_r = ((PyObject *)arrayObject); goto __pyx_L0; } /* "mtrand.pyx":865 * return disc0_array(self.internal_state, rk_long, size, self.lock) * * def randint(self, low, high=None, size=None): # <<<<<<<<<<<<<< * """ * randint(low, high=None, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("mtrand.RandomState.randint", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":947 * return array * * def bytes(self, npy_intp length): # <<<<<<<<<<<<<< * """ * bytes(length) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_23bytes(PyObject *__pyx_v_self, PyObject *__pyx_arg_length); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_22bytes[] = "\n bytes(length)\n\n Return random bytes.\n\n Parameters\n ----------\n length : int\n Number of random bytes.\n\n Returns\n -------\n out : str\n String of length `length`.\n\n Examples\n --------\n >>> np.random.bytes(10)\n ' eh\\x85\\x022SZ\\xbf\\xa4' #random\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_23bytes(PyObject *__pyx_v_self, PyObject *__pyx_arg_length) { npy_intp __pyx_v_length; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("bytes (wrapper)", 0); assert(__pyx_arg_length); { __pyx_v_length = __Pyx_PyInt_As_npy_intp(__pyx_arg_length); if (unlikely((__pyx_v_length == (npy_intp)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 947; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } goto __pyx_L4_argument_unpacking_done; __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.bytes", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_22bytes(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), ((npy_intp)__pyx_v_length)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_22bytes(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_length) { void *__pyx_v_bytes; PyObject *__pyx_v_bytestring = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("bytes", 0); /* "mtrand.pyx":970 * """ * cdef void *bytes * bytestring = empty_py_bytes(length, &bytes) # <<<<<<<<<<<<<< * with self.lock, nogil: * rk_fill(bytes, length, self.internal_state) */ __pyx_t_1 = empty_py_bytes(__pyx_v_length, (&__pyx_v_bytes)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 970; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_v_bytestring = __pyx_t_1; __pyx_t_1 = 0; /* "mtrand.pyx":971 * cdef void *bytes * bytestring = empty_py_bytes(length, &bytes) * with self.lock, nogil: # <<<<<<<<<<<<<< * rk_fill(bytes, length, self.internal_state) * return bytestring */ /*with:*/ { __pyx_t_2 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 971; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 971; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /*try:*/ { { if (__pyx_t_4||__pyx_t_5||__pyx_t_6); else {/*mark used*/}; /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":972 * bytestring = empty_py_bytes(length, &bytes) * with self.lock, nogil: * rk_fill(bytes, length, self.internal_state) # <<<<<<<<<<<<<< * return bytestring * */ rk_fill(__pyx_v_bytes, __pyx_v_length, __pyx_v_self->internal_state); } /* "mtrand.pyx":971 * cdef void *bytes * bytestring = empty_py_bytes(length, &bytes) * with self.lock, nogil: # <<<<<<<<<<<<<< * rk_fill(bytes, length, self.internal_state) * return bytestring */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L19; } __pyx_L19:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_2) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_tuple__40, NULL); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } goto __pyx_L6; } __pyx_L6:; } goto __pyx_L20; __pyx_L3_error:; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; goto __pyx_L1_error; __pyx_L20:; } /* "mtrand.pyx":973 * with self.lock, nogil: * rk_fill(bytes, length, self.internal_state) * return bytestring # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_bytestring); __pyx_r = __pyx_v_bytestring; goto __pyx_L0; /* "mtrand.pyx":947 * return array * * def bytes(self, npy_intp length): # <<<<<<<<<<<<<< * """ * bytes(length) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("mtrand.RandomState.bytes", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_bytestring); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":976 * * * def choice(self, a, size=None, replace=True, p=None): # <<<<<<<<<<<<<< * """ * choice(a, size=None, replace=True, p=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_25choice(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_24choice[] = "\n choice(a, size=None, replace=True, p=None)\n\n Generates a random sample from a given 1-D array\n\n .. versionadded:: 1.7.0\n\n Parameters\n -----------\n a : 1-D array-like or int\n If an ndarray, a random sample is generated from its elements.\n If an int, the random sample is generated as if a was np.arange(n)\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n replace : boolean, optional\n Whether the sample is with or without replacement\n p : 1-D array-like, optional\n The probabilities associated with each entry in a.\n If not given the sample assumes a uniform distribution over all\n entries in a.\n\n Returns\n --------\n samples : 1-D ndarray, shape (size,)\n The generated random samples\n\n Raises\n -------\n ValueError\n If a is an int and less than zero, if a or p are not 1-dimensional,\n if a is an array-like of size 0, if p is not a vector of\n probabilities, if a and p have different lengths, or if\n replace=False and the sample size is greater than the population\n size\n\n See Also\n ---------\n randint, shuffle, permutation\n\n Examples\n ---------\n Generate a uniform random sample from np.arange(5) of size 3:\n\n >>> np.random.choice(5, 3)\n array([0, 3, 4])\n >>> #This is equivalent to np.random.randint(0,5,3)\n\n Generate a non-uniform random sample from np.arange(5) of size 3:\n\n >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])\n array([3, 3, 0])\n\n Generate a uniform random sample from np.arange(5) of size 3 without\n "" replacement:\n\n >>> np.random.choice(5, 3, replace=False)\n array([3,1,0])\n >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]\n\n Generate a non-uniform random sample from np.arange(5) of size\n 3 without replacement:\n\n >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])\n array([2, 3, 0])\n\n Any of the above can be repeated with an arbitrary array-like\n instead of just integers. For instance:\n\n >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']\n >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])\n array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],\n dtype='|S11')\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_25choice(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_v_replace = 0; PyObject *__pyx_v_p = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("choice (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,&__pyx_n_s_replace,&__pyx_n_s_p,0}; PyObject* values[4] = {0,0,0,0}; values[1] = ((PyObject *)Py_None); values[2] = ((PyObject *)Py_True); values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_replace); if (value) { values[2] = value; kw_args--; } } case 3: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_p); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "choice") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 976; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; __pyx_v_replace = values[2]; __pyx_v_p = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("choice", 0, 1, 4, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 976; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.choice", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_24choice(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size, __pyx_v_replace, __pyx_v_p); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_24choice(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size, PyObject *__pyx_v_replace, PyObject *__pyx_v_p) { PyObject *__pyx_v_pop_size = NULL; Py_ssize_t __pyx_v_d; double *__pyx_v_pix; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_cdf = NULL; PyObject *__pyx_v_uniform_samples = NULL; PyObject *__pyx_v_idx = NULL; PyObject *__pyx_v_n_uniq = NULL; PyObject *__pyx_v_found = NULL; PyObject *__pyx_v_flat_found = NULL; PyObject *__pyx_v_x = NULL; PyObject *__pyx_v_new = NULL; CYTHON_UNUSED PyObject *__pyx_v__ = NULL; PyObject *__pyx_v_unique_indices = NULL; PyObject *__pyx_v_res = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; int __pyx_t_10; Py_ssize_t __pyx_t_11; PyObject *__pyx_t_12 = NULL; PyObject *(*__pyx_t_13)(PyObject *); int __pyx_t_14; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("choice", 0); __Pyx_INCREF(__pyx_v_a); __Pyx_INCREF(__pyx_v_size); __Pyx_INCREF(__pyx_v_p); /* "mtrand.pyx":1055 * * # Format and Verify input * a = np.array(a, copy=False) # <<<<<<<<<<<<<< * if a.ndim == 0: * try: */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1055; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_array); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1055; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1055; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_a); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_a); __Pyx_GIVEREF(__pyx_v_a); __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1055; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_copy, Py_False) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1055; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1055; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_a, __pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":1056 * # Format and Verify input * a = np.array(a, copy=False) * if a.ndim == 0: # <<<<<<<<<<<<<< * try: * # __index__ must return an integer by python rules. */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1056; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_t_4, __pyx_int_0, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1056; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1056; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1057 * a = np.array(a, copy=False) * if a.ndim == 0: * try: # <<<<<<<<<<<<<< * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) */ { __Pyx_ExceptionSave(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8); __Pyx_XGOTREF(__pyx_t_6); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); /*try:*/ { /* "mtrand.pyx":1059 * try: * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) # <<<<<<<<<<<<<< * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_operator); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1059; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_index); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1059; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_item); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1059; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1059; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1059; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1059; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_pop_size = __pyx_t_1; __pyx_t_1 = 0; } __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L11_try_end; __pyx_L4_error:; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":1060 * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) * except TypeError: # <<<<<<<<<<<<<< * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0: */ __pyx_t_9 = PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_9) { __Pyx_AddTraceback("mtrand.RandomState.choice", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_1, &__pyx_t_3, &__pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1060; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_4); /* "mtrand.pyx":1061 * pop_size = operator.index(a.item()) * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") # <<<<<<<<<<<<<< * if pop_size <= 0: * raise ValueError("a must be greater than 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__41, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1061; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1061; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; goto __pyx_L5_exception_handled; } goto __pyx_L6_except_error; __pyx_L6_except_error:; __Pyx_XGIVEREF(__pyx_t_6); __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_ExceptionReset(__pyx_t_6, __pyx_t_7, __pyx_t_8); goto __pyx_L1_error; __pyx_L5_exception_handled:; __Pyx_XGIVEREF(__pyx_t_6); __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_ExceptionReset(__pyx_t_6, __pyx_t_7, __pyx_t_8); __pyx_L11_try_end:; } /* "mtrand.pyx":1062 * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0: # <<<<<<<<<<<<<< * raise ValueError("a must be greater than 0") * elif a.ndim != 1: */ __pyx_t_4 = PyObject_RichCompare(__pyx_v_pop_size, __pyx_int_0, Py_LE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1062; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1062; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1063 * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0: * raise ValueError("a must be greater than 0") # <<<<<<<<<<<<<< * elif a.ndim != 1: * raise ValueError("a must be 1-dimensional") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__42, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1063; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1063; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } goto __pyx_L3; } /* "mtrand.pyx":1064 * if pop_size <= 0: * raise ValueError("a must be greater than 0") * elif a.ndim != 1: # <<<<<<<<<<<<<< * raise ValueError("a must be 1-dimensional") * else: */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_t_4, __pyx_int_1, Py_NE); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1065 * raise ValueError("a must be greater than 0") * elif a.ndim != 1: * raise ValueError("a must be 1-dimensional") # <<<<<<<<<<<<<< * else: * pop_size = a.shape[0] */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__43, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1065; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1065; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /*else*/ { /* "mtrand.pyx":1067 * raise ValueError("a must be 1-dimensional") * else: * pop_size = a.shape[0] # <<<<<<<<<<<<<< * if pop_size is 0: * raise ValueError("a must be non-empty") */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_shape); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1067; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_GetItemInt(__pyx_t_3, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1067; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_pop_size = __pyx_t_4; __pyx_t_4 = 0; /* "mtrand.pyx":1068 * else: * pop_size = a.shape[0] * if pop_size is 0: # <<<<<<<<<<<<<< * raise ValueError("a must be non-empty") * */ __pyx_t_5 = (__pyx_v_pop_size == __pyx_int_0); __pyx_t_10 = (__pyx_t_5 != 0); if (__pyx_t_10) { /* "mtrand.pyx":1069 * pop_size = a.shape[0] * if pop_size is 0: * raise ValueError("a must be non-empty") # <<<<<<<<<<<<<< * * if p is not None: */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__44, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1069; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1069; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } } __pyx_L3:; /* "mtrand.pyx":1071 * raise ValueError("a must be non-empty") * * if p is not None: # <<<<<<<<<<<<<< * d = len(p) * p = PyArray_ContiguousFromObject(p, NPY_DOUBLE, 1, 1) */ __pyx_t_10 = (__pyx_v_p != Py_None); __pyx_t_5 = (__pyx_t_10 != 0); if (__pyx_t_5) { /* "mtrand.pyx":1072 * * if p is not None: * d = len(p) # <<<<<<<<<<<<<< * p = PyArray_ContiguousFromObject(p, NPY_DOUBLE, 1, 1) * pix = PyArray_DATA(p) */ __pyx_t_11 = PyObject_Length(__pyx_v_p); if (unlikely(__pyx_t_11 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1072; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_d = __pyx_t_11; /* "mtrand.pyx":1073 * if p is not None: * d = len(p) * p = PyArray_ContiguousFromObject(p, NPY_DOUBLE, 1, 1) # <<<<<<<<<<<<<< * pix = PyArray_DATA(p) * */ __pyx_t_4 = PyArray_ContiguousFromObject(__pyx_v_p, NPY_DOUBLE, 1, 1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1073; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_p, __pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1074 * d = len(p) * p = PyArray_ContiguousFromObject(p, NPY_DOUBLE, 1, 1) * pix = PyArray_DATA(p) # <<<<<<<<<<<<<< * * if p.ndim != 1: */ if (!(likely(((__pyx_v_p) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_p, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1074; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_pix = ((double *)PyArray_DATA(((PyArrayObject *)__pyx_v_p))); /* "mtrand.pyx":1076 * pix = PyArray_DATA(p) * * if p.ndim != 1: # <<<<<<<<<<<<<< * raise ValueError("p must be 1-dimensional") * if p.size != pop_size: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1076; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_int_1, Py_NE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1076; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1076; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1077 * * if p.ndim != 1: * raise ValueError("p must be 1-dimensional") # <<<<<<<<<<<<<< * if p.size != pop_size: * raise ValueError("a and p must have same size") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__45, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1077; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1077; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1078 * if p.ndim != 1: * raise ValueError("p must be 1-dimensional") * if p.size != pop_size: # <<<<<<<<<<<<<< * raise ValueError("a and p must have same size") * if np.logical_or.reduce(p < 0): */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_size); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_t_4, __pyx_v_pop_size, Py_NE); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1079 * raise ValueError("p must be 1-dimensional") * if p.size != pop_size: * raise ValueError("a and p must have same size") # <<<<<<<<<<<<<< * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__46, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1079; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1079; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1080 * if p.size != pop_size: * raise ValueError("a and p must have same size") * if np.logical_or.reduce(p < 0): # <<<<<<<<<<<<<< * raise ValueError("probabilities are not non-negative") * if abs(kahan_sum(pix, d) - 1.) > 1e-8: */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_logical_or); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_reduce); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_v_p, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_1, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1081 * raise ValueError("a and p must have same size") * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") # <<<<<<<<<<<<<< * if abs(kahan_sum(pix, d) - 1.) > 1e-8: * raise ValueError("probabilities do not sum to 1") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__47, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1081; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1081; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1082 * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") * if abs(kahan_sum(pix, d) - 1.) > 1e-8: # <<<<<<<<<<<<<< * raise ValueError("probabilities do not sum to 1") * */ __pyx_t_5 = ((fabs((__pyx_f_6mtrand_kahan_sum(__pyx_v_pix, __pyx_v_d) - 1.)) > 1e-8) != 0); if (__pyx_t_5) { /* "mtrand.pyx":1083 * raise ValueError("probabilities are not non-negative") * if abs(kahan_sum(pix, d) - 1.) > 1e-8: * raise ValueError("probabilities do not sum to 1") # <<<<<<<<<<<<<< * * shape = size */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__48, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } goto __pyx_L16; } __pyx_L16:; /* "mtrand.pyx":1085 * raise ValueError("probabilities do not sum to 1") * * shape = size # <<<<<<<<<<<<<< * if shape is not None: * size = np.prod(shape, dtype=np.intp) */ __Pyx_INCREF(__pyx_v_size); __pyx_v_shape = __pyx_v_size; /* "mtrand.pyx":1086 * * shape = size * if shape is not None: # <<<<<<<<<<<<<< * size = np.prod(shape, dtype=np.intp) * else: */ __pyx_t_5 = (__pyx_v_shape != Py_None); __pyx_t_10 = (__pyx_t_5 != 0); if (__pyx_t_10) { /* "mtrand.pyx":1087 * shape = size * if shape is not None: * size = np.prod(shape, dtype=np.intp) # <<<<<<<<<<<<<< * else: * size = 1 */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_prod); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_12) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_3); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_size, __pyx_t_12); __pyx_t_12 = 0; goto __pyx_L21; } /*else*/ { /* "mtrand.pyx":1089 * size = np.prod(shape, dtype=np.intp) * else: * size = 1 # <<<<<<<<<<<<<< * * # Actual sampling */ __Pyx_INCREF(__pyx_int_1); __Pyx_DECREF_SET(__pyx_v_size, __pyx_int_1); } __pyx_L21:; /* "mtrand.pyx":1092 * * # Actual sampling * if replace: # <<<<<<<<<<<<<< * if p is not None: * cdf = p.cumsum() */ __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_v_replace); if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (__pyx_t_10) { /* "mtrand.pyx":1093 * # Actual sampling * if replace: * if p is not None: # <<<<<<<<<<<<<< * cdf = p.cumsum() * cdf /= cdf[-1] */ __pyx_t_10 = (__pyx_v_p != Py_None); __pyx_t_5 = (__pyx_t_10 != 0); if (__pyx_t_5) { /* "mtrand.pyx":1094 * if replace: * if p is not None: * cdf = p.cumsum() # <<<<<<<<<<<<<< * cdf /= cdf[-1] * uniform_samples = self.random_sample(shape) */ __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_cumsum); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1094; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1094; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_v_cdf = __pyx_t_3; __pyx_t_3 = 0; /* "mtrand.pyx":1095 * if p is not None: * cdf = p.cumsum() * cdf /= cdf[-1] # <<<<<<<<<<<<<< * uniform_samples = self.random_sample(shape) * idx = cdf.searchsorted(uniform_samples, side='right') */ __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_cdf, -1, long, 1, __Pyx_PyInt_From_long, 0, 1, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1095; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __pyx_t_12 = __Pyx_PyNumber_InPlaceDivide(__pyx_v_cdf, __pyx_t_3); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1095; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_cdf, __pyx_t_12); __pyx_t_12 = 0; /* "mtrand.pyx":1096 * cdf = p.cumsum() * cdf /= cdf[-1] * uniform_samples = self.random_sample(shape) # <<<<<<<<<<<<<< * idx = cdf.searchsorted(uniform_samples, side='right') * idx = np.array(idx, copy=False) # searchsorted returns a scalar */ __pyx_t_12 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1096; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1096; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_3, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1096; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_uniform_samples = __pyx_t_4; __pyx_t_4 = 0; /* "mtrand.pyx":1097 * cdf /= cdf[-1] * uniform_samples = self.random_sample(shape) * idx = cdf.searchsorted(uniform_samples, side='right') # <<<<<<<<<<<<<< * idx = np.array(idx, copy=False) # searchsorted returns a scalar * else: */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_cdf, __pyx_n_s_searchsorted); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1097; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1097; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_uniform_samples); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_uniform_samples); __Pyx_GIVEREF(__pyx_v_uniform_samples); __pyx_t_12 = PyDict_New(); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1097; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); if (PyDict_SetItem(__pyx_t_12, __pyx_n_s_side, __pyx_n_s_right) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1097; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, __pyx_t_12); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1097; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_v_idx = __pyx_t_1; __pyx_t_1 = 0; /* "mtrand.pyx":1098 * uniform_samples = self.random_sample(shape) * idx = cdf.searchsorted(uniform_samples, side='right') * idx = np.array(idx, copy=False) # searchsorted returns a scalar # <<<<<<<<<<<<<< * else: * idx = self.randint(0, pop_size, size=shape) */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1098; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_array); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1098; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1098; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_idx); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_idx); __Pyx_GIVEREF(__pyx_v_idx); __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1098; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_copy, Py_False) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1098; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1098; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_idx, __pyx_t_4); __pyx_t_4 = 0; goto __pyx_L23; } /*else*/ { /* "mtrand.pyx":1100 * idx = np.array(idx, copy=False) # searchsorted returns a scalar * else: * idx = self.randint(0, pop_size, size=shape) # <<<<<<<<<<<<<< * else: * if size > pop_size: */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_randint); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __Pyx_INCREF(__pyx_v_pop_size); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_pop_size); __Pyx_GIVEREF(__pyx_v_pop_size); __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_size, __pyx_v_shape) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_idx = __pyx_t_12; __pyx_t_12 = 0; } __pyx_L23:; goto __pyx_L22; } /*else*/ { /* "mtrand.pyx":1102 * idx = self.randint(0, pop_size, size=shape) * else: * if size > pop_size: # <<<<<<<<<<<<<< * raise ValueError("Cannot take a larger sample than " * "population when 'replace=False'") */ __pyx_t_12 = PyObject_RichCompare(__pyx_v_size, __pyx_v_pop_size, Py_GT); __Pyx_XGOTREF(__pyx_t_12); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_12); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; if (__pyx_t_5) { /* "mtrand.pyx":1103 * else: * if size > pop_size: * raise ValueError("Cannot take a larger sample than " # <<<<<<<<<<<<<< * "population when 'replace=False'") * */ __pyx_t_12 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__49, NULL); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1103; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_Raise(__pyx_t_12, 0, 0, 0); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1103; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1106 * "population when 'replace=False'") * * if p is not None: # <<<<<<<<<<<<<< * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") */ __pyx_t_5 = (__pyx_v_p != Py_None); __pyx_t_10 = (__pyx_t_5 != 0); if (__pyx_t_10) { /* "mtrand.pyx":1107 * * if p is not None: * if np.count_nonzero(p > 0) < size: # <<<<<<<<<<<<<< * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 */ __pyx_t_12 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_12, __pyx_n_s_count_nonzero); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = PyObject_RichCompare(__pyx_v_p, __pyx_int_0, Py_GT); __Pyx_XGOTREF(__pyx_t_12); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_12); __Pyx_GIVEREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, NULL); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyObject_RichCompare(__pyx_t_12, __pyx_v_size, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_10) { /* "mtrand.pyx":1108 * if p is not None: * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") # <<<<<<<<<<<<<< * n_uniq = 0 * p = p.copy() */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__50, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1108; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1108; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1109 * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 # <<<<<<<<<<<<<< * p = p.copy() * found = np.zeros(shape, dtype=np.int) */ __Pyx_INCREF(__pyx_int_0); __pyx_v_n_uniq = __pyx_int_0; /* "mtrand.pyx":1110 * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 * p = p.copy() # <<<<<<<<<<<<<< * found = np.zeros(shape, dtype=np.int) * flat_found = found.ravel() */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_copy); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1110; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1110; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_p, __pyx_t_12); __pyx_t_12 = 0; /* "mtrand.pyx":1111 * n_uniq = 0 * p = p.copy() * found = np.zeros(shape, dtype=np.int) # <<<<<<<<<<<<<< * flat_found = found.ravel() * while n_uniq < size: */ __pyx_t_12 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_12, __pyx_n_s_zeros); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = PyTuple_New(1); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_INCREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_int); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_12, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1111; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_found = __pyx_t_2; __pyx_t_2 = 0; /* "mtrand.pyx":1112 * p = p.copy() * found = np.zeros(shape, dtype=np.int) * flat_found = found.ravel() # <<<<<<<<<<<<<< * while n_uniq < size: * x = self.rand(size - n_uniq) */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_found, __pyx_n_s_ravel); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1112; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1112; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_flat_found = __pyx_t_1; __pyx_t_1 = 0; /* "mtrand.pyx":1113 * found = np.zeros(shape, dtype=np.int) * flat_found = found.ravel() * while n_uniq < size: # <<<<<<<<<<<<<< * x = self.rand(size - n_uniq) * if n_uniq > 0: */ while (1) { __pyx_t_1 = PyObject_RichCompare(__pyx_v_n_uniq, __pyx_v_size, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1113; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1113; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (!__pyx_t_10) break; /* "mtrand.pyx":1114 * flat_found = found.ravel() * while n_uniq < size: * x = self.rand(size - n_uniq) # <<<<<<<<<<<<<< * if n_uniq > 0: * p[flat_found[0:n_uniq]] = 0 */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_rand); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1114; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyNumber_Subtract(__pyx_v_size, __pyx_v_n_uniq); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1114; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_12 = PyTuple_New(1); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1114; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_12, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1114; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_XDECREF_SET(__pyx_v_x, __pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1115 * while n_uniq < size: * x = self.rand(size - n_uniq) * if n_uniq > 0: # <<<<<<<<<<<<<< * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) */ __pyx_t_2 = PyObject_RichCompare(__pyx_v_n_uniq, __pyx_int_0, Py_GT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1115; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_10 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1115; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_10) { /* "mtrand.pyx":1116 * x = self.rand(size - n_uniq) * if n_uniq > 0: * p[flat_found[0:n_uniq]] = 0 # <<<<<<<<<<<<<< * cdf = np.cumsum(p) * cdf /= cdf[-1] */ __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_v_flat_found, 0, 0, NULL, &__pyx_v_n_uniq, NULL, 1, 0, 1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1116; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); if (unlikely(PyObject_SetItem(__pyx_v_p, __pyx_t_2, __pyx_int_0) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1116; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; goto __pyx_L29; } __pyx_L29:; /* "mtrand.pyx":1117 * if n_uniq > 0: * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) # <<<<<<<<<<<<<< * cdf /= cdf[-1] * new = cdf.searchsorted(x, side='right') */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1117; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_cumsum); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1117; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1117; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_p); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_p); __Pyx_GIVEREF(__pyx_v_p); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_2, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1117; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF_SET(__pyx_v_cdf, __pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":1118 * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) * cdf /= cdf[-1] # <<<<<<<<<<<<<< * new = cdf.searchsorted(x, side='right') * _, unique_indices = np.unique(new, return_index=True) */ __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_cdf, -1, long, 1, __Pyx_PyInt_From_long, 0, 1, 1); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1118; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyNumber_InPlaceDivide(__pyx_v_cdf, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1118; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_cdf, __pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1119 * cdf = np.cumsum(p) * cdf /= cdf[-1] * new = cdf.searchsorted(x, side='right') # <<<<<<<<<<<<<< * _, unique_indices = np.unique(new, return_index=True) * unique_indices.sort() */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_cdf, __pyx_n_s_searchsorted); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1119; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1119; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); __pyx_t_12 = PyDict_New(); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1119; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); if (PyDict_SetItem(__pyx_t_12, __pyx_n_s_side, __pyx_n_s_right) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1119; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_12); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1119; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_XDECREF_SET(__pyx_v_new, __pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1120 * cdf /= cdf[-1] * new = cdf.searchsorted(x, side='right') * _, unique_indices = np.unique(new, return_index=True) # <<<<<<<<<<<<<< * unique_indices.sort() * new = new.take(unique_indices) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_unique); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_new); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_new); __Pyx_GIVEREF(__pyx_v_new); __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_return_index, Py_True) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if ((likely(PyTuple_CheckExact(__pyx_t_2))) || (PyList_CheckExact(__pyx_t_2))) { PyObject* sequence = __pyx_t_2; #if CYTHON_COMPILING_IN_CPYTHON Py_ssize_t size = Py_SIZE(sequence); #else Py_ssize_t size = PySequence_Size(sequence); #endif if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_1 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_1 = PyList_GET_ITEM(sequence, 0); __pyx_t_3 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_3); #else __pyx_t_1 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); #endif __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else { Py_ssize_t index = -1; __pyx_t_12 = PyObject_GetIter(__pyx_t_2); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_13 = Py_TYPE(__pyx_t_12)->tp_iternext; index = 0; __pyx_t_1 = __pyx_t_13(__pyx_t_12); if (unlikely(!__pyx_t_1)) goto __pyx_L30_unpacking_failed; __Pyx_GOTREF(__pyx_t_1); index = 1; __pyx_t_3 = __pyx_t_13(__pyx_t_12); if (unlikely(!__pyx_t_3)) goto __pyx_L30_unpacking_failed; __Pyx_GOTREF(__pyx_t_3); if (__Pyx_IternextUnpackEndCheck(__pyx_t_13(__pyx_t_12), 2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_13 = NULL; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; goto __pyx_L31_unpacking_done; __pyx_L30_unpacking_failed:; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_13 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1120; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L31_unpacking_done:; } __Pyx_XDECREF_SET(__pyx_v__, __pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF_SET(__pyx_v_unique_indices, __pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1121 * new = cdf.searchsorted(x, side='right') * _, unique_indices = np.unique(new, return_index=True) * unique_indices.sort() # <<<<<<<<<<<<<< * new = new.take(unique_indices) * flat_found[n_uniq:n_uniq + new.size] = new */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_unique_indices, __pyx_n_s_sort); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1121; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1121; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1122 * _, unique_indices = np.unique(new, return_index=True) * unique_indices.sort() * new = new.take(unique_indices) # <<<<<<<<<<<<<< * flat_found[n_uniq:n_uniq + new.size] = new * n_uniq += new.size */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_new, __pyx_n_s_take); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1122; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1122; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_unique_indices); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_unique_indices); __Pyx_GIVEREF(__pyx_v_unique_indices); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1122; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_new, __pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":1123 * unique_indices.sort() * new = new.take(unique_indices) * flat_found[n_uniq:n_uniq + new.size] = new # <<<<<<<<<<<<<< * n_uniq += new.size * idx = found */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_new, __pyx_n_s_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1123; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyNumber_Add(__pyx_v_n_uniq, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1123; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__Pyx_PyObject_SetSlice(__pyx_v_flat_found, __pyx_v_new, 0, 0, &__pyx_v_n_uniq, &__pyx_t_2, NULL, 0, 0, 1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1123; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1124 * new = new.take(unique_indices) * flat_found[n_uniq:n_uniq + new.size] = new * n_uniq += new.size # <<<<<<<<<<<<<< * idx = found * else: */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_new, __pyx_n_s_size); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1124; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyNumber_InPlaceAdd(__pyx_v_n_uniq, __pyx_t_2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1124; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_n_uniq, __pyx_t_1); __pyx_t_1 = 0; } /* "mtrand.pyx":1125 * flat_found[n_uniq:n_uniq + new.size] = new * n_uniq += new.size * idx = found # <<<<<<<<<<<<<< * else: * idx = self.permutation(pop_size)[:size] */ __Pyx_INCREF(__pyx_v_found); __pyx_v_idx = __pyx_v_found; goto __pyx_L25; } /*else*/ { /* "mtrand.pyx":1127 * idx = found * else: * idx = self.permutation(pop_size)[:size] # <<<<<<<<<<<<<< * if shape is not None: * idx.shape = shape */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_permutation); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_pop_size); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_pop_size); __Pyx_GIVEREF(__pyx_v_pop_size); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_t_3, 0, 0, NULL, &__pyx_v_size, NULL, 0, 0, 1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_idx = __pyx_t_2; __pyx_t_2 = 0; /* "mtrand.pyx":1128 * else: * idx = self.permutation(pop_size)[:size] * if shape is not None: # <<<<<<<<<<<<<< * idx.shape = shape * */ __pyx_t_10 = (__pyx_v_shape != Py_None); __pyx_t_5 = (__pyx_t_10 != 0); if (__pyx_t_5) { /* "mtrand.pyx":1129 * idx = self.permutation(pop_size)[:size] * if shape is not None: * idx.shape = shape # <<<<<<<<<<<<<< * * if shape is None and isinstance(idx, np.ndarray): */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_idx, __pyx_n_s_shape, __pyx_v_shape) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1129; __pyx_clineno = __LINE__; goto __pyx_L1_error;} goto __pyx_L32; } __pyx_L32:; } __pyx_L25:; } __pyx_L22:; /* "mtrand.pyx":1131 * idx.shape = shape * * if shape is None and isinstance(idx, np.ndarray): # <<<<<<<<<<<<<< * # In most cases a scalar will have been made an array * idx = idx.item(0) */ __pyx_t_5 = (__pyx_v_shape == Py_None); if ((__pyx_t_5 != 0)) { __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1131; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_ndarray); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1131; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_10 = PyObject_IsInstance(__pyx_v_idx, __pyx_t_3); if (unlikely(__pyx_t_10 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1131; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_14 = (__pyx_t_10 != 0); } else { __pyx_t_14 = (__pyx_t_5 != 0); } if (__pyx_t_14) { /* "mtrand.pyx":1133 * if shape is None and isinstance(idx, np.ndarray): * # In most cases a scalar will have been made an array * idx = idx.item(0) # <<<<<<<<<<<<<< * * #Use samples as indices for a if a is array-like */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_idx, __pyx_n_s_item); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1133; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__51, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1133; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_idx, __pyx_t_2); __pyx_t_2 = 0; goto __pyx_L33; } __pyx_L33:; /* "mtrand.pyx":1136 * * #Use samples as indices for a if a is array-like * if a.ndim == 0: # <<<<<<<<<<<<<< * return idx * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_ndim); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1136; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyObject_RichCompare(__pyx_t_2, __pyx_int_0, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1136; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_14 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_14 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1136; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_14) { /* "mtrand.pyx":1137 * #Use samples as indices for a if a is array-like * if a.ndim == 0: * return idx # <<<<<<<<<<<<<< * * if shape is not None and idx.ndim == 0: */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_idx); __pyx_r = __pyx_v_idx; goto __pyx_L0; } /* "mtrand.pyx":1139 * return idx * * if shape is not None and idx.ndim == 0: # <<<<<<<<<<<<<< * # If size == () then the user requested a 0-d array as opposed to * # a scalar object when size is None. However a[idx] is always a */ __pyx_t_14 = (__pyx_v_shape != Py_None); if (__pyx_t_14) { __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_idx, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1139; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyObject_RichCompare(__pyx_t_3, __pyx_int_0, Py_EQ); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1139; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1139; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_10 = __pyx_t_5; } else { __pyx_t_10 = __pyx_t_14; } if (__pyx_t_10) { /* "mtrand.pyx":1145 * # array, taking into account that np.array(item) may not work * # for object arrays. * res = np.empty((), dtype=a.dtype) # <<<<<<<<<<<<<< * res[()] = a[idx] * return res */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyDict_New(); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_dtype); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__52, __pyx_t_2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_res = __pyx_t_1; __pyx_t_1 = 0; /* "mtrand.pyx":1146 * # for object arrays. * res = np.empty((), dtype=a.dtype) * res[()] = a[idx] # <<<<<<<<<<<<<< * return res * */ __pyx_t_1 = PyObject_GetItem(__pyx_v_a, __pyx_v_idx); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1146; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_1); if (unlikely(PyObject_SetItem(__pyx_v_res, __pyx_empty_tuple, __pyx_t_1) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1146; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":1147 * res = np.empty((), dtype=a.dtype) * res[()] = a[idx] * return res # <<<<<<<<<<<<<< * * return a[idx] */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_res); __pyx_r = __pyx_v_res; goto __pyx_L0; } /* "mtrand.pyx":1149 * return res * * return a[idx] # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyObject_GetItem(__pyx_v_a, __pyx_v_idx); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1149; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "mtrand.pyx":976 * * * def choice(self, a, size=None, replace=True, p=None): # <<<<<<<<<<<<<< * """ * choice(a, size=None, replace=True, p=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_12); __Pyx_AddTraceback("mtrand.RandomState.choice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_pop_size); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_cdf); __Pyx_XDECREF(__pyx_v_uniform_samples); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XDECREF(__pyx_v_n_uniq); __Pyx_XDECREF(__pyx_v_found); __Pyx_XDECREF(__pyx_v_flat_found); __Pyx_XDECREF(__pyx_v_x); __Pyx_XDECREF(__pyx_v_new); __Pyx_XDECREF(__pyx_v__); __Pyx_XDECREF(__pyx_v_unique_indices); __Pyx_XDECREF(__pyx_v_res); __Pyx_XDECREF(__pyx_v_a); __Pyx_XDECREF(__pyx_v_size); __Pyx_XDECREF(__pyx_v_p); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1152 * * * def uniform(self, low=0.0, high=1.0, size=None): # <<<<<<<<<<<<<< * """ * uniform(low=0.0, high=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_27uniform(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_26uniform[] = "\n uniform(low=0.0, high=1.0, size=None)\n\n Draw samples from a uniform distribution.\n\n Samples are uniformly distributed over the half-open interval\n ``[low, high)`` (includes low, but excludes high). In other words,\n any value within the given interval is equally likely to be drawn\n by `uniform`.\n\n Parameters\n ----------\n low : float, optional\n Lower boundary of the output interval. All values generated will be\n greater than or equal to low. The default value is 0.\n high : float\n Upper boundary of the output interval. All values generated will be\n less than high. The default value is 1.0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Drawn samples, with shape `size`.\n\n See Also\n --------\n randint : Discrete uniform distribution, yielding integers.\n random_integers : Discrete uniform distribution over the closed\n interval ``[low, high]``.\n random_sample : Floats uniformly distributed over ``[0, 1)``.\n random : Alias for `random_sample`.\n rand : Convenience function that accepts dimensions as input, e.g.,\n ``rand(2,2)`` would generate a 2-by-2 array of floats,\n uniformly distributed over ``[0, 1)``.\n\n Notes\n -----\n The probability density function of the uniform distribution is\n\n .. math:: p(x) = \\frac{1}{b - a}\n\n anywhere within the interval ``[a, b)``, and zero elsewhere.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> s = np.random.uniform(-1,0,1000)\n\n All"" values are within the given interval:\n\n >>> np.all(s >= -1)\n True\n >>> np.all(s < 0)\n True\n\n Display the histogram of the samples, along with the\n probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 15, normed=True)\n >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_27uniform(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_low = 0; PyObject *__pyx_v_high = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("uniform (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_low,&__pyx_n_s_high,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_low); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_high); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "uniform") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1152; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_low = values[0]; __pyx_v_high = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("uniform", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1152; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.uniform", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_26uniform(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_low, __pyx_v_high, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_26uniform(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_olow = 0; PyArrayObject *__pyx_v_ohigh = 0; PyArrayObject *__pyx_v_odiff = 0; double __pyx_v_flow; double __pyx_v_fhigh; PyObject *__pyx_v_temp = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("uniform", 0); /* "mtrand.pyx":1226 * cdef object temp * * flow = PyFloat_AsDouble(low) # <<<<<<<<<<<<<< * fhigh = PyFloat_AsDouble(high) * if not PyErr_Occurred(): */ __pyx_v_flow = PyFloat_AsDouble(__pyx_v_low); /* "mtrand.pyx":1227 * * flow = PyFloat_AsDouble(low) * fhigh = PyFloat_AsDouble(high) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * return cont2_array_sc(self.internal_state, rk_uniform, size, flow, */ __pyx_v_fhigh = PyFloat_AsDouble(__pyx_v_high); /* "mtrand.pyx":1228 * flow = PyFloat_AsDouble(low) * fhigh = PyFloat_AsDouble(high) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_uniform, size, flow, * fhigh-flow, self.lock) */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1229 * fhigh = PyFloat_AsDouble(high) * if not PyErr_Occurred(): * return cont2_array_sc(self.internal_state, rk_uniform, size, flow, # <<<<<<<<<<<<<< * fhigh-flow, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1230 * if not PyErr_Occurred(): * return cont2_array_sc(self.internal_state, rk_uniform, size, flow, * fhigh-flow, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":1229 * fhigh = PyFloat_AsDouble(high) * if not PyErr_Occurred(): * return cont2_array_sc(self.internal_state, rk_uniform, size, flow, # <<<<<<<<<<<<<< * fhigh-flow, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_uniform, __pyx_v_size, __pyx_v_flow, (__pyx_v_fhigh - __pyx_v_flow), __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1229; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1232 * fhigh-flow, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * olow = PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ohigh = PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":1233 * * PyErr_Clear() * olow = PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * ohigh = PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * temp = np.subtract(ohigh, olow) */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_low, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1233; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_olow = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1234 * PyErr_Clear() * olow = PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ohigh = PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * temp = np.subtract(ohigh, olow) * Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_high, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1234; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_ohigh = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1235 * olow = PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ohigh = PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * temp = np.subtract(ohigh, olow) # <<<<<<<<<<<<<< * Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting * # rules because EnsureArray steals a reference */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1235; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_subtract); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1235; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1235; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_ohigh)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_ohigh)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ohigh)); __Pyx_INCREF(((PyObject *)__pyx_v_olow)); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)__pyx_v_olow)); __Pyx_GIVEREF(((PyObject *)__pyx_v_olow)); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1235; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_temp = __pyx_t_4; __pyx_t_4 = 0; /* "mtrand.pyx":1236 * ohigh = PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * temp = np.subtract(ohigh, olow) * Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting # <<<<<<<<<<<<<< * # rules because EnsureArray steals a reference * odiff = PyArray_EnsureArray(temp) */ Py_INCREF(__pyx_v_temp); /* "mtrand.pyx":1238 * Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting * # rules because EnsureArray steals a reference * odiff = PyArray_EnsureArray(temp) # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_uniform, size, olow, odiff, * self.lock) */ __pyx_t_4 = PyArray_EnsureArray(__pyx_v_temp); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1238; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_odiff = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1239 * # rules because EnsureArray steals a reference * odiff = PyArray_EnsureArray(temp) * return cont2_array(self.internal_state, rk_uniform, size, olow, odiff, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1240 * odiff = PyArray_EnsureArray(temp) * return cont2_array(self.internal_state, rk_uniform, size, olow, odiff, * self.lock) # <<<<<<<<<<<<<< * * def rand(self, *args): */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); /* "mtrand.pyx":1239 * # rules because EnsureArray steals a reference * odiff = PyArray_EnsureArray(temp) * return cont2_array(self.internal_state, rk_uniform, size, olow, odiff, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_4 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_uniform, __pyx_v_size, __pyx_v_olow, __pyx_v_odiff, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1239; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":1152 * * * def uniform(self, low=0.0, high=1.0, size=None): # <<<<<<<<<<<<<< * """ * uniform(low=0.0, high=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("mtrand.RandomState.uniform", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_olow); __Pyx_XDECREF((PyObject *)__pyx_v_ohigh); __Pyx_XDECREF((PyObject *)__pyx_v_odiff); __Pyx_XDECREF(__pyx_v_temp); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1242 * self.lock) * * def rand(self, *args): # <<<<<<<<<<<<<< * """ * rand(d0, d1, ..., dn) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_29rand(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_28rand[] = "\n rand(d0, d1, ..., dn)\n\n Random values in a given shape.\n\n Create an array of the given shape and propagate it with\n random samples from a uniform distribution\n over ``[0, 1)``.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, should all be positive.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n out : ndarray, shape ``(d0, d1, ..., dn)``\n Random values.\n\n See Also\n --------\n random\n\n Notes\n -----\n This is a convenience function. If you want an interface that\n takes a shape-tuple as the first argument, refer to\n np.random.random_sample .\n\n Examples\n --------\n >>> np.random.rand(3,2)\n array([[ 0.14022471, 0.96360618], #random\n [ 0.37601032, 0.25528411], #random\n [ 0.49313049, 0.94909878]]) #random\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_29rand(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("rand (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(PyDict_Size(__pyx_kwds) > 0) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "rand", 0))) return NULL; __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_6mtrand_11RandomState_28rand(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_args); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_28rand(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("rand", 0); /* "mtrand.pyx":1281 * * """ * if len(args) == 0: # <<<<<<<<<<<<<< * return self.random_sample() * else: */ __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_args); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1281; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_2 = ((__pyx_t_1 == 0) != 0); if (__pyx_t_2) { /* "mtrand.pyx":1282 * """ * if len(args) == 0: * return self.random_sample() # <<<<<<<<<<<<<< * else: * return self.random_sample(size=args) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1282; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1282; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":1284 * return self.random_sample() * else: * return self.random_sample(size=args) # <<<<<<<<<<<<<< * * def randn(self, *args): */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1284; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1284; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_size, __pyx_v_args) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1284; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_empty_tuple, __pyx_t_3); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1284; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; } /* "mtrand.pyx":1242 * self.lock) * * def rand(self, *args): # <<<<<<<<<<<<<< * """ * rand(d0, d1, ..., dn) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.rand", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1286 * return self.random_sample(size=args) * * def randn(self, *args): # <<<<<<<<<<<<<< * """ * randn(d0, d1, ..., dn) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_31randn(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_30randn[] = "\n randn(d0, d1, ..., dn)\n\n Return a sample (or samples) from the \"standard normal\" distribution.\n\n If positive, int_like or int-convertible arguments are provided,\n `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled\n with random floats sampled from a univariate \"normal\" (Gaussian)\n distribution of mean 0 and variance 1 (if any of the :math:`d_i` are\n floats, they are first converted to integers by truncation). A single\n float randomly sampled from the distribution is returned if no\n argument is provided.\n\n This is a convenience function. If you want an interface that takes a\n tuple as the first argument, use `numpy.random.standard_normal` instead.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, should be all positive.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n Z : ndarray or float\n A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from\n the standard normal distribution, or a single such float if\n no parameters were supplied.\n\n See Also\n --------\n random.standard_normal : Similar, but takes a tuple as its argument.\n\n Notes\n -----\n For random samples from :math:`N(\\mu, \\sigma^2)`, use:\n\n ``sigma * np.random.randn(...) + mu``\n\n Examples\n --------\n >>> np.random.randn()\n 2.1923875335537315 #random\n\n Two-by-four array of samples from N(3, 6.25):\n\n >>> 2.5 * np.random.randn(2, 4) + 3\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_31randn(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("randn (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(PyDict_Size(__pyx_kwds) > 0) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "randn", 0))) return NULL; __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_6mtrand_11RandomState_30randn(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_args); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_30randn(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("randn", 0); /* "mtrand.pyx":1338 * * """ * if len(args) == 0: # <<<<<<<<<<<<<< * return self.standard_normal() * else: */ __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_args); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1338; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_2 = ((__pyx_t_1 == 0) != 0); if (__pyx_t_2) { /* "mtrand.pyx":1339 * """ * if len(args) == 0: * return self.standard_normal() # <<<<<<<<<<<<<< * else: * return self.standard_normal(args) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1339; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1339; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /*else*/ { /* "mtrand.pyx":1341 * return self.standard_normal() * else: * return self.standard_normal(args) # <<<<<<<<<<<<<< * * def random_integers(self, low, high=None, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1341; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1341; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_args); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_args); __Pyx_GIVEREF(__pyx_v_args); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1341; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; } /* "mtrand.pyx":1286 * return self.random_sample(size=args) * * def randn(self, *args): # <<<<<<<<<<<<<< * """ * randn(d0, d1, ..., dn) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.randn", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1343 * return self.standard_normal(args) * * def random_integers(self, low, high=None, size=None): # <<<<<<<<<<<<<< * """ * random_integers(low, high=None, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_33random_integers(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_32random_integers[] = "\n random_integers(low, high=None, size=None)\n\n Return random integers between `low` and `high`, inclusive.\n\n Return random integers from the \"discrete uniform\" distribution in the\n closed interval [`low`, `high`]. If `high` is None (the default),\n then results are from [1, `low`].\n\n Parameters\n ----------\n low : int\n Lowest (signed) integer to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is the *highest* such\n integer).\n high : int, optional\n If provided, the largest (signed) integer to be drawn from the\n distribution (see above for behavior if ``high=None``).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n random.randint : Similar to `random_integers`, only for the half-open\n interval [`low`, `high`), and 0 is the lowest value if `high` is\n omitted.\n\n Notes\n -----\n To sample from N evenly spaced floating-point numbers between a and b,\n use::\n\n a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)\n\n Examples\n --------\n >>> np.random.random_integers(5)\n 4\n >>> type(np.random.random_integers(5))\n \n >>> np.random.random_integers(5, size=(3.,2.))\n array([[5, 4],\n [3, 3],\n [4, 5]])\n\n Choose five random numbers from the set of five evenly-spaced\n "" numbers between 0 and 2.5, inclusive (*i.e.*, from the set\n :math:`{0, 5/8, 10/8, 15/8, 20/8}`):\n\n >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.\n array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])\n\n Roll two six sided dice 1000 times and sum the results:\n\n >>> d1 = np.random.random_integers(1, 6, 1000)\n >>> d2 = np.random.random_integers(1, 6, 1000)\n >>> dsums = d1 + d2\n\n Display results as a histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(dsums, 11, normed=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_33random_integers(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_low = 0; PyObject *__pyx_v_high = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("random_integers (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_low,&__pyx_n_s_high,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[1] = ((PyObject *)Py_None); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_low)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_high); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "random_integers") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1343; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_low = values[0]; __pyx_v_high = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("random_integers", 0, 1, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1343; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.random_integers", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_32random_integers(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_low, __pyx_v_high, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_32random_integers(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("random_integers", 0); __Pyx_INCREF(__pyx_v_low); __Pyx_INCREF(__pyx_v_high); /* "mtrand.pyx":1417 * * """ * if high is None: # <<<<<<<<<<<<<< * high = low * low = 1 */ __pyx_t_1 = (__pyx_v_high == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "mtrand.pyx":1418 * """ * if high is None: * high = low # <<<<<<<<<<<<<< * low = 1 * return self.randint(low, high+1, size) */ __Pyx_INCREF(__pyx_v_low); __Pyx_DECREF_SET(__pyx_v_high, __pyx_v_low); /* "mtrand.pyx":1419 * if high is None: * high = low * low = 1 # <<<<<<<<<<<<<< * return self.randint(low, high+1, size) * */ __Pyx_INCREF(__pyx_int_1); __Pyx_DECREF_SET(__pyx_v_low, __pyx_int_1); goto __pyx_L3; } __pyx_L3:; /* "mtrand.pyx":1420 * high = low * low = 1 * return self.randint(low, high+1, size) # <<<<<<<<<<<<<< * * # Complicated, continuous distributions: */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_randint); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1420; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyNumber_Add(__pyx_v_high, __pyx_int_1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1420; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1420; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_low); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_low); __Pyx_GIVEREF(__pyx_v_low); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1420; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":1343 * return self.standard_normal(args) * * def random_integers(self, low, high=None, size=None): # <<<<<<<<<<<<<< * """ * random_integers(low, high=None, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.random_integers", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_low); __Pyx_XDECREF(__pyx_v_high); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1423 * * # Complicated, continuous distributions: * def standard_normal(self, size=None): # <<<<<<<<<<<<<< * """ * standard_normal(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_35standard_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_34standard_normal[] = "\n standard_normal(size=None)\n\n Returns samples from a Standard Normal distribution (mean=0, stdev=1).\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n Drawn samples.\n\n Examples\n --------\n >>> s = np.random.standard_normal(8000)\n >>> s\n array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random\n -0.38672696, -0.4685006 ]) #random\n >>> s.shape\n (8000,)\n >>> s = np.random.standard_normal(size=(3, 4, 2))\n >>> s.shape\n (3, 4, 2)\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_35standard_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_normal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_normal") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1423; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_normal", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1423; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.standard_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_34standard_normal(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_34standard_normal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("standard_normal", 0); /* "mtrand.pyx":1454 * * """ * return cont0_array(self.internal_state, rk_gauss, size, self.lock) # <<<<<<<<<<<<<< * * def normal(self, loc=0.0, scale=1.0, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = __pyx_f_6mtrand_cont0_array(__pyx_v_self->internal_state, rk_gauss, __pyx_v_size, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1454; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":1423 * * # Complicated, continuous distributions: * def standard_normal(self, size=None): # <<<<<<<<<<<<<< * """ * standard_normal(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("mtrand.RandomState.standard_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1456 * return cont0_array(self.internal_state, rk_gauss, size, self.lock) * * def normal(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * normal(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_37normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_36normal[] = "\n normal(loc=0.0, scale=1.0, size=None)\n\n Draw random samples from a normal (Gaussian) distribution.\n\n The probability density function of the normal distribution, first\n derived by De Moivre and 200 years later by both Gauss and Laplace\n independently [2]_, is often called the bell curve because of\n its characteristic shape (see the example below).\n\n The normal distributions occurs often in nature. For example, it\n describes the commonly occurring distribution of samples influenced\n by a large number of tiny, random disturbances, each with its own\n unique distribution [2]_.\n\n Parameters\n ----------\n loc : float\n Mean (\"centre\") of the distribution.\n scale : float\n Standard deviation (spread or \"width\") of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n See Also\n --------\n scipy.stats.distributions.norm : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gaussian distribution is\n\n .. math:: p(x) = \\frac{1}{\\sqrt{ 2 \\pi \\sigma^2 }}\n e^{ - \\frac{ (x - \\mu)^2 } {2 \\sigma^2} },\n\n where :math:`\\mu` is the mean and :math:`\\sigma` the standard deviation.\n The square of the standard deviation, :math:`\\sigma^2`, is called the\n variance.\n\n The function has its peak at the mean, and its \"spread\" increases with\n the standard deviation (the function reaches 0.607 times its maximum at\n :math:`x + \\sigma` and :math:`x - \\sigma` [2]_). This implies that\n `numpy.random.normal` is more l""ikely to return samples lying close to the\n mean, rather than those far away.\n\n References\n ----------\n .. [1] Wikipedia, \"Normal distribution\",\n http://en.wikipedia.org/wiki/Normal_distribution\n .. [2] P. R. Peebles Jr., \"Central Limit Theorem\" in \"Probability, Random\n Variables and Random Signal Principles\", 4th ed., 2001,\n pp. 51, 51, 125.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 0, 0.1 # mean and standard deviation\n >>> s = np.random.normal(mu, sigma, 1000)\n\n Verify the mean and the variance:\n\n >>> abs(mu - np.mean(s)) < 0.01\n True\n\n >>> abs(sigma - np.std(s, ddof=1)) < 0.01\n True\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, normed=True)\n >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *\n ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_37normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("normal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "normal") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1456; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("normal", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1456; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_36normal(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_36normal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oloc = 0; PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_floc; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("normal", 0); /* "mtrand.pyx":1542 * cdef double floc, fscale * * floc = PyFloat_AsDouble(loc) # <<<<<<<<<<<<<< * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): */ __pyx_v_floc = PyFloat_AsDouble(__pyx_v_loc); /* "mtrand.pyx":1543 * * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fscale <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":1544 * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1545 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_normal, size, floc, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1546 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_normal, size, floc, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__53, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1546; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1546; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1547 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_normal, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1548 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_normal, size, floc, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":1547 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_normal, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_normal, __pyx_v_size, __pyx_v_floc, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1547; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1550 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":1552 * PyErr_Clear() * * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1552; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oloc = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1553 * * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0)): * raise ValueError("scale <= 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1553; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_oscale = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1554 * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_normal, size, oloc, oscale, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1555 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_normal, size, oloc, oscale, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__54, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1555; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1555; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1556 * if np.any(np.less_equal(oscale, 0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_normal, size, oloc, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1557 * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_normal, size, oloc, oscale, * self.lock) # <<<<<<<<<<<<<< * * def beta(self, a, b, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":1556 * if np.any(np.less_equal(oscale, 0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_normal, size, oloc, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_normal, __pyx_v_size, __pyx_v_oloc, __pyx_v_oscale, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1556; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":1456 * return cont0_array(self.internal_state, rk_gauss, size, self.lock) * * def normal(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * normal(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oloc); __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1559 * self.lock) * * def beta(self, a, b, size=None): # <<<<<<<<<<<<<< * """ * beta(a, b, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_39beta(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_38beta[] = "\n beta(a, b, size=None)\n\n The Beta distribution over ``[0, 1]``.\n\n The Beta distribution is a special case of the Dirichlet distribution,\n and is related to the Gamma distribution. It has the probability\n distribution function\n\n .. math:: f(x; a,b) = \\frac{1}{B(\\alpha, \\beta)} x^{\\alpha - 1}\n (1 - x)^{\\beta - 1},\n\n where the normalisation, B, is the beta function,\n\n .. math:: B(\\alpha, \\beta) = \\int_0^1 t^{\\alpha - 1}\n (1 - t)^{\\beta - 1} dt.\n\n It is often seen in Bayesian inference and order statistics.\n\n Parameters\n ----------\n a : float\n Alpha, non-negative.\n b : float\n Beta, non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Array of the given shape, containing values drawn from a\n Beta distribution.\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_39beta(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_b = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("beta (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_b,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_b)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("beta", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1559; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "beta") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1559; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_b = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("beta", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1559; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.beta", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_38beta(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_b, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_38beta(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oa = 0; PyArrayObject *__pyx_v_ob = 0; double __pyx_v_fa; double __pyx_v_fb; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("beta", 0); /* "mtrand.pyx":1600 * cdef double fa, fb * * fa = PyFloat_AsDouble(a) # <<<<<<<<<<<<<< * fb = PyFloat_AsDouble(b) * if not PyErr_Occurred(): */ __pyx_v_fa = PyFloat_AsDouble(__pyx_v_a); /* "mtrand.pyx":1601 * * fa = PyFloat_AsDouble(a) * fb = PyFloat_AsDouble(b) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fa <= 0: */ __pyx_v_fb = PyFloat_AsDouble(__pyx_v_b); /* "mtrand.pyx":1602 * fa = PyFloat_AsDouble(a) * fb = PyFloat_AsDouble(b) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fa <= 0: * raise ValueError("a <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1603 * fb = PyFloat_AsDouble(b) * if not PyErr_Occurred(): * if fa <= 0: # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * if fb <= 0: */ __pyx_t_1 = ((__pyx_v_fa <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1604 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * if fb <= 0: * raise ValueError("b <= 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__55, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1604; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1604; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1605 * if fa <= 0: * raise ValueError("a <= 0") * if fb <= 0: # <<<<<<<<<<<<<< * raise ValueError("b <= 0") * return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb, */ __pyx_t_1 = ((__pyx_v_fb <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1606 * raise ValueError("a <= 0") * if fb <= 0: * raise ValueError("b <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__56, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1606; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1606; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1607 * if fb <= 0: * raise ValueError("b <= 0") * return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1608 * raise ValueError("b <= 0") * return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":1607 * if fb <= 0: * raise ValueError("b <= 0") * return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_beta, __pyx_v_size, __pyx_v_fa, __pyx_v_fb, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1607; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1610 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":1612 * PyErr_Clear() * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * ob = PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_a, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1612; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oa = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1613 * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ob = PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oa, 0)): * raise ValueError("a <= 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_b, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1613; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_ob = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1614 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ob = PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0)): # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * if np.any(np.less_equal(ob, 0)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_oa)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_oa)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oa)); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1615 * ob = PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * if np.any(np.less_equal(ob, 0)): * raise ValueError("b <= 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__57, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1615; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1615; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1616 * if np.any(np.less_equal(oa, 0)): * raise ValueError("a <= 0") * if np.any(np.less_equal(ob, 0)): # <<<<<<<<<<<<<< * raise ValueError("b <= 0") * return cont2_array(self.internal_state, rk_beta, size, oa, ob, */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_ob)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_ob)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ob)); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1616; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1617 * raise ValueError("a <= 0") * if np.any(np.less_equal(ob, 0)): * raise ValueError("b <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_beta, size, oa, ob, * self.lock) */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__58, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1617; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1617; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1618 * if np.any(np.less_equal(ob, 0)): * raise ValueError("b <= 0") * return cont2_array(self.internal_state, rk_beta, size, oa, ob, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1619 * raise ValueError("b <= 0") * return cont2_array(self.internal_state, rk_beta, size, oa, ob, * self.lock) # <<<<<<<<<<<<<< * * def exponential(self, scale=1.0, size=None): */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); /* "mtrand.pyx":1618 * if np.any(np.less_equal(ob, 0)): * raise ValueError("b <= 0") * return cont2_array(self.internal_state, rk_beta, size, oa, ob, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_5 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_beta, __pyx_v_size, __pyx_v_oa, __pyx_v_ob, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1618; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":1559 * self.lock) * * def beta(self, a, b, size=None): # <<<<<<<<<<<<<< * """ * beta(a, b, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.beta", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oa); __Pyx_XDECREF((PyObject *)__pyx_v_ob); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1621 * self.lock) * * def exponential(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * exponential(scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_41exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_40exponential[] = "\n exponential(scale=1.0, size=None)\n\n Exponential distribution.\n\n Its probability density function is\n\n .. math:: f(x; \\frac{1}{\\beta}) = \\frac{1}{\\beta} \\exp(-\\frac{x}{\\beta}),\n\n for ``x > 0`` and 0 elsewhere. :math:`\\beta` is the scale parameter,\n which is the inverse of the rate parameter :math:`\\lambda = 1/\\beta`.\n The rate parameter is an alternative, widely used parameterization\n of the exponential distribution [3]_.\n\n The exponential distribution is a continuous analogue of the\n geometric distribution. It describes many common situations, such as\n the size of raindrops measured over many rainstorms [1]_, or the time\n between page requests to Wikipedia [2]_.\n\n Parameters\n ----------\n scale : float\n The scale parameter, :math:`\\beta = 1/\\lambda`.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n References\n ----------\n .. [1] Peyton Z. Peebles Jr., \"Probability, Random Variables and\n Random Signal Principles\", 4th ed, 2001, p. 57.\n .. [2] \"Poisson Process\", Wikipedia,\n http://en.wikipedia.org/wiki/Poisson_process\n .. [3] \"Exponential Distribution, Wikipedia,\n http://en.wikipedia.org/wiki/Exponential_distribution\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_41exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("exponential (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[0] = ((PyObject *)__pyx_float_1_0); values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "exponential") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1621; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_scale = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("exponential", 0, 0, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1621; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_40exponential(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_40exponential(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("exponential", 0); /* "mtrand.pyx":1663 * cdef double fscale * * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fscale <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":1664 * * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1665 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_exponential, size, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1666 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_exponential, size, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__59, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1666; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1666; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1667 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_exponential, size, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1668 * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_exponential, size, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":1667 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_exponential, size, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_exponential, __pyx_v_size, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1667; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1670 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":1672 * PyErr_Clear() * * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1672; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oscale = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1673 * * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont1_array(self.internal_state, rk_exponential, size, oscale, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1674 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_exponential, size, oscale, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__60, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1674; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1674; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1675 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont1_array(self.internal_state, rk_exponential, size, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1676 * raise ValueError("scale <= 0") * return cont1_array(self.internal_state, rk_exponential, size, oscale, * self.lock) # <<<<<<<<<<<<<< * * def standard_exponential(self, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":1675 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont1_array(self.internal_state, rk_exponential, size, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_exponential, __pyx_v_size, __pyx_v_oscale, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1675; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":1621 * self.lock) * * def exponential(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * exponential(scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1678 * self.lock) * * def standard_exponential(self, size=None): # <<<<<<<<<<<<<< * """ * standard_exponential(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_43standard_exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_42standard_exponential[] = "\n standard_exponential(size=None)\n\n Draw samples from the standard exponential distribution.\n\n `standard_exponential` is identical to the exponential distribution\n with a scale parameter of 1.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n Drawn samples.\n\n Examples\n --------\n Output a 3x8000 array:\n\n >>> n = np.random.standard_exponential((3, 8000))\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_43standard_exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_exponential (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_exponential") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1678; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_exponential", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1678; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.standard_exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_42standard_exponential(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_42standard_exponential(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("standard_exponential", 0); /* "mtrand.pyx":1706 * * """ * return cont0_array(self.internal_state, rk_standard_exponential, size, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1707 * """ * return cont0_array(self.internal_state, rk_standard_exponential, size, * self.lock) # <<<<<<<<<<<<<< * * def standard_gamma(self, shape, size=None): */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "mtrand.pyx":1706 * * """ * return cont0_array(self.internal_state, rk_standard_exponential, size, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont0_array(__pyx_v_self->internal_state, rk_standard_exponential, __pyx_v_size, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1706; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":1678 * self.lock) * * def standard_exponential(self, size=None): # <<<<<<<<<<<<<< * """ * standard_exponential(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("mtrand.RandomState.standard_exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1709 * self.lock) * * def standard_gamma(self, shape, size=None): # <<<<<<<<<<<<<< * """ * standard_gamma(shape, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_45standard_gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_44standard_gamma[] = "\n standard_gamma(shape, size=None)\n\n Draw samples from a Standard Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n shape (sometimes designated \"k\") and scale=1.\n\n Parameters\n ----------\n shape : float\n Parameter, should be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The drawn samples.\n\n See Also\n --------\n scipy.stats.distributions.gamma : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma-distribution\",\n http://en.wikipedia.org/wiki/Gamma-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> shape, scale = 2., 1. # mean and width\n >>> s = np.random.standard_gamma(shape, 1000000)\n\n Display the histogram of the samples, along with\n "" the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps\n >>> count, bins, ignored = plt.hist(s, 50, normed=True)\n >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \\\n ... (sps.gamma(shape) * scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_45standard_gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_gamma (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_gamma") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1709; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_gamma", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1709; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.standard_gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_44standard_gamma(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_shape, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_44standard_gamma(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oshape = 0; double __pyx_v_fshape; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("standard_gamma", 0); /* "mtrand.pyx":1780 * cdef double fshape * * fshape = PyFloat_AsDouble(shape) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fshape <= 0: */ __pyx_v_fshape = PyFloat_AsDouble(__pyx_v_shape); /* "mtrand.pyx":1781 * * fshape = PyFloat_AsDouble(shape) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fshape <= 0: * raise ValueError("shape <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1782 * fshape = PyFloat_AsDouble(shape) * if not PyErr_Occurred(): * if fshape <= 0: # <<<<<<<<<<<<<< * raise ValueError("shape <= 0") * return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape, self.lock) */ __pyx_t_1 = ((__pyx_v_fshape <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1783 * if not PyErr_Occurred(): * if fshape <= 0: * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape, self.lock) * */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__61, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1783; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1783; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1784 * if fshape <= 0: * raise ValueError("shape <= 0") * return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_standard_gamma, __pyx_v_size, __pyx_v_fshape, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1784; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1786 * return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): */ PyErr_Clear(); /* "mtrand.pyx":1787 * * PyErr_Clear() * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1787; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oshape = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1788 * PyErr_Clear() * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("shape <= 0") * return cont1_array(self.internal_state, rk_standard_gamma, size, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oshape)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oshape)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oshape)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1788; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1789 * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_standard_gamma, size, * oshape, self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__62, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1789; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1789; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1790 * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") * return cont1_array(self.internal_state, rk_standard_gamma, size, # <<<<<<<<<<<<<< * oshape, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1791 * raise ValueError("shape <= 0") * return cont1_array(self.internal_state, rk_standard_gamma, size, * oshape, self.lock) # <<<<<<<<<<<<<< * * def gamma(self, shape, scale=1.0, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":1790 * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") * return cont1_array(self.internal_state, rk_standard_gamma, size, # <<<<<<<<<<<<<< * oshape, self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_standard_gamma, __pyx_v_size, __pyx_v_oshape, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1790; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":1709 * self.lock) * * def standard_gamma(self, shape, size=None): # <<<<<<<<<<<<<< * """ * standard_gamma(shape, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.standard_gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oshape); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1793 * oshape, self.lock) * * def gamma(self, shape, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gamma(shape, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_47gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_46gamma[] = "\n gamma(shape, scale=1.0, size=None)\n\n Draw samples from a Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n `shape` (sometimes designated \"k\") and `scale` (sometimes designated\n \"theta\"), where both parameters are > 0.\n\n Parameters\n ----------\n shape : scalar > 0\n The shape of the gamma distribution.\n scale : scalar > 0, optional\n The scale of the gamma distribution. Default is equal to 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray, float\n Returns one sample unless `size` parameter is specified.\n\n See Also\n --------\n scipy.stats.distributions.gamma : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma-distribution\",\n http://en.wikipedia.org/wiki/Gamma-distribution\n\n Examples\n -----""---\n Draw samples from the distribution:\n\n >>> shape, scale = 2., 2. # mean and dispersion\n >>> s = np.random.gamma(shape, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps\n >>> count, bins, ignored = plt.hist(s, 50, normed=True)\n >>> y = bins**(shape-1)*(np.exp(-bins/scale) /\n ... (sps.gamma(shape)*scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_47gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("gamma (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "gamma") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1793; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("gamma", 0, 1, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1793; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_46gamma(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_shape, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_46gamma(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oshape = 0; PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_fshape; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("gamma", 0); /* "mtrand.pyx":1867 * cdef double fshape, fscale * * fshape = PyFloat_AsDouble(shape) # <<<<<<<<<<<<<< * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): */ __pyx_v_fshape = PyFloat_AsDouble(__pyx_v_shape); /* "mtrand.pyx":1868 * * fshape = PyFloat_AsDouble(shape) * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fshape <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":1869 * fshape = PyFloat_AsDouble(shape) * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fshape <= 0: * raise ValueError("shape <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1870 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fshape <= 0: # <<<<<<<<<<<<<< * raise ValueError("shape <= 0") * if fscale <= 0: */ __pyx_t_1 = ((__pyx_v_fshape <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1871 * if not PyErr_Occurred(): * if fshape <= 0: * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__63, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1871; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1871; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1872 * if fshape <= 0: * raise ValueError("shape <= 0") * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1873 * raise ValueError("shape <= 0") * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__64, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1873; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1873; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1874 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1875 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":1874 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_gamma, __pyx_v_size, __pyx_v_fshape, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1874; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1877 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":1878 * * PyErr_Clear() * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1878; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oshape = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1879 * PyErr_Clear() * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1879; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_oscale = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1880 * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("shape <= 0") * if np.any(np.less_equal(oscale, 0.0)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_oshape)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_oshape)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oshape)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1880; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1881 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__65, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1881; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1881; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1882 * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") * if np.any(np.less_equal(oscale, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale, */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1882; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1883 * raise ValueError("shape <= 0") * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale, * self.lock) */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__66, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1883; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1883; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1884 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1885 * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale, * self.lock) # <<<<<<<<<<<<<< * * def f(self, dfnum, dfden, size=None): */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); /* "mtrand.pyx":1884 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_5 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_gamma, __pyx_v_size, __pyx_v_oshape, __pyx_v_oscale, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1884; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":1793 * oshape, self.lock) * * def gamma(self, shape, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gamma(shape, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oshape); __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1887 * self.lock) * * def f(self, dfnum, dfden, size=None): # <<<<<<<<<<<<<< * """ * f(dfnum, dfden, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_49f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_48f[] = "\n f(dfnum, dfden, size=None)\n\n Draw samples from a F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom\n in denominator), where both parameters should be greater than zero.\n\n The random variate of the F distribution (also known as the\n Fisher distribution) is a continuous probability distribution\n that arises in ANOVA tests, and is the ratio of two chi-square\n variates.\n\n Parameters\n ----------\n dfnum : float\n Degrees of freedom in numerator. Should be greater than zero.\n dfden : float\n Degrees of freedom in denominator. Should be greater than zero.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n Samples from the Fisher distribution.\n\n See Also\n --------\n scipy.stats.distributions.f : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The F statistic is used to compare in-group variances to between-group\n variances. Calculating the distribution depends on the sampling, and\n so it is a function of the respective degrees of freedom in the\n problem. The variable `dfnum` is the number of samples minus one, the\n between-groups degrees of freedom, while `dfden` is the within-groups\n degrees of freedom, the sum of the number of samples in each group\n minus the number of groups.\n\n References\n ----------\n .. [1] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n "" Fifth Edition, 2002.\n .. [2] Wikipedia, \"F-distribution\",\n http://en.wikipedia.org/wiki/F-distribution\n\n Examples\n --------\n An example from Glantz[1], pp 47-40.\n Two groups, children of diabetics (25 people) and children from people\n without diabetes (25 controls). Fasting blood glucose was measured,\n case group had a mean value of 86.1, controls had a mean value of\n 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these\n data consistent with the null hypothesis that the parents diabetic\n status does not affect their children's blood glucose levels?\n Calculating the F statistic from the data gives a value of 36.01.\n\n Draw samples from the distribution:\n\n >>> dfnum = 1. # between group degrees of freedom\n >>> dfden = 48. # within groups degrees of freedom\n >>> s = np.random.f(dfnum, dfden, 1000)\n\n The lower bound for the top 1% of the samples is :\n\n >>> sort(s)[-10]\n 7.61988120985\n\n So there is about a 1% chance that the F statistic will exceed 7.62,\n the measured value is 36, so the null hypothesis is rejected at the 1%\n level.\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_49f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_dfnum = 0; PyObject *__pyx_v_dfden = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("f (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_dfnum,&__pyx_n_s_dfden,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dfnum)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dfden)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("f", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1887; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "f") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1887; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_dfnum = values[0]; __pyx_v_dfden = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("f", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1887; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.f", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_48f(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_dfnum, __pyx_v_dfden, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_48f(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_odfnum = 0; PyArrayObject *__pyx_v_odfden = 0; double __pyx_v_fdfnum; double __pyx_v_fdfden; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("f", 0); /* "mtrand.pyx":1970 * cdef double fdfnum, fdfden * * fdfnum = PyFloat_AsDouble(dfnum) # <<<<<<<<<<<<<< * fdfden = PyFloat_AsDouble(dfden) * if not PyErr_Occurred(): */ __pyx_v_fdfnum = PyFloat_AsDouble(__pyx_v_dfnum); /* "mtrand.pyx":1971 * * fdfnum = PyFloat_AsDouble(dfnum) * fdfden = PyFloat_AsDouble(dfden) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fdfnum <= 0: */ __pyx_v_fdfden = PyFloat_AsDouble(__pyx_v_dfden); /* "mtrand.pyx":1972 * fdfnum = PyFloat_AsDouble(dfnum) * fdfden = PyFloat_AsDouble(dfden) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fdfnum <= 0: * raise ValueError("shape <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1973 * fdfden = PyFloat_AsDouble(dfden) * if not PyErr_Occurred(): * if fdfnum <= 0: # <<<<<<<<<<<<<< * raise ValueError("shape <= 0") * if fdfden <= 0: */ __pyx_t_1 = ((__pyx_v_fdfnum <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1974 * if not PyErr_Occurred(): * if fdfnum <= 0: * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * if fdfden <= 0: * raise ValueError("scale <= 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__67, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1974; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1974; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1975 * if fdfnum <= 0: * raise ValueError("shape <= 0") * if fdfden <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, */ __pyx_t_1 = ((__pyx_v_fdfden <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":1976 * raise ValueError("shape <= 0") * if fdfden <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, * fdfden, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__68, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1976; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1976; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1977 * if fdfden <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, # <<<<<<<<<<<<<< * fdfden, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1978 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, * fdfden, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":1977 * if fdfden <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, # <<<<<<<<<<<<<< * fdfden, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_f, __pyx_v_size, __pyx_v_fdfnum, __pyx_v_fdfden, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1977; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":1980 * fdfden, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":1982 * PyErr_Clear() * * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odfnum, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1982; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_odfnum = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1983 * * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(odfnum, 0.0)): * raise ValueError("dfnum <= 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1983; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_odfden = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":1984 * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odfnum, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("dfnum <= 0") * if np.any(np.less_equal(odfden, 0.0)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_odfnum)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_odfnum)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odfnum)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1984; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1985 * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odfnum, 0.0)): * raise ValueError("dfnum <= 0") # <<<<<<<<<<<<<< * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__69, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1985; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1985; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1986 * if np.any(np.less_equal(odfnum, 0.0)): * raise ValueError("dfnum <= 0") * if np.any(np.less_equal(odfden, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("dfden <= 0") * return cont2_array(self.internal_state, rk_f, size, odfnum, odfden, */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_odfden)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_odfden)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odfden)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1986; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":1987 * raise ValueError("dfnum <= 0") * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_f, size, odfnum, odfden, * self.lock) */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__70, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1987; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1987; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":1988 * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") * return cont2_array(self.internal_state, rk_f, size, odfnum, odfden, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":1989 * raise ValueError("dfden <= 0") * return cont2_array(self.internal_state, rk_f, size, odfnum, odfden, * self.lock) # <<<<<<<<<<<<<< * * def noncentral_f(self, dfnum, dfden, nonc, size=None): */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); /* "mtrand.pyx":1988 * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") * return cont2_array(self.internal_state, rk_f, size, odfnum, odfden, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_5 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_f, __pyx_v_size, __pyx_v_odfnum, __pyx_v_odfden, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1988; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":1887 * self.lock) * * def f(self, dfnum, dfden, size=None): # <<<<<<<<<<<<<< * """ * f(dfnum, dfden, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.f", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_odfnum); __Pyx_XDECREF((PyObject *)__pyx_v_odfden); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":1991 * self.lock) * * def noncentral_f(self, dfnum, dfden, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_f(dfnum, dfden, nonc, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_51noncentral_f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_50noncentral_f[] = "\n noncentral_f(dfnum, dfden, nonc, size=None)\n\n Draw samples from the noncentral F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of\n freedom in denominator), where both parameters > 1.\n `nonc` is the non-centrality parameter.\n\n Parameters\n ----------\n dfnum : int\n Parameter, should be > 1.\n dfden : int\n Parameter, should be > 1.\n nonc : float\n Parameter, should be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : scalar or ndarray\n Drawn samples.\n\n Notes\n -----\n When calculating the power of an experiment (power = probability of\n rejecting the null hypothesis when a specific alternative is true) the\n non-central F statistic becomes important. When the null hypothesis is\n true, the F statistic follows a central F distribution. When the null\n hypothesis is not true, then it follows a non-central F statistic.\n\n References\n ----------\n Weisstein, Eric W. \"Noncentral F-Distribution.\" From MathWorld--A Wolfram\n Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html\n\n Wikipedia, \"Noncentral F distribution\",\n http://en.wikipedia.org/wiki/Noncentral_F-distribution\n\n Examples\n --------\n In a study, testing for a specific alternative to the null hypothesis\n requires use of the Noncentral F distribution. We need to calculate the\n area in the tail of the distribution that exceeds the value of the F\n distribution for ""the null hypothesis. We'll plot the two probability\n distributions for comparison.\n\n >>> dfnum = 3 # between group deg of freedom\n >>> dfden = 20 # within groups degrees of freedom\n >>> nonc = 3.0\n >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)\n >>> NF = np.histogram(nc_vals, bins=50, normed=True)\n >>> c_vals = np.random.f(dfnum, dfden, 1000000)\n >>> F = np.histogram(c_vals, bins=50, normed=True)\n >>> plt.plot(F[1][1:], F[0])\n >>> plt.plot(NF[1][1:], NF[0])\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_51noncentral_f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_dfnum = 0; PyObject *__pyx_v_dfden = 0; PyObject *__pyx_v_nonc = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("noncentral_f (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_dfnum,&__pyx_n_s_dfden,&__pyx_n_s_nonc,&__pyx_n_s_size,0}; PyObject* values[4] = {0,0,0,0}; values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dfnum)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dfden)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("noncentral_f", 0, 3, 4, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1991; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_nonc)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("noncentral_f", 0, 3, 4, 2); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1991; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 3: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "noncentral_f") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1991; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_dfnum = values[0]; __pyx_v_dfden = values[1]; __pyx_v_nonc = values[2]; __pyx_v_size = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("noncentral_f", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1991; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.noncentral_f", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_50noncentral_f(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_dfnum, __pyx_v_dfden, __pyx_v_nonc, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_50noncentral_f(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_odfnum = 0; PyArrayObject *__pyx_v_odfden = 0; PyArrayObject *__pyx_v_ononc = 0; double __pyx_v_fdfnum; double __pyx_v_fdfden; double __pyx_v_fnonc; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("noncentral_f", 0); /* "mtrand.pyx":2059 * cdef double fdfnum, fdfden, fnonc * * fdfnum = PyFloat_AsDouble(dfnum) # <<<<<<<<<<<<<< * fdfden = PyFloat_AsDouble(dfden) * fnonc = PyFloat_AsDouble(nonc) */ __pyx_v_fdfnum = PyFloat_AsDouble(__pyx_v_dfnum); /* "mtrand.pyx":2060 * * fdfnum = PyFloat_AsDouble(dfnum) * fdfden = PyFloat_AsDouble(dfden) # <<<<<<<<<<<<<< * fnonc = PyFloat_AsDouble(nonc) * if not PyErr_Occurred(): */ __pyx_v_fdfden = PyFloat_AsDouble(__pyx_v_dfden); /* "mtrand.pyx":2061 * fdfnum = PyFloat_AsDouble(dfnum) * fdfden = PyFloat_AsDouble(dfden) * fnonc = PyFloat_AsDouble(nonc) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fdfnum <= 1: */ __pyx_v_fnonc = PyFloat_AsDouble(__pyx_v_nonc); /* "mtrand.pyx":2062 * fdfden = PyFloat_AsDouble(dfden) * fnonc = PyFloat_AsDouble(nonc) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fdfnum <= 1: * raise ValueError("dfnum <= 1") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2063 * fnonc = PyFloat_AsDouble(nonc) * if not PyErr_Occurred(): * if fdfnum <= 1: # <<<<<<<<<<<<<< * raise ValueError("dfnum <= 1") * if fdfden <= 0: */ __pyx_t_1 = ((__pyx_v_fdfnum <= 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2064 * if not PyErr_Occurred(): * if fdfnum <= 1: * raise ValueError("dfnum <= 1") # <<<<<<<<<<<<<< * if fdfden <= 0: * raise ValueError("dfden <= 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__71, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2065 * if fdfnum <= 1: * raise ValueError("dfnum <= 1") * if fdfden <= 0: # <<<<<<<<<<<<<< * raise ValueError("dfden <= 0") * if fnonc < 0: */ __pyx_t_1 = ((__pyx_v_fdfden <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2066 * raise ValueError("dfnum <= 1") * if fdfden <= 0: * raise ValueError("dfden <= 0") # <<<<<<<<<<<<<< * if fnonc < 0: * raise ValueError("nonc < 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__72, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2066; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2066; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2067 * if fdfden <= 0: * raise ValueError("dfden <= 0") * if fnonc < 0: # <<<<<<<<<<<<<< * raise ValueError("nonc < 0") * return cont3_array_sc(self.internal_state, rk_noncentral_f, size, */ __pyx_t_1 = ((__pyx_v_fnonc < 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2068 * raise ValueError("dfden <= 0") * if fnonc < 0: * raise ValueError("nonc < 0") # <<<<<<<<<<<<<< * return cont3_array_sc(self.internal_state, rk_noncentral_f, size, * fdfnum, fdfden, fnonc, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__73, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2068; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2068; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2069 * if fnonc < 0: * raise ValueError("nonc < 0") * return cont3_array_sc(self.internal_state, rk_noncentral_f, size, # <<<<<<<<<<<<<< * fdfnum, fdfden, fnonc, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2070 * raise ValueError("nonc < 0") * return cont3_array_sc(self.internal_state, rk_noncentral_f, size, * fdfnum, fdfden, fnonc, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2069 * if fnonc < 0: * raise ValueError("nonc < 0") * return cont3_array_sc(self.internal_state, rk_noncentral_f, size, # <<<<<<<<<<<<<< * fdfnum, fdfden, fnonc, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont3_array_sc(__pyx_v_self->internal_state, rk_noncentral_f, __pyx_v_size, __pyx_v_fdfnum, __pyx_v_fdfden, __pyx_v_fnonc, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2069; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2072 * fdfnum, fdfden, fnonc, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2074 * PyErr_Clear() * * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2074; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_odfnum = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2075 * * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2075; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_odfden = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":2076 * odfnum = PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * * if np.any(np.less_equal(odfnum, 1.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2076; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ononc = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2078 * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * * if np.any(np.less_equal(odfnum, 1.0)): # <<<<<<<<<<<<<< * raise ValueError("dfnum <= 1") * if np.any(np.less_equal(odfden, 0.0)): */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_odfnum)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_odfnum)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odfnum)); __Pyx_INCREF(__pyx_float_1_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_1_0); __Pyx_GIVEREF(__pyx_float_1_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2079 * * if np.any(np.less_equal(odfnum, 1.0)): * raise ValueError("dfnum <= 1") # <<<<<<<<<<<<<< * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__74, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2079; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2079; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2080 * if np.any(np.less_equal(odfnum, 1.0)): * raise ValueError("dfnum <= 1") * if np.any(np.less_equal(odfden, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("dfden <= 0") * if np.any(np.less(ononc, 0.0)): */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_odfden)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_odfden)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odfden)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2080; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2081 * raise ValueError("dfnum <= 1") * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") # <<<<<<<<<<<<<< * if np.any(np.less(ononc, 0.0)): * raise ValueError("nonc < 0") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__75, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2081; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2081; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2082 * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") * if np.any(np.less(ononc, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("nonc < 0") * return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum, */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_any); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_less); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(((PyObject *)__pyx_v_ononc)); PyTuple_SET_ITEM(__pyx_t_4, 0, ((PyObject *)__pyx_v_ononc)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ononc)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2082; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2083 * raise ValueError("dfden <= 0") * if np.any(np.less(ononc, 0.0)): * raise ValueError("nonc < 0") # <<<<<<<<<<<<<< * return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum, * odfden, ononc, self.lock) */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__76, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2084 * if np.any(np.less(ononc, 0.0)): * raise ValueError("nonc < 0") * return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum, # <<<<<<<<<<<<<< * odfden, ononc, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2085 * raise ValueError("nonc < 0") * return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum, * odfden, ononc, self.lock) # <<<<<<<<<<<<<< * * def chisquare(self, df, size=None): */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); /* "mtrand.pyx":2084 * if np.any(np.less(ononc, 0.0)): * raise ValueError("nonc < 0") * return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum, # <<<<<<<<<<<<<< * odfden, ononc, self.lock) * */ __pyx_t_4 = __pyx_f_6mtrand_cont3_array(__pyx_v_self->internal_state, rk_noncentral_f, __pyx_v_size, __pyx_v_odfnum, __pyx_v_odfden, __pyx_v_ononc, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2084; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":1991 * self.lock) * * def noncentral_f(self, dfnum, dfden, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_f(dfnum, dfden, nonc, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.noncentral_f", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_odfnum); __Pyx_XDECREF((PyObject *)__pyx_v_odfden); __Pyx_XDECREF((PyObject *)__pyx_v_ononc); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2087 * odfden, ononc, self.lock) * * def chisquare(self, df, size=None): # <<<<<<<<<<<<<< * """ * chisquare(df, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_53chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_52chisquare[] = "\n chisquare(df, size=None)\n\n Draw samples from a chi-square distribution.\n\n When `df` independent random variables, each with standard normal\n distributions (mean 0, variance 1), are squared and summed, the\n resulting distribution is chi-square (see Notes). This distribution\n is often used in hypothesis testing.\n\n Parameters\n ----------\n df : int\n Number of degrees of freedom.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n output : ndarray\n Samples drawn from the distribution, packed in a `size`-shaped\n array.\n\n Raises\n ------\n ValueError\n When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)\n is given.\n\n Notes\n -----\n The variable obtained by summing the squares of `df` independent,\n standard normally distributed random variables:\n\n .. math:: Q = \\sum_{i=0}^{\\mathtt{df}} X^2_i\n\n is chi-square distributed, denoted\n\n .. math:: Q \\sim \\chi^2_k.\n\n The probability density function of the chi-squared distribution is\n\n .. math:: p(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}\n x^{k/2 - 1} e^{-x/2},\n\n where :math:`\\Gamma` is the gamma function,\n\n .. math:: \\Gamma(x) = \\int_0^{-\\infty} t^{x - 1} e^{-t} dt.\n\n References\n ----------\n `NIST/SEMATECH e-Handbook of Statistical Methods\n `_\n\n Examples\n --------\n >>> np.random.chisquare(2,4)\n array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272])\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_53chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_df = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("chisquare (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_df,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_df)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "chisquare") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2087; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_df = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("chisquare", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2087; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_52chisquare(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_df, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_52chisquare(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_odf = 0; double __pyx_v_fdf; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("chisquare", 0); /* "mtrand.pyx":2153 * cdef double fdf * * fdf = PyFloat_AsDouble(df) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fdf <= 0: */ __pyx_v_fdf = PyFloat_AsDouble(__pyx_v_df); /* "mtrand.pyx":2154 * * fdf = PyFloat_AsDouble(df) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fdf <= 0: * raise ValueError("df <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2155 * fdf = PyFloat_AsDouble(df) * if not PyErr_Occurred(): * if fdf <= 0: # <<<<<<<<<<<<<< * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf, */ __pyx_t_1 = ((__pyx_v_fdf <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2156 * if not PyErr_Occurred(): * if fdf <= 0: * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__77, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2156; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2156; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2157 * if fdf <= 0: * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2158 * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2157 * if fdf <= 0: * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_chisquare, __pyx_v_size, __pyx_v_fdf, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2157; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2160 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2162 * PyErr_Clear() * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_df, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2162; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_odf = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2163 * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_chisquare, size, odf, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_odf)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_odf)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odf)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2163; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2164 * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_chisquare, size, odf, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__78, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2165 * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_chisquare, size, odf, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2166 * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_chisquare, size, odf, * self.lock) # <<<<<<<<<<<<<< * * def noncentral_chisquare(self, df, nonc, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":2165 * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_chisquare, size, odf, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_chisquare, __pyx_v_size, __pyx_v_odf, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2165; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":2087 * odfden, ononc, self.lock) * * def chisquare(self, df, size=None): # <<<<<<<<<<<<<< * """ * chisquare(df, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_odf); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2168 * self.lock) * * def noncentral_chisquare(self, df, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_chisquare(df, nonc, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_55noncentral_chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_54noncentral_chisquare[] = "\n noncentral_chisquare(df, nonc, size=None)\n\n Draw samples from a noncentral chi-square distribution.\n\n The noncentral :math:`\\chi^2` distribution is a generalisation of\n the :math:`\\chi^2` distribution.\n\n Parameters\n ----------\n df : int\n Degrees of freedom, should be >= 1.\n nonc : float\n Non-centrality, should be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n The probability density function for the noncentral Chi-square distribution\n is\n\n .. math:: P(x;df,nonc) = \\sum^{\\infty}_{i=0}\n \\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}P_{Y_{df+2i}}(x),\n\n where :math:`Y_{q}` is the Chi-square with q degrees of freedom.\n\n In Delhi (2007), it is noted that the noncentral chi-square is useful in\n bombing and coverage problems, the probability of killing the point target\n given by the noncentral chi-squared distribution.\n\n References\n ----------\n .. [1] Delhi, M.S. Holla, \"On a noncentral chi-square distribution in the\n analysis of weapon systems effectiveness\", Metrika, Volume 15,\n Number 1 / December, 1970.\n .. [2] Wikipedia, \"Noncentral chi-square distribution\"\n http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram\n\n >>> import matplotlib.pyplot as plt\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, normed=True)\n >>> plt.show()\n\n Draw values from a noncentral chisquare with very smal""l noncentrality,\n and compare to a chisquare.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),\n ... bins=np.arange(0., 25, .1), normed=True)\n >>> values2 = plt.hist(np.random.chisquare(3, 100000),\n ... bins=np.arange(0., 25, .1), normed=True)\n >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')\n >>> plt.show()\n\n Demonstrate how large values of non-centrality lead to a more symmetric\n distribution.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, normed=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_55noncentral_chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_df = 0; PyObject *__pyx_v_nonc = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("noncentral_chisquare (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_df,&__pyx_n_s_nonc,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_df)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_nonc)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("noncentral_chisquare", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2168; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "noncentral_chisquare") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2168; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_df = values[0]; __pyx_v_nonc = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("noncentral_chisquare", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2168; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.noncentral_chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_54noncentral_chisquare(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_df, __pyx_v_nonc, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_54noncentral_chisquare(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_odf = 0; PyArrayObject *__pyx_v_ononc = 0; double __pyx_v_fdf; double __pyx_v_fnonc; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("noncentral_chisquare", 0); /* "mtrand.pyx":2241 * cdef ndarray odf, ononc * cdef double fdf, fnonc * fdf = PyFloat_AsDouble(df) # <<<<<<<<<<<<<< * fnonc = PyFloat_AsDouble(nonc) * if not PyErr_Occurred(): */ __pyx_v_fdf = PyFloat_AsDouble(__pyx_v_df); /* "mtrand.pyx":2242 * cdef double fdf, fnonc * fdf = PyFloat_AsDouble(df) * fnonc = PyFloat_AsDouble(nonc) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fdf <= 1: */ __pyx_v_fnonc = PyFloat_AsDouble(__pyx_v_nonc); /* "mtrand.pyx":2243 * fdf = PyFloat_AsDouble(df) * fnonc = PyFloat_AsDouble(nonc) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fdf <= 1: * raise ValueError("df <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2244 * fnonc = PyFloat_AsDouble(nonc) * if not PyErr_Occurred(): * if fdf <= 1: # <<<<<<<<<<<<<< * raise ValueError("df <= 0") * if fnonc <= 0: */ __pyx_t_1 = ((__pyx_v_fdf <= 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2245 * if not PyErr_Occurred(): * if fdf <= 1: * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * if fnonc <= 0: * raise ValueError("nonc <= 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__79, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2245; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2245; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2246 * if fdf <= 1: * raise ValueError("df <= 0") * if fnonc <= 0: # <<<<<<<<<<<<<< * raise ValueError("nonc <= 0") * return cont2_array_sc(self.internal_state, rk_noncentral_chisquare, */ __pyx_t_1 = ((__pyx_v_fnonc <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2247 * raise ValueError("df <= 0") * if fnonc <= 0: * raise ValueError("nonc <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_noncentral_chisquare, * size, fdf, fnonc, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__80, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2247; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2247; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2248 * if fnonc <= 0: * raise ValueError("nonc <= 0") * return cont2_array_sc(self.internal_state, rk_noncentral_chisquare, # <<<<<<<<<<<<<< * size, fdf, fnonc, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2249 * raise ValueError("nonc <= 0") * return cont2_array_sc(self.internal_state, rk_noncentral_chisquare, * size, fdf, fnonc, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2248 * if fnonc <= 0: * raise ValueError("nonc <= 0") * return cont2_array_sc(self.internal_state, rk_noncentral_chisquare, # <<<<<<<<<<<<<< * size, fdf, fnonc, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_noncentral_chisquare, __pyx_v_size, __pyx_v_fdf, __pyx_v_fnonc, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2248; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2251 * size, fdf, fnonc, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2253 * PyErr_Clear() * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_df, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2253; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_odf = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2254 * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 1") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2254; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_ononc = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":2255 * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("df <= 1") * if np.any(np.less_equal(ononc, 0.0)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_odf)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_odf)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odf)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2255; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2256 * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 1") # <<<<<<<<<<<<<< * if np.any(np.less_equal(ononc, 0.0)): * raise ValueError("nonc < 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__81, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2256; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2256; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2257 * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 1") * if np.any(np.less_equal(ononc, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("nonc < 0") * return cont2_array(self.internal_state, rk_noncentral_chisquare, size, */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_ononc)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_ononc)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ononc)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2258 * raise ValueError("df <= 1") * if np.any(np.less_equal(ononc, 0.0)): * raise ValueError("nonc < 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_noncentral_chisquare, size, * odf, ononc, self.lock) */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__82, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2258; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2258; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2259 * if np.any(np.less_equal(ononc, 0.0)): * raise ValueError("nonc < 0") * return cont2_array(self.internal_state, rk_noncentral_chisquare, size, # <<<<<<<<<<<<<< * odf, ononc, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2260 * raise ValueError("nonc < 0") * return cont2_array(self.internal_state, rk_noncentral_chisquare, size, * odf, ononc, self.lock) # <<<<<<<<<<<<<< * * def standard_cauchy(self, size=None): */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); /* "mtrand.pyx":2259 * if np.any(np.less_equal(ononc, 0.0)): * raise ValueError("nonc < 0") * return cont2_array(self.internal_state, rk_noncentral_chisquare, size, # <<<<<<<<<<<<<< * odf, ononc, self.lock) * */ __pyx_t_5 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_noncentral_chisquare, __pyx_v_size, __pyx_v_odf, __pyx_v_ononc, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2259; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":2168 * self.lock) * * def noncentral_chisquare(self, df, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_chisquare(df, nonc, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.noncentral_chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_odf); __Pyx_XDECREF((PyObject *)__pyx_v_ononc); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2262 * odf, ononc, self.lock) * * def standard_cauchy(self, size=None): # <<<<<<<<<<<<<< * """ * standard_cauchy(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_57standard_cauchy(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_56standard_cauchy[] = "\n standard_cauchy(size=None)\n\n Standard Cauchy distribution with mode = 0.\n\n Also known as the Lorentz distribution.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The drawn samples.\n\n Notes\n -----\n The probability density function for the full Cauchy distribution is\n\n .. math:: P(x; x_0, \\gamma) = \\frac{1}{\\pi \\gamma \\bigl[ 1+\n (\\frac{x-x_0}{\\gamma})^2 \\bigr] }\n\n and the Standard Cauchy distribution just sets :math:`x_0=0` and\n :math:`\\gamma=1`\n\n The Cauchy distribution arises in the solution to the driven harmonic\n oscillator problem, and also describes spectral line broadening. It\n also describes the distribution of values at which a line tilted at\n a random angle will cut the x axis.\n\n When studying hypothesis tests that assume normality, seeing how the\n tests perform on data from a Cauchy distribution is a good indicator of\n their sensitivity to a heavy-tailed distribution, since the Cauchy looks\n very much like a Gaussian distribution, but with heavier tails.\n\n References\n ----------\n .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, \"Cauchy\n Distribution\",\n http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm\n .. [2] Weisstein, Eric W. \"Cauchy Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/CauchyDistribution.html\n .. [3] Wikipedia, \"Cauchy distribution\"\n http://en.wikipedia.org/wiki/Cauchy_distribution""\n\n Examples\n --------\n Draw samples and plot the distribution:\n\n >>> s = np.random.standard_cauchy(1000000)\n >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well\n >>> plt.hist(s, bins=100)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_57standard_cauchy(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_cauchy (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_cauchy") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2262; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_cauchy", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2262; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.standard_cauchy", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_56standard_cauchy(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_56standard_cauchy(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("standard_cauchy", 0); /* "mtrand.pyx":2323 * * """ * return cont0_array(self.internal_state, rk_standard_cauchy, size, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2324 * """ * return cont0_array(self.internal_state, rk_standard_cauchy, size, * self.lock) # <<<<<<<<<<<<<< * * def standard_t(self, df, size=None): */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "mtrand.pyx":2323 * * """ * return cont0_array(self.internal_state, rk_standard_cauchy, size, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont0_array(__pyx_v_self->internal_state, rk_standard_cauchy, __pyx_v_size, __pyx_t_1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2323; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":2262 * odf, ononc, self.lock) * * def standard_cauchy(self, size=None): # <<<<<<<<<<<<<< * """ * standard_cauchy(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("mtrand.RandomState.standard_cauchy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2326 * self.lock) * * def standard_t(self, df, size=None): # <<<<<<<<<<<<<< * """ * standard_t(df, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_59standard_t(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_58standard_t[] = "\n standard_t(df, size=None)\n\n Standard Student's t distribution with df degrees of freedom.\n\n A special case of the hyperbolic distribution.\n As `df` gets large, the result resembles that of the standard normal\n distribution (`standard_normal`).\n\n Parameters\n ----------\n df : int\n Degrees of freedom, should be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n Drawn samples.\n\n Notes\n -----\n The probability density function for the t distribution is\n\n .. math:: P(x, df) = \\frac{\\Gamma(\\frac{df+1}{2})}{\\sqrt{\\pi df}\n \\Gamma(\\frac{df}{2})}\\Bigl( 1+\\frac{x^2}{df} \\Bigr)^{-(df+1)/2}\n\n The t test is based on an assumption that the data come from a Normal\n distribution. The t test provides a way to test whether the sample mean\n (that is the mean calculated from the data) is a good estimate of the true\n mean.\n\n The derivation of the t-distribution was forst published in 1908 by William\n Gisset while working for the Guinness Brewery in Dublin. Due to proprietary\n issues, he had to publish under a pseudonym, and so he used the name\n Student.\n\n References\n ----------\n .. [1] Dalgaard, Peter, \"Introductory Statistics With R\",\n Springer, 2002.\n .. [2] Wikipedia, \"Student's t-distribution\"\n http://en.wikipedia.org/wiki/Student's_t-distribution\n\n Examples\n --------\n From Dalgaard page 83 [1]_, suppose the daily energy intake for 11\n women in Kj is:\n\n >>> intake = np.array([5260., 5470, 5640, 6""180, 6390, 6515, 6805, 7515, \\\n ... 7515, 8230, 8770])\n\n Does their energy intake deviate systematically from the recommended\n value of 7725 kJ?\n\n We have 10 degrees of freedom, so is the sample mean within 95% of the\n recommended value?\n\n >>> s = np.random.standard_t(10, size=100000)\n >>> np.mean(intake)\n 6753.636363636364\n >>> intake.std(ddof=1)\n 1142.1232221373727\n\n Calculate the t statistic, setting the ddof parameter to the unbiased\n value so the divisor in the standard deviation will be degrees of\n freedom, N-1.\n\n >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(s, bins=100, normed=True)\n\n For a one-sided t-test, how far out in the distribution does the t\n statistic appear?\n\n >>> >>> np.sum(s 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_t") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2326; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_df = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_t", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2326; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.standard_t", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_58standard_t(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_df, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_58standard_t(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_odf = 0; double __pyx_v_fdf; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("standard_t", 0); /* "mtrand.pyx":2415 * cdef double fdf * * fdf = PyFloat_AsDouble(df) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fdf <= 0: */ __pyx_v_fdf = PyFloat_AsDouble(__pyx_v_df); /* "mtrand.pyx":2416 * * fdf = PyFloat_AsDouble(df) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fdf <= 0: * raise ValueError("df <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2417 * fdf = PyFloat_AsDouble(df) * if not PyErr_Occurred(): * if fdf <= 0: # <<<<<<<<<<<<<< * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_standard_t, size, */ __pyx_t_1 = ((__pyx_v_fdf <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2418 * if not PyErr_Occurred(): * if fdf <= 0: * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_standard_t, size, * fdf, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__83, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2418; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2418; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2419 * if fdf <= 0: * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_standard_t, size, # <<<<<<<<<<<<<< * fdf, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2420 * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_standard_t, size, * fdf, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2419 * if fdf <= 0: * raise ValueError("df <= 0") * return cont1_array_sc(self.internal_state, rk_standard_t, size, # <<<<<<<<<<<<<< * fdf, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_standard_t, __pyx_v_size, __pyx_v_fdf, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2419; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2422 * fdf, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2424 * PyErr_Clear() * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_df, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2424; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_odf = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2425 * * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_standard_t, size, odf, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_odf)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_odf)); __Pyx_GIVEREF(((PyObject *)__pyx_v_odf)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2425; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2426 * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_standard_t, size, odf, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__84, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2426; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2426; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2427 * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_standard_t, size, odf, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2428 * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_standard_t, size, odf, * self.lock) # <<<<<<<<<<<<<< * * def vonmises(self, mu, kappa, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":2427 * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") * return cont1_array(self.internal_state, rk_standard_t, size, odf, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_standard_t, __pyx_v_size, __pyx_v_odf, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2427; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":2326 * self.lock) * * def standard_t(self, df, size=None): # <<<<<<<<<<<<<< * """ * standard_t(df, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.standard_t", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_odf); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2430 * self.lock) * * def vonmises(self, mu, kappa, size=None): # <<<<<<<<<<<<<< * """ * vonmises(mu, kappa, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_61vonmises(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_60vonmises[] = "\n vonmises(mu, kappa, size=None)\n\n Draw samples from a von Mises distribution.\n\n Samples are drawn from a von Mises distribution with specified mode\n (mu) and dispersion (kappa), on the interval [-pi, pi].\n\n The von Mises distribution (also known as the circular normal\n distribution) is a continuous probability distribution on the unit\n circle. It may be thought of as the circular analogue of the normal\n distribution.\n\n Parameters\n ----------\n mu : float\n Mode (\"center\") of the distribution.\n kappa : float\n Dispersion of the distribution, has to be >=0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : scalar or ndarray\n The returned samples, which are in the interval [-pi, pi].\n\n See Also\n --------\n scipy.stats.distributions.vonmises : probability density function,\n distribution, or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the von Mises distribution is\n\n .. math:: p(x) = \\frac{e^{\\kappa cos(x-\\mu)}}{2\\pi I_0(\\kappa)},\n\n where :math:`\\mu` is the mode and :math:`\\kappa` the dispersion,\n and :math:`I_0(\\kappa)` is the modified Bessel function of order 0.\n\n The von Mises is named for Richard Edler von Mises, who was born in\n Austria-Hungary, in what is now the Ukraine. He fled to the United\n States in 1939 and became a professor at Harvard. He worked in\n probability theory, aerodynamics, fluid mechanics, and philosophy of\n science.\n\n References\n ----------\n Abramowitz, M. and Stegun, I. A. (e""d.), *Handbook of Mathematical\n Functions*, New York: Dover, 1965.\n\n von Mises, R., *Mathematical Theory of Probability and Statistics*,\n New York: Academic Press, 1964.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, kappa = 0.0, 4.0 # mean and dispersion\n >>> s = np.random.vonmises(mu, kappa, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps\n >>> count, bins, ignored = plt.hist(s, 50, normed=True)\n >>> x = np.arange(-np.pi, np.pi, 2*np.pi/50.)\n >>> y = -np.exp(kappa*np.cos(x-mu))/(2*np.pi*sps.jn(0,kappa))\n >>> plt.plot(x, y/max(y), linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_61vonmises(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mu = 0; PyObject *__pyx_v_kappa = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("vonmises (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mu,&__pyx_n_s_kappa,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mu)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("vonmises", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2430; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "vonmises") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2430; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mu = values[0]; __pyx_v_kappa = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("vonmises", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2430; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.vonmises", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_60vonmises(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mu, __pyx_v_kappa, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_60vonmises(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mu, PyObject *__pyx_v_kappa, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_omu = 0; PyArrayObject *__pyx_v_okappa = 0; double __pyx_v_fmu; double __pyx_v_fkappa; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("vonmises", 0); /* "mtrand.pyx":2510 * cdef double fmu, fkappa * * fmu = PyFloat_AsDouble(mu) # <<<<<<<<<<<<<< * fkappa = PyFloat_AsDouble(kappa) * if not PyErr_Occurred(): */ __pyx_v_fmu = PyFloat_AsDouble(__pyx_v_mu); /* "mtrand.pyx":2511 * * fmu = PyFloat_AsDouble(mu) * fkappa = PyFloat_AsDouble(kappa) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fkappa < 0: */ __pyx_v_fkappa = PyFloat_AsDouble(__pyx_v_kappa); /* "mtrand.pyx":2512 * fmu = PyFloat_AsDouble(mu) * fkappa = PyFloat_AsDouble(kappa) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fkappa < 0: * raise ValueError("kappa < 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2513 * fkappa = PyFloat_AsDouble(kappa) * if not PyErr_Occurred(): * if fkappa < 0: # <<<<<<<<<<<<<< * raise ValueError("kappa < 0") * return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, */ __pyx_t_1 = ((__pyx_v_fkappa < 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2514 * if not PyErr_Occurred(): * if fkappa < 0: * raise ValueError("kappa < 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, * fkappa, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__85, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2515 * if fkappa < 0: * raise ValueError("kappa < 0") * return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, # <<<<<<<<<<<<<< * fkappa, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2516 * raise ValueError("kappa < 0") * return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, * fkappa, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2515 * if fkappa < 0: * raise ValueError("kappa < 0") * return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, # <<<<<<<<<<<<<< * fkappa, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_vonmises, __pyx_v_size, __pyx_v_fmu, __pyx_v_fkappa, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2515; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2518 * fkappa, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * omu = PyArray_FROM_OTF(mu, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2520 * PyErr_Clear() * * omu = PyArray_FROM_OTF(mu, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * okappa = PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(okappa, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_mu, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_omu = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2521 * * omu = PyArray_FROM_OTF(mu, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * okappa = PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less(okappa, 0.0)): * raise ValueError("kappa < 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2521; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_okappa = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":2522 * omu = PyArray_FROM_OTF(mu, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * okappa = PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(okappa, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("kappa < 0") * return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_okappa)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_okappa)); __Pyx_GIVEREF(((PyObject *)__pyx_v_okappa)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2523 * okappa = PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(okappa, 0.0)): * raise ValueError("kappa < 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__86, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2524 * if np.any(np.less(okappa, 0.0)): * raise ValueError("kappa < 0") * return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2525 * raise ValueError("kappa < 0") * return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa, * self.lock) # <<<<<<<<<<<<<< * * def pareto(self, a, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":2524 * if np.any(np.less(okappa, 0.0)): * raise ValueError("kappa < 0") * return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_vonmises, __pyx_v_size, __pyx_v_omu, __pyx_v_okappa, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2524; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":2430 * self.lock) * * def vonmises(self, mu, kappa, size=None): # <<<<<<<<<<<<<< * """ * vonmises(mu, kappa, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.vonmises", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_omu); __Pyx_XDECREF((PyObject *)__pyx_v_okappa); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2527 * self.lock) * * def pareto(self, a, size=None): # <<<<<<<<<<<<<< * """ * pareto(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_63pareto(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_62pareto[] = "\n pareto(a, size=None)\n\n Draw samples from a Pareto II or Lomax distribution with specified shape.\n\n The Lomax or Pareto II distribution is a shifted Pareto distribution. The\n classical Pareto distribution can be obtained from the Lomax distribution\n by adding the location parameter m, see below. The smallest value of the\n Lomax distribution is zero while for the classical Pareto distribution it\n is m, where the standard Pareto distribution has location m=1.\n Lomax can also be considered as a simplified version of the Generalized\n Pareto distribution (available in SciPy), with the scale set to one and\n the location set to zero.\n\n The Pareto distribution must be greater than zero, and is unbounded above.\n It is also known as the \"80-20 rule\". In this distribution, 80 percent of\n the weights are in the lowest 20 percent of the range, while the other 20\n percent fill the remaining 80 percent of the range.\n\n Parameters\n ----------\n shape : float, > 0.\n Shape of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n See Also\n --------\n scipy.stats.distributions.lomax.pdf : probability density function,\n distribution or cumulative density function, etc.\n scipy.stats.distributions.genpareto.pdf : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Pareto distribution is\n\n .. math:: p(x) = \\frac{am^a}{x^{a+1}}\n\n where :math:`a` is the shape and :math:`m` the location\n\n The Pareto distribution, named after the Italian economist Vilfred""o Pareto,\n is a power law probability distribution useful in many real world problems.\n Outside the field of economics it is generally referred to as the Bradford\n distribution. Pareto developed the distribution to describe the\n distribution of wealth in an economy. It has also found use in insurance,\n web page access statistics, oil field sizes, and many other problems,\n including the download frequency for projects in Sourceforge [1]. It is\n one of the so-called \"fat-tailed\" distributions.\n\n\n References\n ----------\n .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of\n Sourceforge projects.\n .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.\n .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme\n Values, Birkhauser Verlag, Basel, pp 23-30.\n .. [4] Wikipedia, \"Pareto distribution\",\n http://en.wikipedia.org/wiki/Pareto_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a, m = 3., 1. # shape and mode\n >>> s = np.random.pareto(a, 1000) + m\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='center')\n >>> fit = a*m**a/bins**(a+1)\n >>> plt.plot(bins, max(count)*fit/max(fit),linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_63pareto(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("pareto (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "pareto") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2527; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("pareto", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2527; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.pareto", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_62pareto(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_62pareto(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oa = 0; double __pyx_v_fa; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("pareto", 0); /* "mtrand.pyx":2611 * cdef double fa * * fa = PyFloat_AsDouble(a) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fa <= 0: */ __pyx_v_fa = PyFloat_AsDouble(__pyx_v_a); /* "mtrand.pyx":2612 * * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fa <= 0: * raise ValueError("a <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2613 * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): * if fa <= 0: # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_pareto, size, fa, */ __pyx_t_1 = ((__pyx_v_fa <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2614 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_pareto, size, fa, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__87, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2615 * if fa <= 0: * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_pareto, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2616 * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_pareto, size, fa, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2615 * if fa <= 0: * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_pareto, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_pareto, __pyx_v_size, __pyx_v_fa, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2615; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2618 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2620 * PyErr_Clear() * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_a, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2620; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oa = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2621 * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock) */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oa)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oa)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oa)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2621; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2622 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock) * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__88, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2622; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2622; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2623 * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock) # <<<<<<<<<<<<<< * * def weibull(self, a, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_pareto, __pyx_v_size, __pyx_v_oa, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2623; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":2527 * self.lock) * * def pareto(self, a, size=None): # <<<<<<<<<<<<<< * """ * pareto(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.pareto", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oa); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2625 * return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock) * * def weibull(self, a, size=None): # <<<<<<<<<<<<<< * """ * weibull(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_65weibull(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_64weibull[] = "\n weibull(a, size=None)\n\n Weibull distribution.\n\n Draw samples from a 1-parameter Weibull distribution with the given\n shape parameter `a`.\n\n .. math:: X = (-ln(U))^{1/a}\n\n Here, U is drawn from the uniform distribution over (0,1].\n\n The more common 2-parameter Weibull, including a scale parameter\n :math:`\\lambda` is just :math:`X = \\lambda(-ln(U))^{1/a}`.\n\n Parameters\n ----------\n a : float\n Shape of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n See Also\n --------\n scipy.stats.distributions.weibull_max\n scipy.stats.distributions.weibull_min\n scipy.stats.distributions.genextreme\n gumbel\n\n Notes\n -----\n The Weibull (or Type III asymptotic extreme value distribution for smallest\n values, SEV Type III, or Rosin-Rammler distribution) is one of a class of\n Generalized Extreme Value (GEV) distributions used in modeling extreme\n value problems. This class includes the Gumbel and Frechet distributions.\n\n The probability density for the Weibull distribution is\n\n .. math:: p(x) = \\frac{a}\n {\\lambda}(\\frac{x}{\\lambda})^{a-1}e^{-(x/\\lambda)^a},\n\n where :math:`a` is the shape and :math:`\\lambda` the scale.\n\n The function has its peak (the mode) at\n :math:`\\lambda(\\frac{a-1}{a})^{1/a}`.\n\n When ``a = 1``, the Weibull distribution reduces to the exponential\n distribution.\n\n References\n ----------\n .. [1] Waloddi Weibull, Professor, Royal Technical University, Stockholm,\n 1939 \"A Statistical Theory Of The Strength Of Materials\",\n "" Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,\n Generalstabens Litografiska Anstalts Forlag, Stockholm.\n .. [2] Waloddi Weibull, 1951 \"A Statistical Distribution Function of Wide\n Applicability\", Journal Of Applied Mechanics ASME Paper.\n .. [3] Wikipedia, \"Weibull distribution\",\n http://en.wikipedia.org/wiki/Weibull_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> s = np.random.weibull(a, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> x = np.arange(1,100.)/50.\n >>> def weib(x,n,a):\n ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)\n\n >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))\n >>> x = np.arange(1,100.)/50.\n >>> scale = count.max()/weib(x, 1., 5.).max()\n >>> plt.plot(x, weib(x, 1., 5.)*scale)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_65weibull(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("weibull (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "weibull") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2625; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("weibull", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2625; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.weibull", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_64weibull(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_64weibull(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oa = 0; double __pyx_v_fa; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("weibull", 0); /* "mtrand.pyx":2713 * cdef double fa * * fa = PyFloat_AsDouble(a) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fa <= 0: */ __pyx_v_fa = PyFloat_AsDouble(__pyx_v_a); /* "mtrand.pyx":2714 * * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fa <= 0: * raise ValueError("a <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2715 * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): * if fa <= 0: # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_weibull, size, fa, */ __pyx_t_1 = ((__pyx_v_fa <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2716 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_weibull, size, fa, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__89, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2716; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2716; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2717 * if fa <= 0: * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_weibull, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2718 * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_weibull, size, fa, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2717 * if fa <= 0: * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_weibull, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_weibull, __pyx_v_size, __pyx_v_fa, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2717; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2720 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2722 * PyErr_Clear() * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_a, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2722; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oa = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2723 * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_weibull, size, oa, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oa)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oa)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oa)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2724 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_weibull, size, oa, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__90, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2724; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2724; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2725 * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_weibull, size, oa, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2726 * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_weibull, size, oa, * self.lock) # <<<<<<<<<<<<<< * * def power(self, a, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":2725 * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_weibull, size, oa, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_weibull, __pyx_v_size, __pyx_v_oa, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2725; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":2625 * return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock) * * def weibull(self, a, size=None): # <<<<<<<<<<<<<< * """ * weibull(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.weibull", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oa); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2728 * self.lock) * * def power(self, a, size=None): # <<<<<<<<<<<<<< * """ * power(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_67power(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_66power[] = "\n power(a, size=None)\n\n Draws samples in [0, 1] from a power distribution with positive\n exponent a - 1.\n\n Also known as the power function distribution.\n\n Parameters\n ----------\n a : float\n parameter, > 0\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n The returned samples lie in [0, 1].\n\n Raises\n ------\n ValueError\n If a<1.\n\n Notes\n -----\n The probability density function is\n\n .. math:: P(x; a) = ax^{a-1}, 0 \\le x \\le 1, a>0.\n\n The power function distribution is just the inverse of the Pareto\n distribution. It may also be seen as a special case of the Beta\n distribution.\n\n It is used, for example, in modeling the over-reporting of insurance\n claims.\n\n References\n ----------\n .. [1] Christian Kleiber, Samuel Kotz, \"Statistical size distributions\n in economics and actuarial sciences\", Wiley, 2003.\n .. [2] Heckert, N. A. and Filliben, James J. (2003). NIST Handbook 148:\n Dataplot Reference Manual, Volume 2: Let Subcommands and Library\n Functions\", National Institute of Standards and Technology Handbook\n Series, June 2003.\n http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> samples = 1000\n >>> s = np.random.power(a, samples)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> imp""ort matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, bins=30)\n >>> x = np.linspace(0, 1, 100)\n >>> y = a*x**(a-1.)\n >>> normed_y = samples*np.diff(bins)[0]*y\n >>> plt.plot(x, normed_y)\n >>> plt.show()\n\n Compare the power function distribution to the inverse of the Pareto.\n\n >>> from scipy import stats\n >>> rvs = np.random.power(5, 1000000)\n >>> rvsp = np.random.pareto(5, 1000000)\n >>> xx = np.linspace(0,1,100)\n >>> powpdf = stats.powerlaw.pdf(xx,5)\n\n >>> plt.figure()\n >>> plt.hist(rvs, bins=50, normed=True)\n >>> plt.plot(xx,powpdf,'r-')\n >>> plt.title('np.random.power(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, normed=True)\n >>> plt.plot(xx,powpdf,'r-')\n >>> plt.title('inverse of 1 + np.random.pareto(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, normed=True)\n >>> plt.plot(xx,powpdf,'r-')\n >>> plt.title('inverse of stats.pareto(5)')\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_67power(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("power (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "power") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2728; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("power", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2728; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.power", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_66power(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_66power(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oa = 0; double __pyx_v_fa; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("power", 0); /* "mtrand.pyx":2825 * cdef double fa * * fa = PyFloat_AsDouble(a) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fa <= 0: */ __pyx_v_fa = PyFloat_AsDouble(__pyx_v_a); /* "mtrand.pyx":2826 * * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fa <= 0: * raise ValueError("a <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2827 * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): * if fa <= 0: # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_power, size, fa, */ __pyx_t_1 = ((__pyx_v_fa <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2828 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_power, size, fa, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__91, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2828; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2828; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2829 * if fa <= 0: * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_power, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2830 * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_power, size, fa, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2829 * if fa <= 0: * raise ValueError("a <= 0") * return cont1_array_sc(self.internal_state, rk_power, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_power, __pyx_v_size, __pyx_v_fa, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2829; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2832 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2834 * PyErr_Clear() * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_a, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2834; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oa = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":2835 * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_power, size, oa, self.lock) */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oa)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oa)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oa)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2836 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_power, size, oa, self.lock) * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__92, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2836; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2836; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2837 * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") * return cont1_array(self.internal_state, rk_power, size, oa, self.lock) # <<<<<<<<<<<<<< * * def laplace(self, loc=0.0, scale=1.0, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_power, __pyx_v_size, __pyx_v_oa, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2837; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":2728 * self.lock) * * def power(self, a, size=None): # <<<<<<<<<<<<<< * """ * power(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.power", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oa); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2839 * return cont1_array(self.internal_state, rk_power, size, oa, self.lock) * * def laplace(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * laplace(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_69laplace(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_68laplace[] = "\n laplace(loc=0.0, scale=1.0, size=None)\n\n Draw samples from the Laplace or double exponential distribution with\n specified location (or mean) and scale (decay).\n\n The Laplace distribution is similar to the Gaussian/normal distribution,\n but is sharper at the peak and has fatter tails. It represents the\n difference between two independent, identically distributed exponential\n random variables.\n\n Parameters\n ----------\n loc : float\n The position, :math:`\\mu`, of the distribution peak.\n scale : float\n :math:`\\lambda`, the exponential decay.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n It has the probability density function\n\n .. math:: f(x; \\mu, \\lambda) = \\frac{1}{2\\lambda}\n \\exp\\left(-\\frac{|x - \\mu|}{\\lambda}\\right).\n\n The first law of Laplace, from 1774, states that the frequency of an error\n can be expressed as an exponential function of the absolute magnitude of\n the error, which leads to the Laplace distribution. For many problems in\n Economics and Health sciences, this distribution seems to model the data\n better than the standard Gaussian distribution\n\n\n References\n ----------\n .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical\n Functions with Formulas, Graphs, and Mathematical Tables, 9th\n printing. New York: Dover, 1972.\n\n .. [2] The Laplace distribution and generalizations\n By Samuel Kotz, Tomasz J. Kozubowski, Krzysztof Podgorski,\n Birkhauser, 2001.\n\n .. [3] Weisstein, Eric W. \"Lapla""ce Distribution.\"\n From MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LaplaceDistribution.html\n\n .. [4] Wikipedia, \"Laplace distribution\",\n http://en.wikipedia.org/wiki/Laplace_distribution\n\n Examples\n --------\n Draw samples from the distribution\n\n >>> loc, scale = 0., 1.\n >>> s = np.random.laplace(loc, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, normed=True)\n >>> x = np.arange(-8., 8., .01)\n >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)\n >>> plt.plot(x, pdf)\n\n Plot Gaussian for comparison:\n\n >>> g = (1/(scale * np.sqrt(2 * np.pi)) * \n ... np.exp(-(x - loc)**2 / (2 * scale**2)))\n >>> plt.plot(x,g)\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_69laplace(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("laplace (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "laplace") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2839; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("laplace", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2839; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.laplace", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_68laplace(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_68laplace(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oloc = 0; PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_floc; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("laplace", 0); /* "mtrand.pyx":2919 * cdef double floc, fscale * * floc = PyFloat_AsDouble(loc) # <<<<<<<<<<<<<< * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): */ __pyx_v_floc = PyFloat_AsDouble(__pyx_v_loc); /* "mtrand.pyx":2920 * * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fscale <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":2921 * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2922 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_laplace, size, floc, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":2923 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_laplace, size, floc, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__93, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2923; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2923; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2924 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_laplace, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2925 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_laplace, size, floc, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":2924 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_laplace, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_laplace, __pyx_v_size, __pyx_v_floc, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2924; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":2927 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":2928 * * PyErr_Clear() * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2928; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2928; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oloc = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":2929 * PyErr_Clear() * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2929; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2929; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oscale = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":2930 * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2930; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":2931 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__94, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2931; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2931; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":2932 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":2933 * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale, * self.lock) # <<<<<<<<<<<<<< * * def gumbel(self, loc=0.0, scale=1.0, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":2932 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_laplace, __pyx_v_size, __pyx_v_oloc, __pyx_v_oscale, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2932; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":2839 * return cont1_array(self.internal_state, rk_power, size, oa, self.lock) * * def laplace(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * laplace(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.laplace", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oloc); __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":2935 * self.lock) * * def gumbel(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gumbel(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_71gumbel(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_70gumbel[] = "\n gumbel(loc=0.0, scale=1.0, size=None)\n\n Gumbel distribution.\n\n Draw samples from a Gumbel distribution with specified location and scale.\n For more information on the Gumbel distribution, see Notes and References\n below.\n\n Parameters\n ----------\n loc : float\n The location of the mode of the distribution.\n scale : float\n The scale parameter of the distribution.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n The samples\n\n See Also\n --------\n scipy.stats.gumbel_l\n scipy.stats.gumbel_r\n scipy.stats.genextreme\n probability density function, distribution, or cumulative density\n function, etc. for each of the above\n weibull\n\n Notes\n -----\n The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value\n Type I) distribution is one of a class of Generalized Extreme Value (GEV)\n distributions used in modeling extreme value problems. The Gumbel is a\n special case of the Extreme Value Type I distribution for maximums from\n distributions with \"exponential-like\" tails.\n\n The probability density for the Gumbel distribution is\n\n .. math:: p(x) = \\frac{e^{-(x - \\mu)/ \\beta}}{\\beta} e^{ -e^{-(x - \\mu)/\n \\beta}},\n\n where :math:`\\mu` is the mode, a location parameter, and :math:`\\beta` is\n the scale parameter.\n\n The Gumbel (named for German mathematician Emil Julius Gumbel) was used\n very early in the hydrology literature, for modeling the occurrence of\n flood events. It is also used for modeling m""aximum wind speed and rainfall\n rates. It is a \"fat-tailed\" distribution - the probability of an event in\n the tail of the distribution is larger than if one used a Gaussian, hence\n the surprisingly frequent occurrence of 100-year floods. Floods were\n initially modeled as a Gaussian process, which underestimated the frequency\n of extreme events.\n\n\n It is one of a class of extreme value distributions, the Generalized\n Extreme Value (GEV) distributions, which also includes the Weibull and\n Frechet.\n\n The function has a mean of :math:`\\mu + 0.57721\\beta` and a variance of\n :math:`\\frac{\\pi^2}{6}\\beta^2`.\n\n References\n ----------\n Gumbel, E. J., *Statistics of Extremes*, New York: Columbia University\n Press, 1958.\n\n Reiss, R.-D. and Thomas, M., *Statistical Analysis of Extreme Values from\n Insurance, Finance, Hydrology and Other Fields*, Basel: Birkhauser Verlag,\n 2001.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, beta = 0, 0.1 # location and scale\n >>> s = np.random.gumbel(mu, beta, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, normed=True)\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp( -np.exp( -(bins - mu) /beta) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n Show how an extreme value distribution can arise from a Gaussian process\n and compare to a Gaussian:\n\n >>> means = []\n >>> maxima = []\n >>> for i in range(0,1000) :\n ... a = np.random.normal(mu, beta, 1000)\n ... means.append(a.mean())\n ... maxima.append(a.max())\n >>> count, bins, ignored"" = plt.hist(maxima, 30, normed=True)\n >>> beta = np.std(maxima)*np.pi/np.sqrt(6)\n >>> mu = np.mean(maxima) - 0.57721*beta\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp(-np.exp(-(bins - mu)/beta)),\n ... linewidth=2, color='r')\n >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))\n ... * np.exp(-(bins - mu)**2 / (2 * beta**2)),\n ... linewidth=2, color='g')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_71gumbel(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("gumbel (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "gumbel") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2935; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("gumbel", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2935; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.gumbel", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_70gumbel(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_70gumbel(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oloc = 0; PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_floc; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("gumbel", 0); /* "mtrand.pyx":3053 * cdef double floc, fscale * * floc = PyFloat_AsDouble(loc) # <<<<<<<<<<<<<< * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): */ __pyx_v_floc = PyFloat_AsDouble(__pyx_v_loc); /* "mtrand.pyx":3054 * * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fscale <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":3055 * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3056 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3057 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__95, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3057; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3057; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3058 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3059 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3058 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_gumbel, __pyx_v_size, __pyx_v_floc, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3058; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3061 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3062 * * PyErr_Clear() * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3062; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3062; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oloc = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3063 * PyErr_Clear() * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3063; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3063; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oscale = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3064 * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3065 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__96, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3065; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3065; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3066 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3067 * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale, * self.lock) # <<<<<<<<<<<<<< * * def logistic(self, loc=0.0, scale=1.0, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":3066 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_gumbel, __pyx_v_size, __pyx_v_oloc, __pyx_v_oscale, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3066; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":2935 * self.lock) * * def gumbel(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gumbel(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.gumbel", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oloc); __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3069 * self.lock) * * def logistic(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * logistic(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_73logistic(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_72logistic[] = "\n logistic(loc=0.0, scale=1.0, size=None)\n\n Draw samples from a Logistic distribution.\n\n Samples are drawn from a Logistic distribution with specified\n parameters, loc (location or mean, also median), and scale (>0).\n\n Parameters\n ----------\n loc : float\n\n scale : float > 0.\n\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n where the values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.logistic : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Logistic distribution is\n\n .. math:: P(x) = P(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2},\n\n where :math:`\\mu` = location and :math:`s` = scale.\n\n The Logistic distribution is used in Extreme Value problems where it\n can act as a mixture of Gumbel distributions, in Epidemiology, and by\n the World Chess Federation (FIDE) where it is used in the Elo ranking\n system, assuming the performance of each player is a logistically\n distributed random variable.\n\n References\n ----------\n .. [1] Reiss, R.-D. and Thomas M. (2001), Statistical Analysis of Extreme\n Values, from Insurance, Finance, Hydrology and Other Fields,\n Birkhauser Verlag, Basel, pp 132-133.\n .. [2] Weisstein, Eric W. \"Logistic Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LogisticDistribution.html\n .. [3] Wikipedia, \"Logistic-distribution""\",\n http://en.wikipedia.org/wiki/Logistic-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> loc, scale = 10, 1\n >>> s = np.random.logistic(loc, scale, 10000)\n >>> count, bins, ignored = plt.hist(s, bins=50)\n\n # plot against distribution\n\n >>> def logist(x, loc, scale):\n ... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)\n >>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\\\n ... logist(bins, loc, scale).max())\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_73logistic(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("logistic (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "logistic") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3069; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("logistic", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3069; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.logistic", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_72logistic(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_72logistic(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oloc = 0; PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_floc; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("logistic", 0); /* "mtrand.pyx":3144 * cdef double floc, fscale * * floc = PyFloat_AsDouble(loc) # <<<<<<<<<<<<<< * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): */ __pyx_v_floc = PyFloat_AsDouble(__pyx_v_loc); /* "mtrand.pyx":3145 * * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fscale <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":3146 * floc = PyFloat_AsDouble(loc) * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3147 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_logistic, size, floc, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3148 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_logistic, size, floc, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__97, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3148; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3148; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3149 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_logistic, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3150 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_logistic, size, floc, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3149 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_logistic, size, floc, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_logistic, __pyx_v_size, __pyx_v_floc, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3149; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3152 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3153 * * PyErr_Clear() * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3153; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3153; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oloc = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3154 * PyErr_Clear() * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3154; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3154; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oscale = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3155 * oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_logistic, size, oloc, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3156 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_logistic, size, oloc, * oscale, self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__98, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3156; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3156; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3157 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_logistic, size, oloc, # <<<<<<<<<<<<<< * oscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3158 * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_logistic, size, oloc, * oscale, self.lock) # <<<<<<<<<<<<<< * * def lognormal(self, mean=0.0, sigma=1.0, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":3157 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") * return cont2_array(self.internal_state, rk_logistic, size, oloc, # <<<<<<<<<<<<<< * oscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_logistic, __pyx_v_size, __pyx_v_oloc, __pyx_v_oscale, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3157; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":3069 * self.lock) * * def logistic(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * logistic(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.logistic", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oloc); __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3160 * oscale, self.lock) * * def lognormal(self, mean=0.0, sigma=1.0, size=None): # <<<<<<<<<<<<<< * """ * lognormal(mean=0.0, sigma=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_75lognormal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_74lognormal[] = "\n lognormal(mean=0.0, sigma=1.0, size=None)\n\n Return samples drawn from a log-normal distribution.\n\n Draw samples from a log-normal distribution with specified mean,\n standard deviation, and array shape. Note that the mean and standard\n deviation are not the values for the distribution itself, but of the\n underlying normal distribution it is derived from.\n\n Parameters\n ----------\n mean : float\n Mean value of the underlying normal distribution\n sigma : float, > 0.\n Standard deviation of the underlying normal distribution\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or float\n The desired samples. An array of the same shape as `size` if given,\n if `size` is None a float is returned.\n\n See Also\n --------\n scipy.stats.lognorm : probability density function, distribution,\n cumulative density function, etc.\n\n Notes\n -----\n A variable `x` has a log-normal distribution if `log(x)` is normally\n distributed. The probability density function for the log-normal\n distribution is:\n\n .. math:: p(x) = \\frac{1}{\\sigma x \\sqrt{2\\pi}}\n e^{(-\\frac{(ln(x)-\\mu)^2}{2\\sigma^2})}\n\n where :math:`\\mu` is the mean and :math:`\\sigma` is the standard\n deviation of the normally distributed logarithm of the variable.\n A log-normal distribution results if a random variable is the *product*\n of a large number of independent, identically-distributed variables in\n the same way that a normal distribution results if the variable is the\n *sum* of a lar""ge number of independent, identically-distributed\n variables.\n\n References\n ----------\n Limpert, E., Stahel, W. A., and Abbt, M., \"Log-normal Distributions\n across the Sciences: Keys and Clues,\" *BioScience*, Vol. 51, No. 5,\n May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf\n\n Reiss, R.D. and Thomas, M., *Statistical Analysis of Extreme Values*,\n Basel: Birkhauser Verlag, 2001, pp. 31-32.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 3., 1. # mean and standard deviation\n >>> s = np.random.lognormal(mu, sigma, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, linewidth=2, color='r')\n >>> plt.axis('tight')\n >>> plt.show()\n\n Demonstrate that taking the products of random samples from a uniform\n distribution can be fit well by a log-normal probability density function.\n\n >>> # Generate a thousand samples: each is the product of 100 random\n >>> # values, drawn from a normal distribution.\n >>> b = []\n >>> for i in range(1000):\n ... a = 10. + np.random.random(100)\n ... b.append(np.product(a))\n\n >>> b = np.array(b) / np.min(b) # scale values to be positive\n >>> count, bins, ignored = plt.hist(b, 100, normed=True, align='center')\n >>> sigma = np.std(np.log(b))\n >>> mu = np.mean(np.log(b))\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))""\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, color='r', linewidth=2)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_75lognormal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mean = 0; PyObject *__pyx_v_sigma = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("lognormal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mean,&__pyx_n_s_sigma,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mean); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_sigma); if (value) { values[1] = value; kw_args--; } } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "lognormal") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3160; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mean = values[0]; __pyx_v_sigma = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("lognormal", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3160; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.lognormal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_74lognormal(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mean, __pyx_v_sigma, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_74lognormal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_sigma, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_omean = 0; PyArrayObject *__pyx_v_osigma = 0; double __pyx_v_fmean; double __pyx_v_fsigma; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("lognormal", 0); /* "mtrand.pyx":3266 * cdef double fmean, fsigma * * fmean = PyFloat_AsDouble(mean) # <<<<<<<<<<<<<< * fsigma = PyFloat_AsDouble(sigma) * */ __pyx_v_fmean = PyFloat_AsDouble(__pyx_v_mean); /* "mtrand.pyx":3267 * * fmean = PyFloat_AsDouble(mean) * fsigma = PyFloat_AsDouble(sigma) # <<<<<<<<<<<<<< * * if not PyErr_Occurred(): */ __pyx_v_fsigma = PyFloat_AsDouble(__pyx_v_sigma); /* "mtrand.pyx":3269 * fsigma = PyFloat_AsDouble(sigma) * * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fsigma <= 0: * raise ValueError("sigma <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3270 * * if not PyErr_Occurred(): * if fsigma <= 0: # <<<<<<<<<<<<<< * raise ValueError("sigma <= 0") * return cont2_array_sc(self.internal_state, rk_lognormal, size, */ __pyx_t_1 = ((__pyx_v_fsigma <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3271 * if not PyErr_Occurred(): * if fsigma <= 0: * raise ValueError("sigma <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_lognormal, size, * fmean, fsigma, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__99, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3271; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3271; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3272 * if fsigma <= 0: * raise ValueError("sigma <= 0") * return cont2_array_sc(self.internal_state, rk_lognormal, size, # <<<<<<<<<<<<<< * fmean, fsigma, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3273 * raise ValueError("sigma <= 0") * return cont2_array_sc(self.internal_state, rk_lognormal, size, * fmean, fsigma, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3272 * if fsigma <= 0: * raise ValueError("sigma <= 0") * return cont2_array_sc(self.internal_state, rk_lognormal, size, # <<<<<<<<<<<<<< * fmean, fsigma, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_lognormal, __pyx_v_size, __pyx_v_fmean, __pyx_v_fsigma, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3272; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3275 * fmean, fsigma, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3277 * PyErr_Clear() * * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(osigma, 0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3277; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3277; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_omean = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3278 * * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(osigma, 0.0)): * raise ValueError("sigma <= 0.0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3278; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3278; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_osigma = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3279 * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(osigma, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("sigma <= 0.0") * return cont2_array(self.internal_state, rk_lognormal, size, omean, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_osigma)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_osigma)); __Pyx_GIVEREF(((PyObject *)__pyx_v_osigma)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3279; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3280 * osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(osigma, 0.0)): * raise ValueError("sigma <= 0.0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_lognormal, size, omean, * osigma, self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__100, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3280; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3280; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3281 * if np.any(np.less_equal(osigma, 0.0)): * raise ValueError("sigma <= 0.0") * return cont2_array(self.internal_state, rk_lognormal, size, omean, # <<<<<<<<<<<<<< * osigma, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3282 * raise ValueError("sigma <= 0.0") * return cont2_array(self.internal_state, rk_lognormal, size, omean, * osigma, self.lock) # <<<<<<<<<<<<<< * * def rayleigh(self, scale=1.0, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":3281 * if np.any(np.less_equal(osigma, 0.0)): * raise ValueError("sigma <= 0.0") * return cont2_array(self.internal_state, rk_lognormal, size, omean, # <<<<<<<<<<<<<< * osigma, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_lognormal, __pyx_v_size, __pyx_v_omean, __pyx_v_osigma, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3281; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":3160 * oscale, self.lock) * * def lognormal(self, mean=0.0, sigma=1.0, size=None): # <<<<<<<<<<<<<< * """ * lognormal(mean=0.0, sigma=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.lognormal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_omean); __Pyx_XDECREF((PyObject *)__pyx_v_osigma); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3284 * osigma, self.lock) * * def rayleigh(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * rayleigh(scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_77rayleigh(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_76rayleigh[] = "\n rayleigh(scale=1.0, size=None)\n\n Draw samples from a Rayleigh distribution.\n\n The :math:`\\chi` and Weibull distributions are generalizations of the\n Rayleigh.\n\n Parameters\n ----------\n scale : scalar\n Scale, also equals the mode. Should be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n The probability density function for the Rayleigh distribution is\n\n .. math:: P(x;scale) = \\frac{x}{scale^2}e^{\\frac{-x^2}{2 \\cdotp scale^2}}\n\n The Rayleigh distribution arises if the wind speed and wind direction are\n both gaussian variables, then the vector wind velocity forms a Rayleigh\n distribution. The Rayleigh distribution is used to model the expected\n output from wind turbines.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., Rayleigh Distribution,\n http://www.brighton-webs.co.uk/distributions/rayleigh.asp\n .. [2] Wikipedia, \"Rayleigh distribution\"\n http://en.wikipedia.org/wiki/Rayleigh_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram\n\n >>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)\n\n Wave heights tend to follow a Rayleigh distribution. If the mean wave\n height is 1 meter, what fraction of waves are likely to be larger than 3\n meters?\n\n >>> meanvalue = 1\n >>> modevalue = np.sqrt(2 / np.pi) * meanvalue\n >>> s = np.random.rayleigh(modevalue, 1000000)\n\n The percentage of waves larger than 3 meters is:\n\n >>> 100.*sum(s>3)/1000000.\n 0.087300000000000003\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_77rayleigh(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("rayleigh (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[0] = ((PyObject *)__pyx_float_1_0); values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "rayleigh") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3284; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_scale = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("rayleigh", 0, 0, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3284; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.rayleigh", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_76rayleigh(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_76rayleigh(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("rayleigh", 0); /* "mtrand.pyx":3343 * cdef double fscale * * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * * if not PyErr_Occurred(): */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":3345 * fscale = PyFloat_AsDouble(scale) * * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3346 * * if not PyErr_Occurred(): * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_rayleigh, size, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3347 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_rayleigh, size, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__101, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3347; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3347; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3348 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_rayleigh, size, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3349 * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_rayleigh, size, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3348 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont1_array_sc(self.internal_state, rk_rayleigh, size, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont1_array_sc(__pyx_v_self->internal_state, rk_rayleigh, __pyx_v_size, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3348; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3351 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3353 * PyErr_Clear() * * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0.0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3353; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oscale = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3354 * * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0.0") * return cont1_array(self.internal_state, rk_rayleigh, size, oscale, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3354; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3355 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0.0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_rayleigh, size, oscale, * self.lock) */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__102, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3355; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3355; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3356 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0.0") * return cont1_array(self.internal_state, rk_rayleigh, size, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3357 * raise ValueError("scale <= 0.0") * return cont1_array(self.internal_state, rk_rayleigh, size, oscale, * self.lock) # <<<<<<<<<<<<<< * * def wald(self, mean, scale, size=None): */ __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); /* "mtrand.pyx":3356 * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0.0") * return cont1_array(self.internal_state, rk_rayleigh, size, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_cont1_array(__pyx_v_self->internal_state, rk_rayleigh, __pyx_v_size, __pyx_v_oscale, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3356; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":3284 * osigma, self.lock) * * def rayleigh(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * rayleigh(scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.rayleigh", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3359 * self.lock) * * def wald(self, mean, scale, size=None): # <<<<<<<<<<<<<< * """ * wald(mean, scale, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_79wald(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_78wald[] = "\n wald(mean, scale, size=None)\n\n Draw samples from a Wald, or Inverse Gaussian, distribution.\n\n As the scale approaches infinity, the distribution becomes more like a\n Gaussian.\n\n Some references claim that the Wald is an Inverse Gaussian with mean=1, but\n this is by no means universal.\n\n The Inverse Gaussian distribution was first studied in relationship to\n Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian\n because there is an inverse relationship between the time to cover a unit\n distance and distance covered in unit time.\n\n Parameters\n ----------\n mean : scalar\n Distribution mean, should be > 0.\n scale : scalar\n Scale parameter, should be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n Drawn sample, all greater than zero.\n\n Notes\n -----\n The probability density function for the Wald distribution is\n\n .. math:: P(x;mean,scale) = \\sqrt{\\frac{scale}{2\\pi x^3}}e^\n \\frac{-scale(x-mean)^2}{2\\cdotp mean^2x}\n\n As noted above the Inverse Gaussian distribution first arise from attempts\n to model Brownian Motion. It is also a competitor to the Weibull for use in\n reliability modeling and modeling stock returns and interest rate\n processes.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., Wald Distribution,\n http://www.brighton-webs.co.uk/distributions/wald.asp\n .. [2] Chhikara, Raj S., and Folks, J. Leroy, \"The Inverse Gaussian\n Distribution: Theory : Methodolog""y, and Applications\", CRC Press,\n 1988.\n .. [3] Wikipedia, \"Wald distribution\"\n http://en.wikipedia.org/wiki/Wald_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_79wald(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mean = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("wald (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mean,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mean)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_scale)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("wald", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3359; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "wald") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3359; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mean = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("wald", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3359; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.wald", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_78wald(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mean, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_78wald(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_omean = 0; PyArrayObject *__pyx_v_oscale = 0; double __pyx_v_fmean; double __pyx_v_fscale; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("wald", 0); /* "mtrand.pyx":3426 * cdef double fmean, fscale * * fmean = PyFloat_AsDouble(mean) # <<<<<<<<<<<<<< * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): */ __pyx_v_fmean = PyFloat_AsDouble(__pyx_v_mean); /* "mtrand.pyx":3427 * * fmean = PyFloat_AsDouble(mean) * fscale = PyFloat_AsDouble(scale) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fmean <= 0: */ __pyx_v_fscale = PyFloat_AsDouble(__pyx_v_scale); /* "mtrand.pyx":3428 * fmean = PyFloat_AsDouble(mean) * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fmean <= 0: * raise ValueError("mean <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3429 * fscale = PyFloat_AsDouble(scale) * if not PyErr_Occurred(): * if fmean <= 0: # <<<<<<<<<<<<<< * raise ValueError("mean <= 0") * if fscale <= 0: */ __pyx_t_1 = ((__pyx_v_fmean <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3430 * if not PyErr_Occurred(): * if fmean <= 0: * raise ValueError("mean <= 0") # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__103, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3430; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3430; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3431 * if fmean <= 0: * raise ValueError("mean <= 0") * if fscale <= 0: # <<<<<<<<<<<<<< * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_wald, size, fmean, */ __pyx_t_1 = ((__pyx_v_fscale <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3432 * raise ValueError("mean <= 0") * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_wald, size, fmean, * fscale, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__104, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3432; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3432; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3433 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_wald, size, fmean, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3434 * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_wald, size, fmean, * fscale, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3433 * if fscale <= 0: * raise ValueError("scale <= 0") * return cont2_array_sc(self.internal_state, rk_wald, size, fmean, # <<<<<<<<<<<<<< * fscale, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont2_array_sc(__pyx_v_self->internal_state, rk_wald, __pyx_v_size, __pyx_v_fmean, __pyx_v_fscale, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3433; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3436 * fscale, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3437 * * PyErr_Clear() * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(omean,0.0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3437; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3437; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_omean = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3438 * PyErr_Clear() * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(omean,0.0)): * raise ValueError("mean <= 0.0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3438; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_6mtrand_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3438; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_oscale = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3439 * omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(omean,0.0)): # <<<<<<<<<<<<<< * raise ValueError("mean <= 0.0") * elif np.any(np.less_equal(oscale,0.0)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_omean)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_omean)); __Pyx_GIVEREF(((PyObject *)__pyx_v_omean)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3439; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3440 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(omean,0.0)): * raise ValueError("mean <= 0.0") # <<<<<<<<<<<<<< * elif np.any(np.less_equal(oscale,0.0)): * raise ValueError("scale <= 0.0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__105, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3440; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3440; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3441 * if np.any(np.less_equal(omean,0.0)): * raise ValueError("mean <= 0.0") * elif np.any(np.less_equal(oscale,0.0)): # <<<<<<<<<<<<<< * raise ValueError("scale <= 0.0") * return cont2_array(self.internal_state, rk_wald, size, omean, oscale, */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_oscale)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_oscale)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oscale)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3442 * raise ValueError("mean <= 0.0") * elif np.any(np.less_equal(oscale,0.0)): * raise ValueError("scale <= 0.0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_wald, size, omean, oscale, * self.lock) */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__106, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3442; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3442; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3443 * elif np.any(np.less_equal(oscale,0.0)): * raise ValueError("scale <= 0.0") * return cont2_array(self.internal_state, rk_wald, size, omean, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3444 * raise ValueError("scale <= 0.0") * return cont2_array(self.internal_state, rk_wald, size, omean, oscale, * self.lock) # <<<<<<<<<<<<<< * * def triangular(self, left, mode, right, size=None): */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); /* "mtrand.pyx":3443 * elif np.any(np.less_equal(oscale,0.0)): * raise ValueError("scale <= 0.0") * return cont2_array(self.internal_state, rk_wald, size, omean, oscale, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_5 = __pyx_f_6mtrand_cont2_array(__pyx_v_self->internal_state, rk_wald, __pyx_v_size, __pyx_v_omean, __pyx_v_oscale, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3443; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":3359 * self.lock) * * def wald(self, mean, scale, size=None): # <<<<<<<<<<<<<< * """ * wald(mean, scale, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.wald", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_omean); __Pyx_XDECREF((PyObject *)__pyx_v_oscale); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3446 * self.lock) * * def triangular(self, left, mode, right, size=None): # <<<<<<<<<<<<<< * """ * triangular(left, mode, right, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_81triangular(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_80triangular[] = "\n triangular(left, mode, right, size=None)\n\n Draw samples from the triangular distribution.\n\n The triangular distribution is a continuous probability distribution with\n lower limit left, peak at mode, and upper limit right. Unlike the other\n distributions, these parameters directly define the shape of the pdf.\n\n Parameters\n ----------\n left : scalar\n Lower limit.\n mode : scalar\n The value where the peak of the distribution occurs.\n The value should fulfill the condition ``left <= mode <= right``.\n right : scalar\n Upper limit, should be larger than `left`.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The returned samples all lie in the interval [left, right].\n\n Notes\n -----\n The probability density function for the Triangular distribution is\n\n .. math:: P(x;l, m, r) = \\begin{cases}\n \\frac{2(x-l)}{(r-l)(m-l)}& \\text{for $l \\leq x \\leq m$},\\\\\n \\frac{2(m-x)}{(r-l)(r-m)}& \\text{for $m \\leq x \\leq r$},\\\\\n 0& \\text{otherwise}.\n \\end{cases}\n\n The triangular distribution is often used in ill-defined problems where the\n underlying distribution is not known, but some knowledge of the limits and\n mode exists. Often it is used in simulations.\n\n References\n ----------\n .. [1] Wikipedia, \"Triangular distribution\"\n http://en.wikipedia.org/wiki/Triangular_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram:\n\n >>> import"" matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,\n ... normed=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_81triangular(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_left = 0; PyObject *__pyx_v_mode = 0; PyObject *__pyx_v_right = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("triangular (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_left,&__pyx_n_s_mode,&__pyx_n_s_right,&__pyx_n_s_size,0}; PyObject* values[4] = {0,0,0,0}; values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_left)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mode)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("triangular", 0, 3, 4, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3446; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_right)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("triangular", 0, 3, 4, 2); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3446; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 3: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "triangular") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3446; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_left = values[0]; __pyx_v_mode = values[1]; __pyx_v_right = values[2]; __pyx_v_size = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("triangular", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3446; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.triangular", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_80triangular(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_left, __pyx_v_mode, __pyx_v_right, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_80triangular(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_left, PyObject *__pyx_v_mode, PyObject *__pyx_v_right, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oleft = 0; PyArrayObject *__pyx_v_omode = 0; PyArrayObject *__pyx_v_oright = 0; double __pyx_v_fleft; double __pyx_v_fmode; double __pyx_v_fright; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("triangular", 0); /* "mtrand.pyx":3507 * cdef double fleft, fmode, fright * * fleft = PyFloat_AsDouble(left) # <<<<<<<<<<<<<< * fright = PyFloat_AsDouble(right) * fmode = PyFloat_AsDouble(mode) */ __pyx_v_fleft = PyFloat_AsDouble(__pyx_v_left); /* "mtrand.pyx":3508 * * fleft = PyFloat_AsDouble(left) * fright = PyFloat_AsDouble(right) # <<<<<<<<<<<<<< * fmode = PyFloat_AsDouble(mode) * if not PyErr_Occurred(): */ __pyx_v_fright = PyFloat_AsDouble(__pyx_v_right); /* "mtrand.pyx":3509 * fleft = PyFloat_AsDouble(left) * fright = PyFloat_AsDouble(right) * fmode = PyFloat_AsDouble(mode) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fleft > fmode: */ __pyx_v_fmode = PyFloat_AsDouble(__pyx_v_mode); /* "mtrand.pyx":3510 * fright = PyFloat_AsDouble(right) * fmode = PyFloat_AsDouble(mode) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fleft > fmode: * raise ValueError("left > mode") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3511 * fmode = PyFloat_AsDouble(mode) * if not PyErr_Occurred(): * if fleft > fmode: # <<<<<<<<<<<<<< * raise ValueError("left > mode") * if fmode > fright: */ __pyx_t_1 = ((__pyx_v_fleft > __pyx_v_fmode) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3512 * if not PyErr_Occurred(): * if fleft > fmode: * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if fmode > fright: * raise ValueError("mode > right") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__107, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3512; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3512; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3513 * if fleft > fmode: * raise ValueError("left > mode") * if fmode > fright: # <<<<<<<<<<<<<< * raise ValueError("mode > right") * if fleft == fright: */ __pyx_t_1 = ((__pyx_v_fmode > __pyx_v_fright) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3514 * raise ValueError("left > mode") * if fmode > fright: * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if fleft == fright: * raise ValueError("left == right") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__108, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3515 * if fmode > fright: * raise ValueError("mode > right") * if fleft == fright: # <<<<<<<<<<<<<< * raise ValueError("left == right") * return cont3_array_sc(self.internal_state, rk_triangular, size, fleft, */ __pyx_t_1 = ((__pyx_v_fleft == __pyx_v_fright) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3516 * raise ValueError("mode > right") * if fleft == fright: * raise ValueError("left == right") # <<<<<<<<<<<<<< * return cont3_array_sc(self.internal_state, rk_triangular, size, fleft, * fmode, fright, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__109, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3516; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3516; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3517 * if fleft == fright: * raise ValueError("left == right") * return cont3_array_sc(self.internal_state, rk_triangular, size, fleft, # <<<<<<<<<<<<<< * fmode, fright, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3518 * raise ValueError("left == right") * return cont3_array_sc(self.internal_state, rk_triangular, size, fleft, * fmode, fright, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3517 * if fleft == fright: * raise ValueError("left == right") * return cont3_array_sc(self.internal_state, rk_triangular, size, fleft, # <<<<<<<<<<<<<< * fmode, fright, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_cont3_array_sc(__pyx_v_self->internal_state, rk_triangular, __pyx_v_size, __pyx_v_fleft, __pyx_v_fmode, __pyx_v_fright, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3517; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3520 * fmode, fright, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * oleft = PyArray_FROM_OTF(left, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * omode = PyArray_FROM_OTF(mode, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3521 * * PyErr_Clear() * oleft = PyArray_FROM_OTF(left, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * omode = PyArray_FROM_OTF(mode, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oright = PyArray_FROM_OTF(right, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_left, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3521; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oleft = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3522 * PyErr_Clear() * oleft = PyArray_FROM_OTF(left, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * omode = PyArray_FROM_OTF(mode, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * oright = PyArray_FROM_OTF(right, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_mode, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3522; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_omode = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3523 * oleft = PyArray_FROM_OTF(left, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * omode = PyArray_FROM_OTF(mode, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * oright = PyArray_FROM_OTF(right, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * * if np.any(np.greater(oleft, omode)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_right, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oright = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3525 * oright = PyArray_FROM_OTF(right, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * * if np.any(np.greater(oleft, omode)): # <<<<<<<<<<<<<< * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_greater); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oleft)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oleft)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oleft)); __Pyx_INCREF(((PyObject *)__pyx_v_omode)); PyTuple_SET_ITEM(__pyx_t_2, 1, ((PyObject *)__pyx_v_omode)); __Pyx_GIVEREF(((PyObject *)__pyx_v_omode)); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3525; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3526 * * if np.any(np.greater(oleft, omode)): * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__110, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3527 * if np.any(np.greater(oleft, omode)): * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): # <<<<<<<<<<<<<< * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_greater); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_omode)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_omode)); __Pyx_GIVEREF(((PyObject *)__pyx_v_omode)); __Pyx_INCREF(((PyObject *)__pyx_v_oright)); PyTuple_SET_ITEM(__pyx_t_5, 1, ((PyObject *)__pyx_v_oright)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oright)); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3527; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3528 * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__111, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3528; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3528; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3529 * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): # <<<<<<<<<<<<<< * raise ValueError("left == right") * return cont3_array(self.internal_state, rk_triangular, size, oleft, */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_any); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_equal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(((PyObject *)__pyx_v_oleft)); PyTuple_SET_ITEM(__pyx_t_4, 0, ((PyObject *)__pyx_v_oleft)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oleft)); __Pyx_INCREF(((PyObject *)__pyx_v_oright)); PyTuple_SET_ITEM(__pyx_t_4, 1, ((PyObject *)__pyx_v_oright)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oright)); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3530 * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") # <<<<<<<<<<<<<< * return cont3_array(self.internal_state, rk_triangular, size, oleft, * omode, oright, self.lock) */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__112, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3530; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3530; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3531 * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") * return cont3_array(self.internal_state, rk_triangular, size, oleft, # <<<<<<<<<<<<<< * omode, oright, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3532 * raise ValueError("left == right") * return cont3_array(self.internal_state, rk_triangular, size, oleft, * omode, oright, self.lock) # <<<<<<<<<<<<<< * * # Complicated, discrete distributions: */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); /* "mtrand.pyx":3531 * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") * return cont3_array(self.internal_state, rk_triangular, size, oleft, # <<<<<<<<<<<<<< * omode, oright, self.lock) * */ __pyx_t_4 = __pyx_f_6mtrand_cont3_array(__pyx_v_self->internal_state, rk_triangular, __pyx_v_size, __pyx_v_oleft, __pyx_v_omode, __pyx_v_oright, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":3446 * self.lock) * * def triangular(self, left, mode, right, size=None): # <<<<<<<<<<<<<< * """ * triangular(left, mode, right, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.triangular", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oleft); __Pyx_XDECREF((PyObject *)__pyx_v_omode); __Pyx_XDECREF((PyObject *)__pyx_v_oright); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3535 * * # Complicated, discrete distributions: * def binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * binomial(n, p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_83binomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_82binomial[] = "\n binomial(n, p, size=None)\n\n Draw samples from a binomial distribution.\n\n Samples are drawn from a Binomial distribution with specified\n parameters, n trials and p probability of success where\n n an integer >= 0 and p is in the interval [0,1]. (n may be\n input as a float, but it is truncated to an integer in use)\n\n Parameters\n ----------\n n : float (but truncated to an integer)\n parameter, >= 0.\n p : float\n parameter, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n where the values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.binom : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Binomial distribution is\n\n .. math:: P(N) = \\binom{n}{N}p^N(1-p)^{n-N},\n\n where :math:`n` is the number of trials, :math:`p` is the probability\n of success, and :math:`N` is the number of successes.\n\n When estimating the standard error of a proportion in a population by\n using a random sample, the normal distribution works well unless the\n product p*n <=5, where p = population proportion estimate, and n =\n number of samples, in which case the binomial distribution is used\n instead. For example, a sample of 15 people shows 4 who are left\n handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,\n so the binomial distribution should be used in this case.\n\n References\n ----------\n .. [1] Dalg""aard, Peter, \"Introductory Statistics with R\",\n Springer-Verlag, 2002.\n .. [2] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n Fifth Edition, 2002.\n .. [3] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [4] Weisstein, Eric W. \"Binomial Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/BinomialDistribution.html\n .. [5] Wikipedia, \"Binomial-distribution\",\n http://en.wikipedia.org/wiki/Binomial_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> n, p = 10, .5 # number of trials, probability of each trial\n >>> s = np.random.binomial(n, p, 1000)\n # result of flipping a coin 10 times, tested 1000 times.\n\n A real world example. A company drills 9 wild-cat oil exploration\n wells, each with an estimated probability of success of 0.1. All nine\n wells fail. What is the probability of that happening?\n\n Let's do 20,000 trials of the model, and count the number that\n generate zero positive results.\n\n >>> sum(np.random.binomial(9,0.1,20000)==0)/20000.\n answer = 0.38885, or 38%.\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_83binomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_n = 0; PyObject *__pyx_v_p = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("binomial (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_n,&__pyx_n_s_p,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_n)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_p)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("binomial", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3535; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "binomial") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3535; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_n = values[0]; __pyx_v_p = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("binomial", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3535; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_82binomial(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_n, __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_82binomial(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_on = 0; PyArrayObject *__pyx_v_op = 0; long __pyx_v_ln; double __pyx_v_fp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("binomial", 0); /* "mtrand.pyx":3621 * cdef double fp * * fp = PyFloat_AsDouble(p) # <<<<<<<<<<<<<< * ln = PyInt_AsLong(n) * if not PyErr_Occurred(): */ __pyx_v_fp = PyFloat_AsDouble(__pyx_v_p); /* "mtrand.pyx":3622 * * fp = PyFloat_AsDouble(p) * ln = PyInt_AsLong(n) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if ln < 0: */ __pyx_v_ln = PyInt_AsLong(__pyx_v_n); /* "mtrand.pyx":3623 * fp = PyFloat_AsDouble(p) * ln = PyInt_AsLong(n) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if ln < 0: * raise ValueError("n < 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3624 * ln = PyInt_AsLong(n) * if not PyErr_Occurred(): * if ln < 0: # <<<<<<<<<<<<<< * raise ValueError("n < 0") * if fp < 0: */ __pyx_t_1 = ((__pyx_v_ln < 0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3625 * if not PyErr_Occurred(): * if ln < 0: * raise ValueError("n < 0") # <<<<<<<<<<<<<< * if fp < 0: * raise ValueError("p < 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__113, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3625; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3625; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3626 * if ln < 0: * raise ValueError("n < 0") * if fp < 0: # <<<<<<<<<<<<<< * raise ValueError("p < 0") * elif fp > 1: */ __pyx_t_1 = ((__pyx_v_fp < 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3627 * raise ValueError("n < 0") * if fp < 0: * raise ValueError("p < 0") # <<<<<<<<<<<<<< * elif fp > 1: * raise ValueError("p > 1") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__114, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3627; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3627; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3628 * if fp < 0: * raise ValueError("p < 0") * elif fp > 1: # <<<<<<<<<<<<<< * raise ValueError("p > 1") * elif np.isnan(fp): */ __pyx_t_1 = ((__pyx_v_fp > 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3629 * raise ValueError("p < 0") * elif fp > 1: * raise ValueError("p > 1") # <<<<<<<<<<<<<< * elif np.isnan(fp): * raise ValueError("p is nan") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__115, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3629; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3629; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3630 * elif fp > 1: * raise ValueError("p > 1") * elif np.isnan(fp): # <<<<<<<<<<<<<< * raise ValueError("p is nan") * return discnp_array_sc(self.internal_state, rk_binomial, size, ln, */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3630; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_isnan); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3630; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyFloat_FromDouble(__pyx_v_fp); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3630; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3630; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3630; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3630; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3631 * raise ValueError("p > 1") * elif np.isnan(fp): * raise ValueError("p is nan") # <<<<<<<<<<<<<< * return discnp_array_sc(self.internal_state, rk_binomial, size, ln, * fp, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__116, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3631; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3631; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3632 * elif np.isnan(fp): * raise ValueError("p is nan") * return discnp_array_sc(self.internal_state, rk_binomial, size, ln, # <<<<<<<<<<<<<< * fp, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3633 * raise ValueError("p is nan") * return discnp_array_sc(self.internal_state, rk_binomial, size, ln, * fp, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3632 * elif np.isnan(fp): * raise ValueError("p is nan") * return discnp_array_sc(self.internal_state, rk_binomial, size, ln, # <<<<<<<<<<<<<< * fp, self.lock) * */ __pyx_t_4 = __pyx_f_6mtrand_discnp_array_sc(__pyx_v_self->internal_state, rk_binomial, __pyx_v_size, __pyx_v_ln, __pyx_v_fp, __pyx_t_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3632; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /* "mtrand.pyx":3635 * fp, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * on = PyArray_FROM_OTF(n, NPY_LONG, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3637 * PyErr_Clear() * * on = PyArray_FROM_OTF(n, NPY_LONG, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(n, 0)): */ __pyx_t_4 = PyArray_FROM_OTF(__pyx_v_n, NPY_LONG, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3637; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __pyx_t_4; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_on = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3638 * * on = PyArray_FROM_OTF(n, NPY_LONG, NPY_ARRAY_ALIGNED) * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less(n, 0)): * raise ValueError("n < 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_p, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3638; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __pyx_t_2; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_op = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":3639 * on = PyArray_FROM_OTF(n, NPY_LONG, NPY_ARRAY_ALIGNED) * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(n, 0)): # <<<<<<<<<<<<<< * raise ValueError("n < 0") * if np.any(np.less(p, 0)): */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_less); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_n); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_n); __Pyx_GIVEREF(__pyx_v_n); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3640 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(n, 0)): * raise ValueError("n < 0") # <<<<<<<<<<<<<< * if np.any(np.less(p, 0)): * raise ValueError("p < 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__117, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3640; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3640; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3641 * if np.any(np.less(n, 0)): * raise ValueError("n < 0") * if np.any(np.less(p, 0)): # <<<<<<<<<<<<<< * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_p); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_p); __Pyx_GIVEREF(__pyx_v_p); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_5, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3642 * raise ValueError("n < 0") * if np.any(np.less(p, 0)): * raise ValueError("p < 0") # <<<<<<<<<<<<<< * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__118, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3642; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3642; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3643 * if np.any(np.less(p, 0)): * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): # <<<<<<<<<<<<<< * raise ValueError("p > 1") * return discnp_array(self.internal_state, rk_binomial, size, on, op, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_greater); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_p); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_p); __Pyx_GIVEREF(__pyx_v_p); __Pyx_INCREF(__pyx_int_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_1); __Pyx_GIVEREF(__pyx_int_1); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3644 * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") # <<<<<<<<<<<<<< * return discnp_array(self.internal_state, rk_binomial, size, on, op, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__119, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3644; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3644; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3645 * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") * return discnp_array(self.internal_state, rk_binomial, size, on, op, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3646 * raise ValueError("p > 1") * return discnp_array(self.internal_state, rk_binomial, size, on, op, * self.lock) # <<<<<<<<<<<<<< * * def negative_binomial(self, n, p, size=None): */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3645 * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") * return discnp_array(self.internal_state, rk_binomial, size, on, op, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discnp_array(__pyx_v_self->internal_state, rk_binomial, __pyx_v_size, __pyx_v_on, __pyx_v_op, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":3535 * * # Complicated, discrete distributions: * def binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * binomial(n, p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_on); __Pyx_XDECREF((PyObject *)__pyx_v_op); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3648 * self.lock) * * def negative_binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * negative_binomial(n, p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_85negative_binomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_84negative_binomial[] = "\n negative_binomial(n, p, size=None)\n\n Draw samples from a negative_binomial distribution.\n\n Samples are drawn from a negative_Binomial distribution with specified\n parameters, `n` trials and `p` probability of success where `n` is an\n integer > 0 and `p` is in the interval [0, 1].\n\n Parameters\n ----------\n n : int\n Parameter, > 0.\n p : float\n Parameter, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : int or ndarray of ints\n Drawn samples.\n\n Notes\n -----\n The probability density for the Negative Binomial distribution is\n\n .. math:: P(N;n,p) = \\binom{N+n-1}{n-1}p^{n}(1-p)^{N},\n\n where :math:`n-1` is the number of successes, :math:`p` is the probability\n of success, and :math:`N+n-1` is the number of trials.\n\n The negative binomial distribution gives the probability of n-1 successes\n and N failures in N+n-1 trials, and success on the (N+n)th trial.\n\n If one throws a die repeatedly until the third time a \"1\" appears, then the\n probability distribution of the number of non-\"1\"s that appear before the\n third \"1\" is a negative binomial distribution.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Negative Binomial Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/NegativeBinomialDistribution.html\n .. [2] Wikipedia, \"Negative binomial distribution\",\n http://en.wikipedia.org/wiki/Negative_binomial_distribution\n\n Examples\n --------\n Draw samples from the distribut""ion:\n\n A real world example. A company drills wild-cat oil exploration wells, each\n with an estimated probability of success of 0.1. What is the probability\n of having one success for each successive well, that is what is the\n probability of a single success after drilling 5 wells, after 6 wells,\n etc.?\n\n >>> s = np.random.negative_binomial(1, 0.1, 100000)\n >>> for i in range(1, 11):\n ... probability = sum(s 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "negative_binomial") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3648; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_n = values[0]; __pyx_v_p = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("negative_binomial", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3648; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.negative_binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_84negative_binomial(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_n, __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_84negative_binomial(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_on = 0; PyArrayObject *__pyx_v_op = 0; double __pyx_v_fn; double __pyx_v_fp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("negative_binomial", 0); /* "mtrand.pyx":3719 * cdef double fp * * fp = PyFloat_AsDouble(p) # <<<<<<<<<<<<<< * fn = PyFloat_AsDouble(n) * if not PyErr_Occurred(): */ __pyx_v_fp = PyFloat_AsDouble(__pyx_v_p); /* "mtrand.pyx":3720 * * fp = PyFloat_AsDouble(p) * fn = PyFloat_AsDouble(n) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fn <= 0: */ __pyx_v_fn = PyFloat_AsDouble(__pyx_v_n); /* "mtrand.pyx":3721 * fp = PyFloat_AsDouble(p) * fn = PyFloat_AsDouble(n) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fn <= 0: * raise ValueError("n <= 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3722 * fn = PyFloat_AsDouble(n) * if not PyErr_Occurred(): * if fn <= 0: # <<<<<<<<<<<<<< * raise ValueError("n <= 0") * if fp < 0: */ __pyx_t_1 = ((__pyx_v_fn <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3723 * if not PyErr_Occurred(): * if fn <= 0: * raise ValueError("n <= 0") # <<<<<<<<<<<<<< * if fp < 0: * raise ValueError("p < 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__120, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3724 * if fn <= 0: * raise ValueError("n <= 0") * if fp < 0: # <<<<<<<<<<<<<< * raise ValueError("p < 0") * elif fp > 1: */ __pyx_t_1 = ((__pyx_v_fp < 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3725 * raise ValueError("n <= 0") * if fp < 0: * raise ValueError("p < 0") # <<<<<<<<<<<<<< * elif fp > 1: * raise ValueError("p > 1") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__121, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3725; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3725; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3726 * if fp < 0: * raise ValueError("p < 0") * elif fp > 1: # <<<<<<<<<<<<<< * raise ValueError("p > 1") * return discdd_array_sc(self.internal_state, rk_negative_binomial, */ __pyx_t_1 = ((__pyx_v_fp > 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3727 * raise ValueError("p < 0") * elif fp > 1: * raise ValueError("p > 1") # <<<<<<<<<<<<<< * return discdd_array_sc(self.internal_state, rk_negative_binomial, * size, fn, fp, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__122, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3727; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3727; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3728 * elif fp > 1: * raise ValueError("p > 1") * return discdd_array_sc(self.internal_state, rk_negative_binomial, # <<<<<<<<<<<<<< * size, fn, fp, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3729 * raise ValueError("p > 1") * return discdd_array_sc(self.internal_state, rk_negative_binomial, * size, fn, fp, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3728 * elif fp > 1: * raise ValueError("p > 1") * return discdd_array_sc(self.internal_state, rk_negative_binomial, # <<<<<<<<<<<<<< * size, fn, fp, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discdd_array_sc(__pyx_v_self->internal_state, rk_negative_binomial, __pyx_v_size, __pyx_v_fn, __pyx_v_fp, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3728; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3731 * size, fn, fp, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * on = PyArray_FROM_OTF(n, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3733 * PyErr_Clear() * * on = PyArray_FROM_OTF(n, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(n, 0)): */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_n, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3733; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_on = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3734 * * on = PyArray_FROM_OTF(n, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(n, 0)): * raise ValueError("n <= 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_p, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3734; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_op = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3735 * on = PyArray_FROM_OTF(n, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(n, 0)): # <<<<<<<<<<<<<< * raise ValueError("n <= 0") * if np.any(np.less(p, 0)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_n); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_n); __Pyx_GIVEREF(__pyx_v_n); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3736 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(n, 0)): * raise ValueError("n <= 0") # <<<<<<<<<<<<<< * if np.any(np.less(p, 0)): * raise ValueError("p < 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__123, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3736; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3736; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3737 * if np.any(np.less_equal(n, 0)): * raise ValueError("n <= 0") * if np.any(np.less(p, 0)): # <<<<<<<<<<<<<< * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_p); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_p); __Pyx_GIVEREF(__pyx_v_p); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3737; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3738 * raise ValueError("n <= 0") * if np.any(np.less(p, 0)): * raise ValueError("p < 0") # <<<<<<<<<<<<<< * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__124, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3738; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3738; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3739 * if np.any(np.less(p, 0)): * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): # <<<<<<<<<<<<<< * raise ValueError("p > 1") * return discdd_array(self.internal_state, rk_negative_binomial, size, */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_any); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_greater); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_p); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_p); __Pyx_GIVEREF(__pyx_v_p); __Pyx_INCREF(__pyx_int_1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_int_1); __Pyx_GIVEREF(__pyx_int_1); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3740 * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") # <<<<<<<<<<<<<< * return discdd_array(self.internal_state, rk_negative_binomial, size, * on, op, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__125, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3740; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3740; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3741 * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") * return discdd_array(self.internal_state, rk_negative_binomial, size, # <<<<<<<<<<<<<< * on, op, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3742 * raise ValueError("p > 1") * return discdd_array(self.internal_state, rk_negative_binomial, size, * on, op, self.lock) # <<<<<<<<<<<<<< * * def poisson(self, lam=1.0, size=None): */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3741 * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") * return discdd_array(self.internal_state, rk_negative_binomial, size, # <<<<<<<<<<<<<< * on, op, self.lock) * */ __pyx_t_4 = __pyx_f_6mtrand_discdd_array(__pyx_v_self->internal_state, rk_negative_binomial, __pyx_v_size, __pyx_v_on, __pyx_v_op, __pyx_t_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3741; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":3648 * self.lock) * * def negative_binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * negative_binomial(n, p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.negative_binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_on); __Pyx_XDECREF((PyObject *)__pyx_v_op); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3744 * on, op, self.lock) * * def poisson(self, lam=1.0, size=None): # <<<<<<<<<<<<<< * """ * poisson(lam=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_87poisson(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_86poisson[] = "\n poisson(lam=1.0, size=None)\n\n Draw samples from a Poisson distribution.\n\n The Poisson distribution is the limit of the Binomial\n distribution for large N.\n\n Parameters\n ----------\n lam : float or sequence of float\n Expectation of interval, should be >= 0. A sequence of expectation\n intervals must be broadcastable over the requested size.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Notes\n -----\n The Poisson distribution\n\n .. math:: f(k; \\lambda)=\\frac{\\lambda^k e^{-\\lambda}}{k!}\n\n For events with an expected separation :math:`\\lambda` the Poisson\n distribution :math:`f(k; \\lambda)` describes the probability of\n :math:`k` events occurring within the observed interval :math:`\\lambda`.\n\n Because the output is limited to the range of the C long type, a\n ValueError is raised when `lam` is within 10 sigma of the maximum\n representable value.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Poisson Distribution.\" From MathWorld--A Wolfram\n Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html\n .. [2] Wikipedia, \"Poisson distribution\",\n http://en.wikipedia.org/wiki/Poisson_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> import numpy as np\n >>> s = np.random.poisson(5, 10000)\n\n Display histogram of the sample:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 14, normed=True)\n >>> plt.show()\n\n Draw each 100 values for lambda 100 and 500:\n\n >>> s = np.random.poisson(lam=(100., 50""0.), size=(100, 2))\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_87poisson(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_lam = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("poisson (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_lam,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[0] = ((PyObject *)__pyx_float_1_0); values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_lam); if (value) { values[0] = value; kw_args--; } } case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "poisson") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3744; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_lam = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("poisson", 0, 0, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3744; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.poisson", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_86poisson(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_lam, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_86poisson(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_lam, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_olam = 0; double __pyx_v_flam; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("poisson", 0); /* "mtrand.pyx":3804 * cdef ndarray olam * cdef double flam * flam = PyFloat_AsDouble(lam) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if lam < 0: */ __pyx_v_flam = PyFloat_AsDouble(__pyx_v_lam); /* "mtrand.pyx":3805 * cdef double flam * flam = PyFloat_AsDouble(lam) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if lam < 0: * raise ValueError("lam < 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3806 * flam = PyFloat_AsDouble(lam) * if not PyErr_Occurred(): * if lam < 0: # <<<<<<<<<<<<<< * raise ValueError("lam < 0") * if lam > self.poisson_lam_max: */ __pyx_t_2 = PyObject_RichCompare(__pyx_v_lam, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3806; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3806; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3807 * if not PyErr_Occurred(): * if lam < 0: * raise ValueError("lam < 0") # <<<<<<<<<<<<<< * if lam > self.poisson_lam_max: * raise ValueError("lam value too large") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__126, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3807; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3807; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3808 * if lam < 0: * raise ValueError("lam < 0") * if lam > self.poisson_lam_max: # <<<<<<<<<<<<<< * raise ValueError("lam value too large") * return discd_array_sc(self.internal_state, rk_poisson, size, flam, */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_poisson_lam_max); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3808; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyObject_RichCompare(__pyx_v_lam, __pyx_t_2, Py_GT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3808; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3808; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3809 * raise ValueError("lam < 0") * if lam > self.poisson_lam_max: * raise ValueError("lam value too large") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_poisson, size, flam, * self.lock) */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__127, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3809; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3809; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3810 * if lam > self.poisson_lam_max: * raise ValueError("lam value too large") * return discd_array_sc(self.internal_state, rk_poisson, size, flam, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3811 * raise ValueError("lam value too large") * return discd_array_sc(self.internal_state, rk_poisson, size, flam, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); /* "mtrand.pyx":3810 * if lam > self.poisson_lam_max: * raise ValueError("lam value too large") * return discd_array_sc(self.internal_state, rk_poisson, size, flam, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_2 = __pyx_f_6mtrand_discd_array_sc(__pyx_v_self->internal_state, rk_poisson, __pyx_v_size, __pyx_v_flam, __pyx_t_3); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3810; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; } /* "mtrand.pyx":3813 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * olam = PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3815 * PyErr_Clear() * * olam = PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less(olam, 0)): * raise ValueError("lam < 0") */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3815; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_olam = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":3816 * * olam = PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(olam, 0)): # <<<<<<<<<<<<<< * raise ValueError("lam < 0") * if np.any(np.greater(olam, self.poisson_lam_max)): */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_olam)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_olam)); __Pyx_GIVEREF(((PyObject *)__pyx_v_olam)); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3816; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3817 * olam = PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(olam, 0)): * raise ValueError("lam < 0") # <<<<<<<<<<<<<< * if np.any(np.greater(olam, self.poisson_lam_max)): * raise ValueError("lam value too large.") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__128, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3817; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3817; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3818 * if np.any(np.less(olam, 0)): * raise ValueError("lam < 0") * if np.any(np.greater(olam, self.poisson_lam_max)): # <<<<<<<<<<<<<< * raise ValueError("lam value too large.") * return discd_array(self.internal_state, rk_poisson, size, olam, self.lock) */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_greater); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_poisson_lam_max); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(((PyObject *)__pyx_v_olam)); PyTuple_SET_ITEM(__pyx_t_4, 0, ((PyObject *)__pyx_v_olam)); __Pyx_GIVEREF(((PyObject *)__pyx_v_olam)); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3818; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3819 * raise ValueError("lam < 0") * if np.any(np.greater(olam, self.poisson_lam_max)): * raise ValueError("lam value too large.") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_poisson, size, olam, self.lock) * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__129, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3819; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3819; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3820 * if np.any(np.greater(olam, self.poisson_lam_max)): * raise ValueError("lam value too large.") * return discd_array(self.internal_state, rk_poisson, size, olam, self.lock) # <<<<<<<<<<<<<< * * def zipf(self, a, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); __pyx_t_4 = __pyx_f_6mtrand_discd_array(__pyx_v_self->internal_state, rk_poisson, __pyx_v_size, __pyx_v_olam, __pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3820; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "mtrand.pyx":3744 * on, op, self.lock) * * def poisson(self, lam=1.0, size=None): # <<<<<<<<<<<<<< * """ * poisson(lam=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.poisson", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_olam); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3822 * return discd_array(self.internal_state, rk_poisson, size, olam, self.lock) * * def zipf(self, a, size=None): # <<<<<<<<<<<<<< * """ * zipf(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_89zipf(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_88zipf[] = "\n zipf(a, size=None)\n\n Draw samples from a Zipf distribution.\n\n Samples are drawn from a Zipf distribution with specified parameter\n `a` > 1.\n\n The Zipf distribution (also known as the zeta distribution) is a\n continuous probability distribution that satisfies Zipf's law: the\n frequency of an item is inversely proportional to its rank in a\n frequency table.\n\n Parameters\n ----------\n a : float > 1\n Distribution parameter.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : scalar or ndarray\n The returned samples are greater than or equal to one.\n\n See Also\n --------\n scipy.stats.distributions.zipf : probability density function,\n distribution, or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Zipf distribution is\n\n .. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)},\n\n where :math:`\\zeta` is the Riemann Zeta function.\n\n It is named for the American linguist George Kingsley Zipf, who noted\n that the frequency of any word in a sample of a language is inversely\n proportional to its rank in the frequency table.\n\n References\n ----------\n Zipf, G. K., *Selected Studies of the Principle of Relative Frequency\n in Language*, Cambridge, MA: Harvard Univ. Press, 1932.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 2. # parameter\n >>> s = np.random.zipf(a, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pypl""ot as plt\n >>> import scipy.special as sps\n Truncate s values at 50 so plot is interesting\n >>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)\n >>> x = np.arange(1., 50.)\n >>> y = x**(-a)/sps.zetac(a)\n >>> plt.plot(x, y/max(y), linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_89zipf(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("zipf (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "zipf") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3822; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("zipf", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3822; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.zipf", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_88zipf(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_88zipf(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_oa = 0; double __pyx_v_fa; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("zipf", 0); /* "mtrand.pyx":3895 * cdef double fa * * fa = PyFloat_AsDouble(a) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fa <= 1.0: */ __pyx_v_fa = PyFloat_AsDouble(__pyx_v_a); /* "mtrand.pyx":3896 * * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fa <= 1.0: * raise ValueError("a <= 1.0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3897 * fa = PyFloat_AsDouble(a) * if not PyErr_Occurred(): * if fa <= 1.0: # <<<<<<<<<<<<<< * raise ValueError("a <= 1.0") * return discd_array_sc(self.internal_state, rk_zipf, size, fa, */ __pyx_t_1 = ((__pyx_v_fa <= 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3898 * if not PyErr_Occurred(): * if fa <= 1.0: * raise ValueError("a <= 1.0") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_zipf, size, fa, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__130, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3898; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3898; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3899 * if fa <= 1.0: * raise ValueError("a <= 1.0") * return discd_array_sc(self.internal_state, rk_zipf, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3900 * raise ValueError("a <= 1.0") * return discd_array_sc(self.internal_state, rk_zipf, size, fa, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3899 * if fa <= 1.0: * raise ValueError("a <= 1.0") * return discd_array_sc(self.internal_state, rk_zipf, size, fa, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discd_array_sc(__pyx_v_self->internal_state, rk_zipf, __pyx_v_size, __pyx_v_fa, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3899; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3902 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":3904 * PyErr_Clear() * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(oa, 1.0)): * raise ValueError("a <= 1.0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_a, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3904; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_oa = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3905 * * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 1.0)): # <<<<<<<<<<<<<< * raise ValueError("a <= 1.0") * return discd_array(self.internal_state, rk_zipf, size, oa, self.lock) */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_oa)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_oa)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oa)); __Pyx_INCREF(__pyx_float_1_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_1_0); __Pyx_GIVEREF(__pyx_float_1_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3905; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3906 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 1.0)): * raise ValueError("a <= 1.0") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_zipf, size, oa, self.lock) * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__131, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3906; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3906; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3907 * if np.any(np.less_equal(oa, 1.0)): * raise ValueError("a <= 1.0") * return discd_array(self.internal_state, rk_zipf, size, oa, self.lock) # <<<<<<<<<<<<<< * * def geometric(self, p, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_5 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_5); __pyx_t_2 = __pyx_f_6mtrand_discd_array(__pyx_v_self->internal_state, rk_zipf, __pyx_v_size, __pyx_v_oa, __pyx_t_5); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3907; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "mtrand.pyx":3822 * return discd_array(self.internal_state, rk_poisson, size, olam, self.lock) * * def zipf(self, a, size=None): # <<<<<<<<<<<<<< * """ * zipf(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.zipf", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oa); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3909 * return discd_array(self.internal_state, rk_zipf, size, oa, self.lock) * * def geometric(self, p, size=None): # <<<<<<<<<<<<<< * """ * geometric(p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_91geometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_90geometric[] = "\n geometric(p, size=None)\n\n Draw samples from the geometric distribution.\n\n Bernoulli trials are experiments with one of two outcomes:\n success or failure (an example of such an experiment is flipping\n a coin). The geometric distribution models the number of trials\n that must be run in order to achieve success. It is therefore\n supported on the positive integers, ``k = 1, 2, ...``.\n\n The probability mass function of the geometric distribution is\n\n .. math:: f(k) = (1 - p)^{k - 1} p\n\n where `p` is the probability of success of an individual trial.\n\n Parameters\n ----------\n p : float\n The probability of success of an individual trial.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Samples from the geometric distribution, shaped according to\n `size`.\n\n Examples\n --------\n Draw ten thousand values from the geometric distribution,\n with the probability of an individual success equal to 0.35:\n\n >>> z = np.random.geometric(p=0.35, size=10000)\n\n How many trials succeeded after a single run?\n\n >>> (z == 1).sum() / 10000.\n 0.34889999999999999 #random\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_91geometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_p = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("geometric (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_p,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_p)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "geometric") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3909; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_p = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("geometric", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3909; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.geometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_90geometric(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_90geometric(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_op = 0; double __pyx_v_fp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("geometric", 0); /* "mtrand.pyx":3958 * cdef double fp * * fp = PyFloat_AsDouble(p) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fp < 0.0: */ __pyx_v_fp = PyFloat_AsDouble(__pyx_v_p); /* "mtrand.pyx":3959 * * fp = PyFloat_AsDouble(p) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fp < 0.0: * raise ValueError("p < 0.0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3960 * fp = PyFloat_AsDouble(p) * if not PyErr_Occurred(): * if fp < 0.0: # <<<<<<<<<<<<<< * raise ValueError("p < 0.0") * if fp > 1.0: */ __pyx_t_1 = ((__pyx_v_fp < 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3961 * if not PyErr_Occurred(): * if fp < 0.0: * raise ValueError("p < 0.0") # <<<<<<<<<<<<<< * if fp > 1.0: * raise ValueError("p > 1.0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__132, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3961; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3961; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3962 * if fp < 0.0: * raise ValueError("p < 0.0") * if fp > 1.0: # <<<<<<<<<<<<<< * raise ValueError("p > 1.0") * return discd_array_sc(self.internal_state, rk_geometric, size, fp, */ __pyx_t_1 = ((__pyx_v_fp > 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":3963 * raise ValueError("p < 0.0") * if fp > 1.0: * raise ValueError("p > 1.0") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_geometric, size, fp, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__133, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3963; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3963; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3964 * if fp > 1.0: * raise ValueError("p > 1.0") * return discd_array_sc(self.internal_state, rk_geometric, size, fp, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":3965 * raise ValueError("p > 1.0") * return discd_array_sc(self.internal_state, rk_geometric, size, fp, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":3964 * if fp > 1.0: * raise ValueError("p > 1.0") * return discd_array_sc(self.internal_state, rk_geometric, size, fp, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discd_array_sc(__pyx_v_self->internal_state, rk_geometric, __pyx_v_size, __pyx_v_fp, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3964; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":3967 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * */ PyErr_Clear(); /* "mtrand.pyx":3970 * * * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less(op, 0.0)): * raise ValueError("p < 0.0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_p, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3970; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_op = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":3971 * * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(op, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("p < 0.0") * if np.any(np.greater(op, 1.0)): */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_op)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_op)); __Pyx_GIVEREF(((PyObject *)__pyx_v_op)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3972 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(op, 0.0)): * raise ValueError("p < 0.0") # <<<<<<<<<<<<<< * if np.any(np.greater(op, 1.0)): * raise ValueError("p > 1.0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__134, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3972; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3972; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3973 * if np.any(np.less(op, 0.0)): * raise ValueError("p < 0.0") * if np.any(np.greater(op, 1.0)): # <<<<<<<<<<<<<< * raise ValueError("p > 1.0") * return discd_array(self.internal_state, rk_geometric, size, op, self.lock) */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_greater); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_op)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_op)); __Pyx_GIVEREF(((PyObject *)__pyx_v_op)); __Pyx_INCREF(__pyx_float_1_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_1_0); __Pyx_GIVEREF(__pyx_float_1_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3973; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":3974 * raise ValueError("p < 0.0") * if np.any(np.greater(op, 1.0)): * raise ValueError("p > 1.0") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_geometric, size, op, self.lock) * */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__135, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3974; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3974; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":3975 * if np.any(np.greater(op, 1.0)): * raise ValueError("p > 1.0") * return discd_array(self.internal_state, rk_geometric, size, op, self.lock) # <<<<<<<<<<<<<< * * def hypergeometric(self, ngood, nbad, nsample, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = __pyx_f_6mtrand_discd_array(__pyx_v_self->internal_state, rk_geometric, __pyx_v_size, __pyx_v_op, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3975; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":3909 * return discd_array(self.internal_state, rk_zipf, size, oa, self.lock) * * def geometric(self, p, size=None): # <<<<<<<<<<<<<< * """ * geometric(p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.geometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_op); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":3977 * return discd_array(self.internal_state, rk_geometric, size, op, self.lock) * * def hypergeometric(self, ngood, nbad, nsample, size=None): # <<<<<<<<<<<<<< * """ * hypergeometric(ngood, nbad, nsample, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_93hypergeometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_92hypergeometric[] = "\n hypergeometric(ngood, nbad, nsample, size=None)\n\n Draw samples from a Hypergeometric distribution.\n\n Samples are drawn from a Hypergeometric distribution with specified\n parameters, ngood (ways to make a good selection), nbad (ways to make\n a bad selection), and nsample = number of items sampled, which is less\n than or equal to the sum ngood + nbad.\n\n Parameters\n ----------\n ngood : int or array_like\n Number of ways to make a good selection. Must be nonnegative.\n nbad : int or array_like\n Number of ways to make a bad selection. Must be nonnegative.\n nsample : int or array_like\n Number of items sampled. Must be at least 1 and at most\n ``ngood + nbad``.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.hypergeom : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Hypergeometric distribution is\n\n .. math:: P(x) = \\frac{\\binom{m}{n}\\binom{N-m}{n-x}}{\\binom{N}{n}},\n\n where :math:`0 \\le x \\le m` and :math:`n+m-N \\le x \\le n`\n\n for P(x) the probability of x successes, n = ngood, m = nbad, and\n N = number of samples.\n\n Consider an urn with black and white marbles in it, ngood of them\n black and nbad are white. If you draw nsample balls without\n replacement, then the Hypergeometric distribution describes the\n distribution of black balls in the drawn sample.""\n\n Note that this distribution is very similar to the Binomial\n distribution, except that in this case, samples are drawn without\n replacement, whereas in the Binomial case samples are drawn with\n replacement (or the sample space is infinite). As the sample space\n becomes large, this distribution approaches the Binomial.\n\n References\n ----------\n .. [1] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [2] Weisstein, Eric W. \"Hypergeometric Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/HypergeometricDistribution.html\n .. [3] Wikipedia, \"Hypergeometric-distribution\",\n http://en.wikipedia.org/wiki/Hypergeometric-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> ngood, nbad, nsamp = 100, 2, 10\n # number of good, number of bad, and number of samples\n >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)\n >>> hist(s)\n # note that it is very unlikely to grab both bad items\n\n Suppose you have an urn with 15 white and 15 black marbles.\n If you pull 15 marbles at random, how likely is it that\n 12 or more of them are one color?\n\n >>> s = np.random.hypergeometric(15, 15, 15, 100000)\n >>> sum(s>=12)/100000. + sum(s<=3)/100000.\n # answer = 0.003 ... pretty unlikely!\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_93hypergeometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_ngood = 0; PyObject *__pyx_v_nbad = 0; PyObject *__pyx_v_nsample = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("hypergeometric (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_ngood,&__pyx_n_s_nbad,&__pyx_n_s_nsample,&__pyx_n_s_size,0}; PyObject* values[4] = {0,0,0,0}; values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_ngood)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_nbad)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("hypergeometric", 0, 3, 4, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3977; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_nsample)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("hypergeometric", 0, 3, 4, 2); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3977; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 3: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "hypergeometric") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3977; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_ngood = values[0]; __pyx_v_nbad = values[1]; __pyx_v_nsample = values[2]; __pyx_v_size = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("hypergeometric", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3977; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.hypergeometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_92hypergeometric(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_ngood, __pyx_v_nbad, __pyx_v_nsample, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_92hypergeometric(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_ngood, PyObject *__pyx_v_nbad, PyObject *__pyx_v_nsample, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_ongood = 0; PyArrayObject *__pyx_v_onbad = 0; PyArrayObject *__pyx_v_onsample = 0; long __pyx_v_lngood; long __pyx_v_lnbad; long __pyx_v_lnsample; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("hypergeometric", 0); /* "mtrand.pyx":4066 * cdef long lngood, lnbad, lnsample * * lngood = PyInt_AsLong(ngood) # <<<<<<<<<<<<<< * lnbad = PyInt_AsLong(nbad) * lnsample = PyInt_AsLong(nsample) */ __pyx_v_lngood = PyInt_AsLong(__pyx_v_ngood); /* "mtrand.pyx":4067 * * lngood = PyInt_AsLong(ngood) * lnbad = PyInt_AsLong(nbad) # <<<<<<<<<<<<<< * lnsample = PyInt_AsLong(nsample) * if not PyErr_Occurred(): */ __pyx_v_lnbad = PyInt_AsLong(__pyx_v_nbad); /* "mtrand.pyx":4068 * lngood = PyInt_AsLong(ngood) * lnbad = PyInt_AsLong(nbad) * lnsample = PyInt_AsLong(nsample) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if lngood < 0: */ __pyx_v_lnsample = PyInt_AsLong(__pyx_v_nsample); /* "mtrand.pyx":4069 * lnbad = PyInt_AsLong(nbad) * lnsample = PyInt_AsLong(nsample) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if lngood < 0: * raise ValueError("ngood < 0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4070 * lnsample = PyInt_AsLong(nsample) * if not PyErr_Occurred(): * if lngood < 0: # <<<<<<<<<<<<<< * raise ValueError("ngood < 0") * if lnbad < 0: */ __pyx_t_1 = ((__pyx_v_lngood < 0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4071 * if not PyErr_Occurred(): * if lngood < 0: * raise ValueError("ngood < 0") # <<<<<<<<<<<<<< * if lnbad < 0: * raise ValueError("nbad < 0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__136, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4071; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4071; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4072 * if lngood < 0: * raise ValueError("ngood < 0") * if lnbad < 0: # <<<<<<<<<<<<<< * raise ValueError("nbad < 0") * if lnsample < 1: */ __pyx_t_1 = ((__pyx_v_lnbad < 0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4073 * raise ValueError("ngood < 0") * if lnbad < 0: * raise ValueError("nbad < 0") # <<<<<<<<<<<<<< * if lnsample < 1: * raise ValueError("nsample < 1") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__137, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4073; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4073; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4074 * if lnbad < 0: * raise ValueError("nbad < 0") * if lnsample < 1: # <<<<<<<<<<<<<< * raise ValueError("nsample < 1") * if lngood + lnbad < lnsample: */ __pyx_t_1 = ((__pyx_v_lnsample < 1) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4075 * raise ValueError("nbad < 0") * if lnsample < 1: * raise ValueError("nsample < 1") # <<<<<<<<<<<<<< * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__138, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4075; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4075; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4076 * if lnsample < 1: * raise ValueError("nsample < 1") * if lngood + lnbad < lnsample: # <<<<<<<<<<<<<< * raise ValueError("ngood + nbad < nsample") * return discnmN_array_sc(self.internal_state, rk_hypergeometric, */ __pyx_t_1 = (((__pyx_v_lngood + __pyx_v_lnbad) < __pyx_v_lnsample) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4077 * raise ValueError("nsample < 1") * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * return discnmN_array_sc(self.internal_state, rk_hypergeometric, * size, lngood, lnbad, lnsample, self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__139, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4077; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4077; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4078 * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") * return discnmN_array_sc(self.internal_state, rk_hypergeometric, # <<<<<<<<<<<<<< * size, lngood, lnbad, lnsample, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":4079 * raise ValueError("ngood + nbad < nsample") * return discnmN_array_sc(self.internal_state, rk_hypergeometric, * size, lngood, lnbad, lnsample, self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":4078 * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") * return discnmN_array_sc(self.internal_state, rk_hypergeometric, # <<<<<<<<<<<<<< * size, lngood, lnbad, lnsample, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discnmN_array_sc(__pyx_v_self->internal_state, rk_hypergeometric, __pyx_v_size, __pyx_v_lngood, __pyx_v_lnbad, __pyx_v_lnsample, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4078; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":4081 * size, lngood, lnbad, lnsample, self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * ongood = PyArray_FROM_OTF(ngood, NPY_LONG, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":4083 * PyErr_Clear() * * ongood = PyArray_FROM_OTF(ngood, NPY_LONG, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * onbad = PyArray_FROM_OTF(nbad, NPY_LONG, NPY_ARRAY_ALIGNED) * onsample = PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED) */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_ngood, NPY_LONG, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ongood = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4084 * * ongood = PyArray_FROM_OTF(ngood, NPY_LONG, NPY_ARRAY_ALIGNED) * onbad = PyArray_FROM_OTF(nbad, NPY_LONG, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * onsample = PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED) * if np.any(np.less(ongood, 0)): */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_nbad, NPY_LONG, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4084; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_onbad = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4085 * ongood = PyArray_FROM_OTF(ngood, NPY_LONG, NPY_ARRAY_ALIGNED) * onbad = PyArray_FROM_OTF(nbad, NPY_LONG, NPY_ARRAY_ALIGNED) * onsample = PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less(ongood, 0)): * raise ValueError("ngood < 0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_nsample, NPY_LONG, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4085; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_onsample = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4086 * onbad = PyArray_FROM_OTF(nbad, NPY_LONG, NPY_ARRAY_ALIGNED) * onsample = PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED) * if np.any(np.less(ongood, 0)): # <<<<<<<<<<<<<< * raise ValueError("ngood < 0") * if np.any(np.less(onbad, 0)): */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_ongood)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_ongood)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ongood)); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4086; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":4087 * onsample = PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED) * if np.any(np.less(ongood, 0)): * raise ValueError("ngood < 0") # <<<<<<<<<<<<<< * if np.any(np.less(onbad, 0)): * raise ValueError("nbad < 0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__140, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4088 * if np.any(np.less(ongood, 0)): * raise ValueError("ngood < 0") * if np.any(np.less(onbad, 0)): # <<<<<<<<<<<<<< * raise ValueError("nbad < 0") * if np.any(np.less(onsample, 1)): */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_onbad)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_onbad)); __Pyx_GIVEREF(((PyObject *)__pyx_v_onbad)); __Pyx_INCREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4088; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":4089 * raise ValueError("ngood < 0") * if np.any(np.less(onbad, 0)): * raise ValueError("nbad < 0") # <<<<<<<<<<<<<< * if np.any(np.less(onsample, 1)): * raise ValueError("nsample < 1") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__141, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4089; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4089; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4090 * if np.any(np.less(onbad, 0)): * raise ValueError("nbad < 0") * if np.any(np.less(onsample, 1)): # <<<<<<<<<<<<<< * raise ValueError("nsample < 1") * if np.any(np.less(np.add(ongood, onbad),onsample)): */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_any); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_less); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(((PyObject *)__pyx_v_onsample)); PyTuple_SET_ITEM(__pyx_t_4, 0, ((PyObject *)__pyx_v_onsample)); __Pyx_GIVEREF(((PyObject *)__pyx_v_onsample)); __Pyx_INCREF(__pyx_int_1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_int_1); __Pyx_GIVEREF(__pyx_int_1); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4090; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_1) { /* "mtrand.pyx":4091 * raise ValueError("nbad < 0") * if np.any(np.less(onsample, 1)): * raise ValueError("nsample < 1") # <<<<<<<<<<<<<< * if np.any(np.less(np.add(ongood, onbad),onsample)): * raise ValueError("ngood + nbad < nsample") */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__142, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4091; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4091; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4092 * if np.any(np.less(onsample, 1)): * raise ValueError("nsample < 1") * if np.any(np.less(np.add(ongood, onbad),onsample)): # <<<<<<<<<<<<<< * raise ValueError("ngood + nbad < nsample") * return discnmN_array(self.internal_state, rk_hypergeometric, size, */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_any); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_less); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_add); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_ongood)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_ongood)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ongood)); __Pyx_INCREF(((PyObject *)__pyx_v_onbad)); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)__pyx_v_onbad)); __Pyx_GIVEREF(((PyObject *)__pyx_v_onbad)); __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_6); __Pyx_INCREF(((PyObject *)__pyx_v_onsample)); PyTuple_SET_ITEM(__pyx_t_3, 1, ((PyObject *)__pyx_v_onsample)); __Pyx_GIVEREF(((PyObject *)__pyx_v_onsample)); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_3, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4092; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (__pyx_t_1) { /* "mtrand.pyx":4093 * raise ValueError("nsample < 1") * if np.any(np.less(np.add(ongood, onbad),onsample)): * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * return discnmN_array(self.internal_state, rk_hypergeometric, size, * ongood, onbad, onsample, self.lock) */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__143, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4093; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4093; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4094 * if np.any(np.less(np.add(ongood, onbad),onsample)): * raise ValueError("ngood + nbad < nsample") * return discnmN_array(self.internal_state, rk_hypergeometric, size, # <<<<<<<<<<<<<< * ongood, onbad, onsample, self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":4095 * raise ValueError("ngood + nbad < nsample") * return discnmN_array(self.internal_state, rk_hypergeometric, size, * ongood, onbad, onsample, self.lock) # <<<<<<<<<<<<<< * * def logseries(self, p, size=None): */ __pyx_t_6 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_6); /* "mtrand.pyx":4094 * if np.any(np.less(np.add(ongood, onbad),onsample)): * raise ValueError("ngood + nbad < nsample") * return discnmN_array(self.internal_state, rk_hypergeometric, size, # <<<<<<<<<<<<<< * ongood, onbad, onsample, self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discnmN_array(__pyx_v_self->internal_state, rk_hypergeometric, __pyx_v_size, __pyx_v_ongood, __pyx_v_onbad, __pyx_v_onsample, __pyx_t_6); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4094; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "mtrand.pyx":3977 * return discd_array(self.internal_state, rk_geometric, size, op, self.lock) * * def hypergeometric(self, ngood, nbad, nsample, size=None): # <<<<<<<<<<<<<< * """ * hypergeometric(ngood, nbad, nsample, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("mtrand.RandomState.hypergeometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_ongood); __Pyx_XDECREF((PyObject *)__pyx_v_onbad); __Pyx_XDECREF((PyObject *)__pyx_v_onsample); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":4097 * ongood, onbad, onsample, self.lock) * * def logseries(self, p, size=None): # <<<<<<<<<<<<<< * """ * logseries(p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_95logseries(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_94logseries[] = "\n logseries(p, size=None)\n\n Draw samples from a Logarithmic Series distribution.\n\n Samples are drawn from a Log Series distribution with specified\n parameter, p (probability, 0 < p < 1).\n\n Parameters\n ----------\n loc : float\n\n scale : float > 0.\n\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : {ndarray, scalar}\n where the values are all integers in [0, n].\n\n See Also\n --------\n scipy.stats.distributions.logser : probability density function,\n distribution or cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Log Series distribution is\n\n .. math:: P(k) = \\frac{-p^k}{k \\ln(1-p)},\n\n where p = probability.\n\n The Log Series distribution is frequently used to represent species\n richness and occurrence, first proposed by Fisher, Corbet, and\n Williams in 1943 [2]. It may also be used to model the numbers of\n occupants seen in cars [3].\n\n References\n ----------\n .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional\n species diversity through the log series distribution of\n occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,\n Volume 5, Number 5, September 1999 , pp. 187-195(9).\n .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The\n relation between the number of species and the number of\n individuals in a random sample of an animal population.\n Journal of Animal Ecology, 12:42-58.\n .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Han""dbook of Small\n Data Sets, CRC Press, 1994.\n .. [4] Wikipedia, \"Logarithmic-distribution\",\n http://en.wikipedia.org/wiki/Logarithmic-distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = .6\n >>> s = np.random.logseries(a, 10000)\n >>> count, bins, ignored = plt.hist(s)\n\n # plot against distribution\n\n >>> def logseries(k, p):\n ... return -p**k/(k*log(1-p))\n >>> plt.plot(bins, logseries(bins, a)*count.max()/\n logseries(bins, a).max(), 'r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_95logseries(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_p = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("logseries (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_p,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_p)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "logseries") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4097; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_p = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("logseries", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4097; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.logseries", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_94logseries(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_94logseries(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyArrayObject *__pyx_v_op = 0; double __pyx_v_fp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("logseries", 0); /* "mtrand.pyx":4175 * cdef double fp * * fp = PyFloat_AsDouble(p) # <<<<<<<<<<<<<< * if not PyErr_Occurred(): * if fp <= 0.0: */ __pyx_v_fp = PyFloat_AsDouble(__pyx_v_p); /* "mtrand.pyx":4176 * * fp = PyFloat_AsDouble(p) * if not PyErr_Occurred(): # <<<<<<<<<<<<<< * if fp <= 0.0: * raise ValueError("p <= 0.0") */ __pyx_t_1 = ((!(PyErr_Occurred() != 0)) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4177 * fp = PyFloat_AsDouble(p) * if not PyErr_Occurred(): * if fp <= 0.0: # <<<<<<<<<<<<<< * raise ValueError("p <= 0.0") * if fp >= 1.0: */ __pyx_t_1 = ((__pyx_v_fp <= 0.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4178 * if not PyErr_Occurred(): * if fp <= 0.0: * raise ValueError("p <= 0.0") # <<<<<<<<<<<<<< * if fp >= 1.0: * raise ValueError("p >= 1.0") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__144, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4178; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4178; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4179 * if fp <= 0.0: * raise ValueError("p <= 0.0") * if fp >= 1.0: # <<<<<<<<<<<<<< * raise ValueError("p >= 1.0") * return discd_array_sc(self.internal_state, rk_logseries, size, fp, */ __pyx_t_1 = ((__pyx_v_fp >= 1.0) != 0); if (__pyx_t_1) { /* "mtrand.pyx":4180 * raise ValueError("p <= 0.0") * if fp >= 1.0: * raise ValueError("p >= 1.0") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_logseries, size, fp, * self.lock) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__145, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4180; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4180; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4181 * if fp >= 1.0: * raise ValueError("p >= 1.0") * return discd_array_sc(self.internal_state, rk_logseries, size, fp, # <<<<<<<<<<<<<< * self.lock) * */ __Pyx_XDECREF(__pyx_r); /* "mtrand.pyx":4182 * raise ValueError("p >= 1.0") * return discd_array_sc(self.internal_state, rk_logseries, size, fp, * self.lock) # <<<<<<<<<<<<<< * * PyErr_Clear() */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "mtrand.pyx":4181 * if fp >= 1.0: * raise ValueError("p >= 1.0") * return discd_array_sc(self.internal_state, rk_logseries, size, fp, # <<<<<<<<<<<<<< * self.lock) * */ __pyx_t_3 = __pyx_f_6mtrand_discd_array_sc(__pyx_v_self->internal_state, rk_logseries, __pyx_v_size, __pyx_v_fp, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4181; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "mtrand.pyx":4184 * self.lock) * * PyErr_Clear() # <<<<<<<<<<<<<< * * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) */ PyErr_Clear(); /* "mtrand.pyx":4186 * PyErr_Clear() * * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) # <<<<<<<<<<<<<< * if np.any(np.less_equal(op, 0.0)): * raise ValueError("p <= 0.0") */ __pyx_t_3 = PyArray_FROM_OTF(__pyx_v_p, NPY_DOUBLE, NPY_ARRAY_ALIGNED); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4186; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __pyx_t_3; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_op = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4187 * * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(op, 0.0)): # <<<<<<<<<<<<<< * raise ValueError("p <= 0.0") * if np.any(np.greater_equal(op, 1.0)): */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(((PyObject *)__pyx_v_op)); PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_op)); __Pyx_GIVEREF(((PyObject *)__pyx_v_op)); __Pyx_INCREF(__pyx_float_0_0); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_float_0_0); __Pyx_GIVEREF(__pyx_float_0_0); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4187; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_1) { /* "mtrand.pyx":4188 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(op, 0.0)): * raise ValueError("p <= 0.0") # <<<<<<<<<<<<<< * if np.any(np.greater_equal(op, 1.0)): * raise ValueError("p >= 1.0") */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__146, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4188; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4188; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4189 * if np.any(np.less_equal(op, 0.0)): * raise ValueError("p <= 0.0") * if np.any(np.greater_equal(op, 1.0)): # <<<<<<<<<<<<<< * raise ValueError("p >= 1.0") * return discd_array(self.internal_state, rk_logseries, size, op, self.lock) */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_any); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_greater_equal); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(((PyObject *)__pyx_v_op)); PyTuple_SET_ITEM(__pyx_t_5, 0, ((PyObject *)__pyx_v_op)); __Pyx_GIVEREF(((PyObject *)__pyx_v_op)); __Pyx_INCREF(__pyx_float_1_0); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_float_1_0); __Pyx_GIVEREF(__pyx_float_1_0); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4189; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_1) { /* "mtrand.pyx":4190 * raise ValueError("p <= 0.0") * if np.any(np.greater_equal(op, 1.0)): * raise ValueError("p >= 1.0") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_logseries, size, op, self.lock) * */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__147, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4191 * if np.any(np.greater_equal(op, 1.0)): * raise ValueError("p >= 1.0") * return discd_array(self.internal_state, rk_logseries, size, op, self.lock) # <<<<<<<<<<<<<< * * # Multivariate distributions: */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = __pyx_f_6mtrand_discd_array(__pyx_v_self->internal_state, rk_logseries, __pyx_v_size, __pyx_v_op, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4191; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "mtrand.pyx":4097 * ongood, onbad, onsample, self.lock) * * def logseries(self, p, size=None): # <<<<<<<<<<<<<< * """ * logseries(p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.logseries", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_op); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":4194 * * # Multivariate distributions: * def multivariate_normal(self, mean, cov, size=None): # <<<<<<<<<<<<<< * """ * multivariate_normal(mean, cov[, size]) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_97multivariate_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_96multivariate_normal[] = "\n multivariate_normal(mean, cov[, size])\n\n Draw random samples from a multivariate normal distribution.\n\n The multivariate normal, multinormal or Gaussian distribution is a\n generalization of the one-dimensional normal distribution to higher\n dimensions. Such a distribution is specified by its mean and\n covariance matrix. These parameters are analogous to the mean\n (average or \"center\") and variance (standard deviation, or \"width,\"\n squared) of the one-dimensional normal distribution.\n\n Parameters\n ----------\n mean : 1-D array_like, of length N\n Mean of the N-dimensional distribution.\n cov : 2-D array_like, of shape (N, N)\n Covariance matrix of the distribution. Must be symmetric and\n positive-semidefinite for \"physically meaningful\" results.\n size : int or tuple of ints, optional\n Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are\n generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because\n each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.\n If no shape is specified, a single (`N`-D) sample is returned.\n\n Returns\n -------\n out : ndarray\n The drawn samples, of shape *size*, if that was provided. If not,\n the shape is ``(N,)``.\n\n In other words, each entry ``out[i,j,...,:]`` is an N-dimensional\n value drawn from the distribution.\n\n Notes\n -----\n The mean is a coordinate in N-dimensional space, which represents the\n location where samples are most likely to be generated. This is\n analogous to the peak of the bell curve for the one-dimensional or\n univariate normal distribution.\n\n Covariance indicates the level to which two variables vary together.\n From the multivariate normal distribution, we"" draw N-dimensional\n samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix\n element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.\n The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its\n \"spread\").\n\n Instead of specifying the full covariance matrix, popular\n approximations include:\n\n - Spherical covariance (*cov* is a multiple of the identity matrix)\n - Diagonal covariance (*cov* has non-negative elements, and only on\n the diagonal)\n\n This geometrical property can be seen in two dimensions by plotting\n generated data-points:\n\n >>> mean = [0,0]\n >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis\n\n >>> import matplotlib.pyplot as plt\n >>> x,y = np.random.multivariate_normal(mean,cov,5000).T\n >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()\n\n Note that the covariance matrix must be non-negative definite.\n\n References\n ----------\n Papoulis, A., *Probability, Random Variables, and Stochastic Processes*,\n 3rd ed., New York: McGraw-Hill, 1991.\n\n Duda, R. O., Hart, P. E., and Stork, D. G., *Pattern Classification*,\n 2nd ed., New York: Wiley, 2001.\n\n Examples\n --------\n >>> mean = (1,2)\n >>> cov = [[1,0],[1,0]]\n >>> x = np.random.multivariate_normal(mean,cov,(3,3))\n >>> x.shape\n (3, 3, 2)\n\n The following is probably true, given that 0.6 is roughly twice the\n standard deviation:\n\n >>> print list( (x[0,0,:] - mean) < 0.6 )\n [True, True]\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_97multivariate_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mean = 0; PyObject *__pyx_v_cov = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("multivariate_normal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mean,&__pyx_n_s_cov,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mean)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_cov)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("multivariate_normal", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4194; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "multivariate_normal") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4194; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mean = values[0]; __pyx_v_cov = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("multivariate_normal", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4194; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.multivariate_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_96multivariate_normal(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mean, __pyx_v_cov, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_96multivariate_normal(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_cov, PyObject *__pyx_v_size) { PyObject *__pyx_v_svd = NULL; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_final_shape = NULL; PyObject *__pyx_v_x = NULL; PyObject *__pyx_v_u = NULL; PyObject *__pyx_v_s = NULL; PyObject *__pyx_v_v = NULL; PyObject *__pyx_v_neg = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; Py_ssize_t __pyx_t_6; int __pyx_t_7; int __pyx_t_8; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *(*__pyx_t_11)(PyObject *); int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("multivariate_normal", 0); __Pyx_INCREF(__pyx_v_mean); __Pyx_INCREF(__pyx_v_cov); /* "mtrand.pyx":4285 * * """ * from numpy.dual import svd # <<<<<<<<<<<<<< * * # Check preconditions on arguments */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4285; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_svd); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_svd); __Pyx_GIVEREF(__pyx_n_s_svd); __pyx_t_2 = __Pyx_Import(__pyx_n_s_numpy_dual, __pyx_t_1, -1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4285; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_svd); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4285; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_1); __pyx_v_svd = __pyx_t_1; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4288 * * # Check preconditions on arguments * mean = np.array(mean) # <<<<<<<<<<<<<< * cov = np.array(cov) * if size is None: */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4288; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_array); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4288; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4288; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_mean); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_mean); __Pyx_GIVEREF(__pyx_v_mean); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4288; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_mean, __pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4289 * # Check preconditions on arguments * mean = np.array(mean) * cov = np.array(cov) # <<<<<<<<<<<<<< * if size is None: * shape = [] */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4289; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_array); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4289; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4289; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_cov); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_cov); __Pyx_GIVEREF(__pyx_v_cov); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4289; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_cov, __pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":4290 * mean = np.array(mean) * cov = np.array(cov) * if size is None: # <<<<<<<<<<<<<< * shape = [] * elif isinstance(size, (int, long, np.integer)): */ __pyx_t_4 = (__pyx_v_size == Py_None); __pyx_t_5 = (__pyx_t_4 != 0); if (__pyx_t_5) { /* "mtrand.pyx":4291 * cov = np.array(cov) * if size is None: * shape = [] # <<<<<<<<<<<<<< * elif isinstance(size, (int, long, np.integer)): * shape = [size] */ __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4291; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_v_shape = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L3; } /* "mtrand.pyx":4292 * if size is None: * shape = [] * elif isinstance(size, (int, long, np.integer)): # <<<<<<<<<<<<<< * shape = [size] * else: */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_integer); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyLong_Type)))); PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)((PyObject*)(&PyLong_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyLong_Type)))); PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = PyObject_IsInstance(__pyx_v_size, __pyx_t_1); if (unlikely(__pyx_t_5 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = (__pyx_t_5 != 0); if (__pyx_t_4) { /* "mtrand.pyx":4293 * shape = [] * elif isinstance(size, (int, long, np.integer)): * shape = [size] # <<<<<<<<<<<<<< * else: * shape = size */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4293; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_size); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); __pyx_v_shape = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":4295 * shape = [size] * else: * shape = size # <<<<<<<<<<<<<< * * if len(mean.shape) != 1: */ __Pyx_INCREF(__pyx_v_size); __pyx_v_shape = __pyx_v_size; } __pyx_L3:; /* "mtrand.pyx":4297 * shape = size * * if len(mean.shape) != 1: # <<<<<<<<<<<<<< * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4297; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = PyObject_Length(__pyx_t_1); if (unlikely(__pyx_t_6 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4297; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = ((__pyx_t_6 != 1) != 0); if (__pyx_t_4) { /* "mtrand.pyx":4298 * * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") # <<<<<<<<<<<<<< * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__148, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4298; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4298; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4299 * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): # <<<<<<<<<<<<<< * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = PyObject_Length(__pyx_t_1); if (unlikely(__pyx_t_6 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = (__pyx_t_6 != 2); if (!__pyx_t_4) { __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetItemInt(__pyx_t_1, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_2 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_t_3, __pyx_t_2, Py_NE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4299; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_7 = __pyx_t_5; } else { __pyx_t_7 = __pyx_t_4; } if (__pyx_t_7) { /* "mtrand.pyx":4300 * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") # <<<<<<<<<<<<<< * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__149, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4301 * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: # <<<<<<<<<<<<<< * raise ValueError("mean and cov must have same length") * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4301; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_2 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4301; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4301; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4301; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_t_2, __pyx_t_3, Py_NE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4301; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4301; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_7) { /* "mtrand.pyx":4302 * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") # <<<<<<<<<<<<<< * * # Compute shape of output and create a matrix of independent */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__150, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4302; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4302; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4308 * # with the same length as mean and as many rows are necessary to * # form a matrix of shape final_shape. * final_shape = list(shape[:]) # <<<<<<<<<<<<<< * final_shape.append(mean.shape[0]) * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) */ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_shape, 0, 0, NULL, NULL, &__pyx_slice__151, 0, 0, 1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4308; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4308; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)((PyObject*)(&PyList_Type))), __pyx_t_3, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4308; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_final_shape = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":4309 * # form a matrix of shape final_shape. * final_shape = list(shape[:]) * final_shape.append(mean.shape[0]) # <<<<<<<<<<<<<< * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4309; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_8 = __Pyx_PyList_Append(__pyx_v_final_shape, __pyx_t_3); if (unlikely(__pyx_t_8 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4309; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4310 * final_shape = list(shape[:]) * final_shape.append(mean.shape[0]) * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) # <<<<<<<<<<<<<< * * # Transform matrix of standard normals into matrix where each row */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_final_shape); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_final_shape); __Pyx_GIVEREF(__pyx_v_final_shape); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_1, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_reshape); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_2, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_int_neg_1); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_int_neg_1); __Pyx_GIVEREF(__pyx_int_neg_1); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4310; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_x = __pyx_t_3; __pyx_t_3 = 0; /* "mtrand.pyx":4325 * # order to preserve current outputs. Note that symmetry has not * # been checked. * (u, s, v) = svd(cov) # <<<<<<<<<<<<<< * neg = (np.sum(u.T * v, axis=1) < 0) & (s > 0) * if np.any(neg): */ __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_cov); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_cov); __Pyx_GIVEREF(__pyx_v_cov); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_v_svd, __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if ((likely(PyTuple_CheckExact(__pyx_t_2))) || (PyList_CheckExact(__pyx_t_2))) { PyObject* sequence = __pyx_t_2; #if CYTHON_COMPILING_IN_CPYTHON Py_ssize_t size = Py_SIZE(sequence); #else Py_ssize_t size = PySequence_Size(sequence); #endif if (unlikely(size != 3)) { if (size > 3) __Pyx_RaiseTooManyValuesError(3); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } #if CYTHON_COMPILING_IN_CPYTHON if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_1 = PyTuple_GET_ITEM(sequence, 1); __pyx_t_9 = PyTuple_GET_ITEM(sequence, 2); } else { __pyx_t_3 = PyList_GET_ITEM(sequence, 0); __pyx_t_1 = PyList_GET_ITEM(sequence, 1); __pyx_t_9 = PyList_GET_ITEM(sequence, 2); } __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_9); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_9 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); #endif __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else { Py_ssize_t index = -1; __pyx_t_10 = PyObject_GetIter(__pyx_t_2); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_11 = Py_TYPE(__pyx_t_10)->tp_iternext; index = 0; __pyx_t_3 = __pyx_t_11(__pyx_t_10); if (unlikely(!__pyx_t_3)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_3); index = 1; __pyx_t_1 = __pyx_t_11(__pyx_t_10); if (unlikely(!__pyx_t_1)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_1); index = 2; __pyx_t_9 = __pyx_t_11(__pyx_t_10); if (unlikely(!__pyx_t_9)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_9); if (__Pyx_IternextUnpackEndCheck(__pyx_t_11(__pyx_t_10), 3) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_11 = NULL; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; goto __pyx_L8_unpacking_done; __pyx_L7_unpacking_failed:; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_11 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4325; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_L8_unpacking_done:; } __pyx_v_u = __pyx_t_3; __pyx_t_3 = 0; __pyx_v_s = __pyx_t_1; __pyx_t_1 = 0; __pyx_v_v = __pyx_t_9; __pyx_t_9 = 0; /* "mtrand.pyx":4326 * # been checked. * (u, s, v) = svd(cov) * neg = (np.sum(u.T * v, axis=1) < 0) & (s > 0) # <<<<<<<<<<<<<< * if np.any(neg): * s[neg] = 0. */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_sum); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_u, __pyx_n_s_T); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyNumber_Multiply(__pyx_t_2, __pyx_v_v); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_axis, __pyx_int_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_t_2, __pyx_t_1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_t_3, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyObject_RichCompare(__pyx_v_s, __pyx_int_0, Py_GT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_2 = PyNumber_And(__pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4326; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_neg = __pyx_t_2; __pyx_t_2 = 0; /* "mtrand.pyx":4327 * (u, s, v) = svd(cov) * neg = (np.sum(u.T * v, axis=1) < 0) & (s > 0) * if np.any(neg): # <<<<<<<<<<<<<< * s[neg] = 0. * warnings.warn("covariance is not positive-semidefinite.", */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_neg); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_neg); __Pyx_GIVEREF(__pyx_v_neg); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_7) { /* "mtrand.pyx":4328 * neg = (np.sum(u.T * v, axis=1) < 0) & (s > 0) * if np.any(neg): * s[neg] = 0. # <<<<<<<<<<<<<< * warnings.warn("covariance is not positive-semidefinite.", * RuntimeWarning) */ if (unlikely(PyObject_SetItem(__pyx_v_s, __pyx_v_neg, __pyx_float_0_) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4328; __pyx_clineno = __LINE__; goto __pyx_L1_error;} /* "mtrand.pyx":4329 * if np.any(neg): * s[neg] = 0. * warnings.warn("covariance is not positive-semidefinite.", # <<<<<<<<<<<<<< * RuntimeWarning) * */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_warnings); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4329; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_warn); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4329; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":4330 * s[neg] = 0. * warnings.warn("covariance is not positive-semidefinite.", * RuntimeWarning) # <<<<<<<<<<<<<< * * x = np.dot(x, np.sqrt(s)[:, None] * v) */ __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4329; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_kp_s_covariance_is_not_positive_semid); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_kp_s_covariance_is_not_positive_semid); __Pyx_GIVEREF(__pyx_kp_s_covariance_is_not_positive_semid); __Pyx_INCREF(__pyx_builtin_RuntimeWarning); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_builtin_RuntimeWarning); __Pyx_GIVEREF(__pyx_builtin_RuntimeWarning); /* "mtrand.pyx":4329 * if np.any(neg): * s[neg] = 0. * warnings.warn("covariance is not positive-semidefinite.", # <<<<<<<<<<<<<< * RuntimeWarning) * */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4329; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L9; } __pyx_L9:; /* "mtrand.pyx":4332 * RuntimeWarning) * * x = np.dot(x, np.sqrt(s)[:, None] * v) # <<<<<<<<<<<<<< * x += mean * x.shape = tuple(final_shape) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_dot); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_s); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_s); __Pyx_GIVEREF(__pyx_v_s); __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, NULL); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyObject_GetItem(__pyx_t_9, __pyx_tuple__153); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = PyNumber_Multiply(__pyx_t_3, __pyx_v_v); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_9); __Pyx_GIVEREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, NULL); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_x, __pyx_t_9); __pyx_t_9 = 0; /* "mtrand.pyx":4333 * * x = np.dot(x, np.sqrt(s)[:, None] * v) * x += mean # <<<<<<<<<<<<<< * x.shape = tuple(final_shape) * return x */ __pyx_t_9 = PyNumber_InPlaceAdd(__pyx_v_x, __pyx_v_mean); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4333; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF_SET(__pyx_v_x, __pyx_t_9); __pyx_t_9 = 0; /* "mtrand.pyx":4334 * x = np.dot(x, np.sqrt(s)[:, None] * v) * x += mean * x.shape = tuple(final_shape) # <<<<<<<<<<<<<< * return x * */ __pyx_t_9 = PyList_AsTuple(__pyx_v_final_shape); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4334; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); if (__Pyx_PyObject_SetAttrStr(__pyx_v_x, __pyx_n_s_shape, __pyx_t_9) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4334; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; /* "mtrand.pyx":4335 * x += mean * x.shape = tuple(final_shape) * return x # <<<<<<<<<<<<<< * * def multinomial(self, npy_intp n, object pvals, size=None): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_x); __pyx_r = __pyx_v_x; goto __pyx_L0; /* "mtrand.pyx":4194 * * # Multivariate distributions: * def multivariate_normal(self, mean, cov, size=None): # <<<<<<<<<<<<<< * """ * multivariate_normal(mean, cov[, size]) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_9); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("mtrand.RandomState.multivariate_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_svd); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_final_shape); __Pyx_XDECREF(__pyx_v_x); __Pyx_XDECREF(__pyx_v_u); __Pyx_XDECREF(__pyx_v_s); __Pyx_XDECREF(__pyx_v_v); __Pyx_XDECREF(__pyx_v_neg); __Pyx_XDECREF(__pyx_v_mean); __Pyx_XDECREF(__pyx_v_cov); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":4337 * return x * * def multinomial(self, npy_intp n, object pvals, size=None): # <<<<<<<<<<<<<< * """ * multinomial(n, pvals, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_99multinomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_98multinomial[] = "\n multinomial(n, pvals, size=None)\n\n Draw samples from a multinomial distribution.\n\n The multinomial distribution is a multivariate generalisation of the\n binomial distribution. Take an experiment with one of ``p``\n possible outcomes. An example of such an experiment is throwing a dice,\n where the outcome can be 1 through 6. Each sample drawn from the\n distribution represents `n` such experiments. Its values,\n ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome\n was ``i``.\n\n Parameters\n ----------\n n : int\n Number of experiments.\n pvals : sequence of floats, length p\n Probabilities of each of the ``p`` different outcomes. These\n should sum to 1 (however, the last element is always assumed to\n account for the remaining probability, as long as\n ``sum(pvals[:-1]) <= 1)``.\n size : tuple of ints\n Given a `size` of ``(M, N, K)``, then ``M*N*K`` samples are drawn,\n and the output shape becomes ``(M, N, K, p)``, since each sample\n has shape ``(p,)``.\n\n Examples\n --------\n Throw a dice 20 times:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=1)\n array([[4, 1, 7, 5, 2, 1]])\n\n It landed 4 times on 1, once on 2, etc.\n\n Now, throw the dice 20 times, and 20 times again:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=2)\n array([[3, 4, 3, 3, 4, 3],\n [2, 4, 3, 4, 0, 7]])\n\n For the first run, we threw 3 times 1, 4 times 2, etc. For the second,\n we threw 2 times 1, 4 times 2, etc.\n\n A loaded dice is more likely to land on number 6:\n\n >>> np.random.multinomial(100, [1/7.]*5)\n array([13, 16, 13, 16, 42])\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_99multinomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { npy_intp __pyx_v_n; PyObject *__pyx_v_pvals = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("multinomial (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_n,&__pyx_n_s_pvals,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_n)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_pvals)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("multinomial", 0, 2, 3, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4337; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "multinomial") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4337; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_n = __Pyx_PyInt_As_npy_intp(values[0]); if (unlikely((__pyx_v_n == (npy_intp)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4337; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_v_pvals = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("multinomial", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4337; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.multinomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_98multinomial(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_n, __pyx_v_pvals, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_98multinomial(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_n, PyObject *__pyx_v_pvals, PyObject *__pyx_v_size) { npy_intp __pyx_v_d; PyArrayObject *arrayObject_parr = 0; PyArrayObject *arrayObject_mnarr = 0; double *__pyx_v_pix; long *__pyx_v_mnix; npy_intp __pyx_v_i; npy_intp __pyx_v_j; npy_intp __pyx_v_dn; npy_intp __pyx_v_sz; double __pyx_v_Sum; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_multin = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; long __pyx_t_10; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_t_13; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("multinomial", 0); /* "mtrand.pyx":4396 * cdef double Sum * * d = len(pvals) # <<<<<<<<<<<<<< * parr = PyArray_ContiguousFromObject(pvals, NPY_DOUBLE, 1, 1) * pix = PyArray_DATA(parr) */ __pyx_t_1 = PyObject_Length(__pyx_v_pvals); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4396; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_d = __pyx_t_1; /* "mtrand.pyx":4397 * * d = len(pvals) * parr = PyArray_ContiguousFromObject(pvals, NPY_DOUBLE, 1, 1) # <<<<<<<<<<<<<< * pix = PyArray_DATA(parr) * */ __pyx_t_2 = PyArray_ContiguousFromObject(__pyx_v_pvals, NPY_DOUBLE, 1, 1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4397; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; arrayObject_parr = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4398 * d = len(pvals) * parr = PyArray_ContiguousFromObject(pvals, NPY_DOUBLE, 1, 1) * pix = PyArray_DATA(parr) # <<<<<<<<<<<<<< * * if kahan_sum(pix, d-1) > (1.0 + 1e-12): */ __pyx_v_pix = ((double *)PyArray_DATA(arrayObject_parr)); /* "mtrand.pyx":4400 * pix = PyArray_DATA(parr) * * if kahan_sum(pix, d-1) > (1.0 + 1e-12): # <<<<<<<<<<<<<< * raise ValueError("sum(pvals[:-1]) > 1.0") * */ __pyx_t_4 = ((__pyx_f_6mtrand_kahan_sum(__pyx_v_pix, (__pyx_v_d - 1)) > (1.0 + 1e-12)) != 0); if (__pyx_t_4) { /* "mtrand.pyx":4401 * * if kahan_sum(pix, d-1) > (1.0 + 1e-12): * raise ValueError("sum(pvals[:-1]) > 1.0") # <<<<<<<<<<<<<< * * shape = _shape_from_size(size, d) */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__154, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4401; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4401; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } /* "mtrand.pyx":4403 * raise ValueError("sum(pvals[:-1]) > 1.0") * * shape = _shape_from_size(size, d) # <<<<<<<<<<<<<< * * multin = np.zeros(shape, int) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_shape_from_size); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4403; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyInt_From_npy_intp(__pyx_v_d); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4403; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4403; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4403; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_shape = __pyx_t_2; __pyx_t_2 = 0; /* "mtrand.pyx":4405 * shape = _shape_from_size(size, d) * * multin = np.zeros(shape, int) # <<<<<<<<<<<<<< * mnarr = multin * mnix = PyArray_DATA(mnarr) */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4405; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_zeros); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4405; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4405; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_2, 1, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4405; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_multin = __pyx_t_3; __pyx_t_3 = 0; /* "mtrand.pyx":4406 * * multin = np.zeros(shape, int) * mnarr = multin # <<<<<<<<<<<<<< * mnix = PyArray_DATA(mnarr) * sz = PyArray_SIZE(mnarr) */ __pyx_t_3 = __pyx_v_multin; __Pyx_INCREF(__pyx_t_3); arrayObject_mnarr = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4407 * multin = np.zeros(shape, int) * mnarr = multin * mnix = PyArray_DATA(mnarr) # <<<<<<<<<<<<<< * sz = PyArray_SIZE(mnarr) * with self.lock, nogil: */ __pyx_v_mnix = ((long *)PyArray_DATA(arrayObject_mnarr)); /* "mtrand.pyx":4408 * mnarr = multin * mnix = PyArray_DATA(mnarr) * sz = PyArray_SIZE(mnarr) # <<<<<<<<<<<<<< * with self.lock, nogil: * i = 0 */ __pyx_v_sz = PyArray_SIZE(arrayObject_mnarr); /* "mtrand.pyx":4409 * mnix = PyArray_DATA(mnarr) * sz = PyArray_SIZE(mnarr) * with self.lock, nogil: # <<<<<<<<<<<<<< * i = 0 * while i < sz: */ /*with:*/ { __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L4_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /*try:*/ { { __Pyx_ExceptionSave(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); __Pyx_XGOTREF(__pyx_t_9); /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":4410 * sz = PyArray_SIZE(mnarr) * with self.lock, nogil: * i = 0 # <<<<<<<<<<<<<< * while i < sz: * Sum = 1.0 */ __pyx_v_i = 0; /* "mtrand.pyx":4411 * with self.lock, nogil: * i = 0 * while i < sz: # <<<<<<<<<<<<<< * Sum = 1.0 * dn = n */ while (1) { __pyx_t_4 = ((__pyx_v_i < __pyx_v_sz) != 0); if (!__pyx_t_4) break; /* "mtrand.pyx":4412 * i = 0 * while i < sz: * Sum = 1.0 # <<<<<<<<<<<<<< * dn = n * for j from 0 <= j < d-1: */ __pyx_v_Sum = 1.0; /* "mtrand.pyx":4413 * while i < sz: * Sum = 1.0 * dn = n # <<<<<<<<<<<<<< * for j from 0 <= j < d-1: * mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum) */ __pyx_v_dn = __pyx_v_n; /* "mtrand.pyx":4414 * Sum = 1.0 * dn = n * for j from 0 <= j < d-1: # <<<<<<<<<<<<<< * mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum) * dn = dn - mnix[i+j] */ __pyx_t_10 = (__pyx_v_d - 1); for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_10; __pyx_v_j++) { /* "mtrand.pyx":4415 * dn = n * for j from 0 <= j < d-1: * mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum) # <<<<<<<<<<<<<< * dn = dn - mnix[i+j] * if dn <= 0: */ if (unlikely(__pyx_v_Sum == 0)) { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); #endif PyErr_SetString(PyExc_ZeroDivisionError, "float division"); #ifdef WITH_THREAD PyGILState_Release(__pyx_gilstate_save); #endif {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4415; __pyx_clineno = __LINE__; goto __pyx_L19_error;} } (__pyx_v_mnix[(__pyx_v_i + __pyx_v_j)]) = rk_binomial(__pyx_v_self->internal_state, __pyx_v_dn, ((__pyx_v_pix[__pyx_v_j]) / __pyx_v_Sum)); /* "mtrand.pyx":4416 * for j from 0 <= j < d-1: * mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum) * dn = dn - mnix[i+j] # <<<<<<<<<<<<<< * if dn <= 0: * break */ __pyx_v_dn = (__pyx_v_dn - (__pyx_v_mnix[(__pyx_v_i + __pyx_v_j)])); /* "mtrand.pyx":4417 * mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum) * dn = dn - mnix[i+j] * if dn <= 0: # <<<<<<<<<<<<<< * break * Sum = Sum - pix[j] */ __pyx_t_4 = ((__pyx_v_dn <= 0) != 0); if (__pyx_t_4) { /* "mtrand.pyx":4418 * dn = dn - mnix[i+j] * if dn <= 0: * break # <<<<<<<<<<<<<< * Sum = Sum - pix[j] * if dn > 0: */ goto __pyx_L24_break; } /* "mtrand.pyx":4419 * if dn <= 0: * break * Sum = Sum - pix[j] # <<<<<<<<<<<<<< * if dn > 0: * mnix[i+d-1] = dn */ __pyx_v_Sum = (__pyx_v_Sum - (__pyx_v_pix[__pyx_v_j])); } __pyx_L24_break:; /* "mtrand.pyx":4420 * break * Sum = Sum - pix[j] * if dn > 0: # <<<<<<<<<<<<<< * mnix[i+d-1] = dn * */ __pyx_t_4 = ((__pyx_v_dn > 0) != 0); if (__pyx_t_4) { /* "mtrand.pyx":4421 * Sum = Sum - pix[j] * if dn > 0: * mnix[i+d-1] = dn # <<<<<<<<<<<<<< * * i = i + d */ (__pyx_v_mnix[((__pyx_v_i + __pyx_v_d) - 1)]) = __pyx_v_dn; goto __pyx_L26; } __pyx_L26:; /* "mtrand.pyx":4423 * mnix[i+d-1] = dn * * i = i + d # <<<<<<<<<<<<<< * * return multin */ __pyx_v_i = (__pyx_v_i + __pyx_v_d); } } /* "mtrand.pyx":4409 * mnix = PyArray_DATA(mnarr) * sz = PyArray_SIZE(mnarr) * with self.lock, nogil: # <<<<<<<<<<<<<< * i = 0 * while i < sz: */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L20; } __pyx_L19_error: { #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L8_error; } __pyx_L20:; } } } __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L15_try_end; __pyx_L8_error:; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; /*except:*/ { __Pyx_AddTraceback("mtrand.RandomState.multinomial", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_2, &__pyx_t_3, &__pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L10_except_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_5); __pyx_t_11 = PyTuple_Pack(3, __pyx_t_2, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L10_except_error;} __Pyx_GOTREF(__pyx_t_11); __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_11, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L10_except_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_12); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; if (__pyx_t_4 < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L10_except_error;} __pyx_t_13 = ((!(__pyx_t_4 != 0)) != 0); if (__pyx_t_13) { __Pyx_GIVEREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ErrRestore(__pyx_t_2, __pyx_t_3, __pyx_t_5); __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_5 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L10_except_error;} } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L9_exception_handled; } __pyx_L10_except_error:; __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); goto __pyx_L1_error; __pyx_L9_exception_handled:; __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); __pyx_L15_try_end:; } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_6) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__155, NULL); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L7:; } goto __pyx_L30; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L1_error; __pyx_L30:; } /* "mtrand.pyx":4425 * i = i + d * * return multin # <<<<<<<<<<<<<< * * def dirichlet(self, object alpha, size=None): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_multin); __pyx_r = __pyx_v_multin; goto __pyx_L0; /* "mtrand.pyx":4337 * return x * * def multinomial(self, npy_intp n, object pvals, size=None): # <<<<<<<<<<<<<< * """ * multinomial(n, pvals, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("mtrand.RandomState.multinomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)arrayObject_parr); __Pyx_XDECREF((PyObject *)arrayObject_mnarr); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_multin); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":4427 * return multin * * def dirichlet(self, object alpha, size=None): # <<<<<<<<<<<<<< * """ * dirichlet(alpha, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_101dirichlet(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_100dirichlet[] = "\n dirichlet(alpha, size=None)\n\n Draw samples from the Dirichlet distribution.\n\n Draw `size` samples of dimension k from a Dirichlet distribution. A\n Dirichlet-distributed random variable can be seen as a multivariate\n generalization of a Beta distribution. Dirichlet pdf is the conjugate\n prior of a multinomial in Bayesian inference.\n\n Parameters\n ----------\n alpha : array\n Parameter of the distribution (k dimension for sample of\n dimension k).\n size : array\n Number of samples to draw.\n\n Returns\n -------\n samples : ndarray,\n The drawn samples, of shape (alpha.ndim, size).\n\n Notes\n -----\n .. math:: X \\approx \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i}\n\n Uses the following property for computation: for each dimension,\n draw a random sample y_i from a standard gamma generator of shape\n `alpha_i`, then\n :math:`X = \\frac{1}{\\sum_{i=1}^k{y_i}} (y_1, \\ldots, y_n)` is\n Dirichlet distributed.\n\n References\n ----------\n .. [1] David McKay, \"Information Theory, Inference and Learning\n Algorithms,\" chapter 23,\n http://www.inference.phy.cam.ac.uk/mackay/\n .. [2] Wikipedia, \"Dirichlet distribution\",\n http://en.wikipedia.org/wiki/Dirichlet_distribution\n\n Examples\n --------\n Taking an example cited in Wikipedia, this distribution can be used if\n one wanted to cut strings (each of initial length 1.0) into K pieces\n with different lengths, where each piece had, on average, a designated\n average length, but allowing some variation in the relative sizes of the\n pieces.\n\n >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()\n\n >>> plt.barh(range(20), s[0])\n >>> plt.barh(range(20), s[1], left=s[0], color='g')""\n >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')\n >>> plt.title(\"Lengths of Strings\")\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_101dirichlet(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_alpha = 0; PyObject *__pyx_v_size = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("dirichlet (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_alpha,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_alpha)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; case 1: if (kw_args > 0) { PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dirichlet") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4427; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_alpha = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("dirichlet", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4427; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("mtrand.RandomState.dirichlet", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6mtrand_11RandomState_100dirichlet(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), __pyx_v_alpha, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_100dirichlet(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_alpha, PyObject *__pyx_v_size) { npy_intp __pyx_v_k; npy_intp __pyx_v_totsize; PyArrayObject *__pyx_v_alpha_arr = 0; PyArrayObject *__pyx_v_val_arr = 0; double *__pyx_v_alpha_data; double *__pyx_v_val_data; npy_intp __pyx_v_i; npy_intp __pyx_v_j; double __pyx_v_acc; double __pyx_v_invacc; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_diric = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; npy_intp __pyx_t_10; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_t_13; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("dirichlet", 0); /* "mtrand.pyx":4514 * cdef double acc, invacc * * k = len(alpha) # <<<<<<<<<<<<<< * alpha_arr = PyArray_ContiguousFromObject(alpha, NPY_DOUBLE, 1, 1) * alpha_data = PyArray_DATA(alpha_arr) */ __pyx_t_1 = PyObject_Length(__pyx_v_alpha); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_k = __pyx_t_1; /* "mtrand.pyx":4515 * * k = len(alpha) * alpha_arr = PyArray_ContiguousFromObject(alpha, NPY_DOUBLE, 1, 1) # <<<<<<<<<<<<<< * alpha_data = PyArray_DATA(alpha_arr) * */ __pyx_t_2 = PyArray_ContiguousFromObject(__pyx_v_alpha, NPY_DOUBLE, 1, 1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4515; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_alpha_arr = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4516 * k = len(alpha) * alpha_arr = PyArray_ContiguousFromObject(alpha, NPY_DOUBLE, 1, 1) * alpha_data = PyArray_DATA(alpha_arr) # <<<<<<<<<<<<<< * * shape = _shape_from_size(size, k) */ __pyx_v_alpha_data = ((double *)PyArray_DATA(__pyx_v_alpha_arr)); /* "mtrand.pyx":4518 * alpha_data = PyArray_DATA(alpha_arr) * * shape = _shape_from_size(size, k) # <<<<<<<<<<<<<< * * diric = np.zeros(shape, np.float64) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_shape_from_size); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4518; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyInt_From_npy_intp(__pyx_v_k); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4518; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4518; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4518; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_shape = __pyx_t_2; __pyx_t_2 = 0; /* "mtrand.pyx":4520 * shape = _shape_from_size(size, k) * * diric = np.zeros(shape, np.float64) # <<<<<<<<<<<<<< * val_arr = diric * val_data= PyArray_DATA(val_arr) */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_zeros); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float64); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4520; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_diric = __pyx_t_3; __pyx_t_3 = 0; /* "mtrand.pyx":4521 * * diric = np.zeros(shape, np.float64) * val_arr = diric # <<<<<<<<<<<<<< * val_data= PyArray_DATA(val_arr) * */ __pyx_t_3 = __pyx_v_diric; __Pyx_INCREF(__pyx_t_3); __pyx_v_val_arr = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4522 * diric = np.zeros(shape, np.float64) * val_arr = diric * val_data= PyArray_DATA(val_arr) # <<<<<<<<<<<<<< * * i = 0 */ __pyx_v_val_data = ((double *)PyArray_DATA(__pyx_v_val_arr)); /* "mtrand.pyx":4524 * val_data= PyArray_DATA(val_arr) * * i = 0 # <<<<<<<<<<<<<< * totsize = PyArray_SIZE(val_arr) * with self.lock, nogil: */ __pyx_v_i = 0; /* "mtrand.pyx":4525 * * i = 0 * totsize = PyArray_SIZE(val_arr) # <<<<<<<<<<<<<< * with self.lock, nogil: * while i < totsize: */ __pyx_v_totsize = PyArray_SIZE(__pyx_v_val_arr); /* "mtrand.pyx":4526 * i = 0 * totsize = PyArray_SIZE(val_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * while i < totsize: * acc = 0.0 */ /*with:*/ { __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /*try:*/ { { __Pyx_ExceptionSave(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8); __Pyx_XGOTREF(__pyx_t_6); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS #endif /*try:*/ { /* "mtrand.pyx":4527 * totsize = PyArray_SIZE(val_arr) * with self.lock, nogil: * while i < totsize: # <<<<<<<<<<<<<< * acc = 0.0 * for j from 0 <= j < k: */ while (1) { __pyx_t_9 = ((__pyx_v_i < __pyx_v_totsize) != 0); if (!__pyx_t_9) break; /* "mtrand.pyx":4528 * with self.lock, nogil: * while i < totsize: * acc = 0.0 # <<<<<<<<<<<<<< * for j from 0 <= j < k: * val_data[i+j] = rk_standard_gamma(self.internal_state, */ __pyx_v_acc = 0.0; /* "mtrand.pyx":4529 * while i < totsize: * acc = 0.0 * for j from 0 <= j < k: # <<<<<<<<<<<<<< * val_data[i+j] = rk_standard_gamma(self.internal_state, * alpha_data[j]) */ __pyx_t_10 = __pyx_v_k; for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_10; __pyx_v_j++) { /* "mtrand.pyx":4530 * acc = 0.0 * for j from 0 <= j < k: * val_data[i+j] = rk_standard_gamma(self.internal_state, # <<<<<<<<<<<<<< * alpha_data[j]) * acc = acc + val_data[i+j] */ (__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)]) = rk_standard_gamma(__pyx_v_self->internal_state, (__pyx_v_alpha_data[__pyx_v_j])); /* "mtrand.pyx":4532 * val_data[i+j] = rk_standard_gamma(self.internal_state, * alpha_data[j]) * acc = acc + val_data[i+j] # <<<<<<<<<<<<<< * invacc = 1/acc * for j from 0 <= j < k: */ __pyx_v_acc = (__pyx_v_acc + (__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)])); } /* "mtrand.pyx":4533 * alpha_data[j]) * acc = acc + val_data[i+j] * invacc = 1/acc # <<<<<<<<<<<<<< * for j from 0 <= j < k: * val_data[i+j] = val_data[i+j] * invacc */ if (unlikely(__pyx_v_acc == 0)) { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); #endif PyErr_SetString(PyExc_ZeroDivisionError, "float division"); #ifdef WITH_THREAD PyGILState_Release(__pyx_gilstate_save); #endif {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4533; __pyx_clineno = __LINE__; goto __pyx_L18_error;} } __pyx_v_invacc = (1.0 / __pyx_v_acc); /* "mtrand.pyx":4534 * acc = acc + val_data[i+j] * invacc = 1/acc * for j from 0 <= j < k: # <<<<<<<<<<<<<< * val_data[i+j] = val_data[i+j] * invacc * i = i + k */ __pyx_t_10 = __pyx_v_k; for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_10; __pyx_v_j++) { /* "mtrand.pyx":4535 * invacc = 1/acc * for j from 0 <= j < k: * val_data[i+j] = val_data[i+j] * invacc # <<<<<<<<<<<<<< * i = i + k * */ (__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)]) = ((__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)]) * __pyx_v_invacc); } /* "mtrand.pyx":4536 * for j from 0 <= j < k: * val_data[i+j] = val_data[i+j] * invacc * i = i + k # <<<<<<<<<<<<<< * * return diric */ __pyx_v_i = (__pyx_v_i + __pyx_v_k); } } /* "mtrand.pyx":4526 * i = 0 * totsize = PyArray_SIZE(val_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * while i < totsize: * acc = 0.0 */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L19; } __pyx_L18_error: { #ifdef WITH_THREAD Py_BLOCK_THREADS #endif goto __pyx_L7_error; } __pyx_L19:; } } } __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L14_try_end; __pyx_L7_error:; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; /*except:*/ { __Pyx_AddTraceback("mtrand.RandomState.dirichlet", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L9_except_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = PyTuple_Pack(3, __pyx_t_2, __pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L9_except_error;} __Pyx_GOTREF(__pyx_t_11); __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_11, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L9_except_error;} __Pyx_GOTREF(__pyx_t_12); __pyx_t_9 = __Pyx_PyObject_IsTrue(__pyx_t_12); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; if (__pyx_t_9 < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L9_except_error;} __pyx_t_13 = ((!(__pyx_t_9 != 0)) != 0); if (__pyx_t_13) { __Pyx_GIVEREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ErrRestore(__pyx_t_2, __pyx_t_3, __pyx_t_4); __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_4 = 0; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L9_except_error;} } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; goto __pyx_L8_exception_handled; } __pyx_L9_except_error:; __Pyx_XGIVEREF(__pyx_t_6); __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_ExceptionReset(__pyx_t_6, __pyx_t_7, __pyx_t_8); goto __pyx_L1_error; __pyx_L8_exception_handled:; __Pyx_XGIVEREF(__pyx_t_6); __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_ExceptionReset(__pyx_t_6, __pyx_t_7, __pyx_t_8); __pyx_L14_try_end:; } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_5) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__156, NULL); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } goto __pyx_L6; } __pyx_L6:; } goto __pyx_L29; __pyx_L3_error:; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L1_error; __pyx_L29:; } /* "mtrand.pyx":4538 * i = i + k * * return diric # <<<<<<<<<<<<<< * * # Shuffling and permutations: */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_diric); __pyx_r = __pyx_v_diric; goto __pyx_L0; /* "mtrand.pyx":4427 * return multin * * def dirichlet(self, object alpha, size=None): # <<<<<<<<<<<<<< * """ * dirichlet(alpha, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("mtrand.RandomState.dirichlet", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_alpha_arr); __Pyx_XDECREF((PyObject *)__pyx_v_val_arr); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_diric); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":4541 * * # Shuffling and permutations: * def shuffle(self, object x): # <<<<<<<<<<<<<< * """ * shuffle(x) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_103shuffle(PyObject *__pyx_v_self, PyObject *__pyx_v_x); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_102shuffle[] = "\n shuffle(x)\n\n Modify a sequence in-place by shuffling its contents.\n\n Parameters\n ----------\n x : array_like\n The array or list to be shuffled.\n\n Returns\n -------\n None\n\n Examples\n --------\n >>> arr = np.arange(10)\n >>> np.random.shuffle(arr)\n >>> arr\n [1 7 5 2 9 4 3 6 0 8]\n\n This function only shuffles the array along the first index of a\n multi-dimensional array:\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.shuffle(arr)\n >>> arr\n array([[3, 4, 5],\n [6, 7, 8],\n [0, 1, 2]])\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_103shuffle(PyObject *__pyx_v_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("shuffle (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_102shuffle(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_102shuffle(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x) { npy_intp __pyx_v_i; npy_intp __pyx_v_j; PyObject *__pyx_v_buf = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("shuffle", 0); /* "mtrand.pyx":4576 * cdef npy_intp i, j * * i = len(x) - 1 # <<<<<<<<<<<<<< * * # Logic adapted from random.shuffle() */ __pyx_t_1 = PyObject_Length(__pyx_v_x); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4576; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_i = (__pyx_t_1 - 1); /* "mtrand.pyx":4579 * * # Logic adapted from random.shuffle() * if isinstance(x, np.ndarray) and \ # <<<<<<<<<<<<<< * (x.ndim > 1 or x.dtype.fields is not None): * # For a multi-dimensional ndarray, indexing returns a view onto */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4579; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_ndarray); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4579; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = PyObject_IsInstance(__pyx_v_x, __pyx_t_3); if (unlikely(__pyx_t_4 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4579; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_4) { /* "mtrand.pyx":4580 * # Logic adapted from random.shuffle() * if isinstance(x, np.ndarray) and \ * (x.ndim > 1 or x.dtype.fields is not None): # <<<<<<<<<<<<<< * # For a multi-dimensional ndarray, indexing returns a view onto * # each row. So we can't just use ordinary assignment to swap the */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4580; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyObject_RichCompare(__pyx_t_3, __pyx_int_1, Py_GT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4580; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_5 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4580; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (!__pyx_t_5) { __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_dtype); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4580; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_fields); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4580; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_6 = (__pyx_t_3 != Py_None); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_7 = __pyx_t_6; } else { __pyx_t_7 = __pyx_t_5; } __pyx_t_5 = __pyx_t_7; } else { __pyx_t_5 = __pyx_t_4; } if (__pyx_t_5) { /* "mtrand.pyx":4584 * # each row. So we can't just use ordinary assignment to swap the * # rows; we need a bounce buffer. * buf = np.empty_like(x[0]) # <<<<<<<<<<<<<< * while i > 0: * j = rk_interval(i, self.internal_state) */ __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4584; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty_like); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4584; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_x, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4584; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = PyTuple_New(1); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4584; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_8, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4584; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_buf = __pyx_t_3; __pyx_t_3 = 0; /* "mtrand.pyx":4585 * # rows; we need a bounce buffer. * buf = np.empty_like(x[0]) * while i > 0: # <<<<<<<<<<<<<< * j = rk_interval(i, self.internal_state) * buf[...] = x[j] */ while (1) { __pyx_t_5 = ((__pyx_v_i > 0) != 0); if (!__pyx_t_5) break; /* "mtrand.pyx":4586 * buf = np.empty_like(x[0]) * while i > 0: * j = rk_interval(i, self.internal_state) # <<<<<<<<<<<<<< * buf[...] = x[j] * x[j] = x[i] */ __pyx_v_j = rk_interval(__pyx_v_i, __pyx_v_self->internal_state); /* "mtrand.pyx":4587 * while i > 0: * j = rk_interval(i, self.internal_state) * buf[...] = x[j] # <<<<<<<<<<<<<< * x[j] = x[i] * x[i] = buf */ __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_j, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4587; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); if (unlikely(PyObject_SetItem(__pyx_v_buf, Py_Ellipsis, __pyx_t_3) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4587; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4588 * j = rk_interval(i, self.internal_state) * buf[...] = x[j] * x[j] = x[i] # <<<<<<<<<<<<<< * x[i] = buf * i = i - 1 */ __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4588; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_j, __pyx_t_3, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4588; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "mtrand.pyx":4589 * buf[...] = x[j] * x[j] = x[i] * x[i] = buf # <<<<<<<<<<<<<< * i = i - 1 * else: */ if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_i, __pyx_v_buf, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4589; __pyx_clineno = __LINE__; goto __pyx_L1_error;} /* "mtrand.pyx":4590 * x[j] = x[i] * x[i] = buf * i = i - 1 # <<<<<<<<<<<<<< * else: * # For single-dimensional arrays, lists, and any other Python */ __pyx_v_i = (__pyx_v_i - 1); } goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":4595 * # sequence types, indexing returns a real object that's * # independent of the array contents, so we can just swap directly. * while i > 0: # <<<<<<<<<<<<<< * j = rk_interval(i, self.internal_state) * x[i], x[j] = x[j], x[i] */ while (1) { __pyx_t_5 = ((__pyx_v_i > 0) != 0); if (!__pyx_t_5) break; /* "mtrand.pyx":4596 * # independent of the array contents, so we can just swap directly. * while i > 0: * j = rk_interval(i, self.internal_state) # <<<<<<<<<<<<<< * x[i], x[j] = x[j], x[i] * i = i - 1 */ __pyx_v_j = rk_interval(__pyx_v_i, __pyx_v_self->internal_state); /* "mtrand.pyx":4597 * while i > 0: * j = rk_interval(i, self.internal_state) * x[i], x[j] = x[j], x[i] # <<<<<<<<<<<<<< * i = i - 1 * */ __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_j, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4597; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1); if (unlikely(__pyx_t_8 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4597; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_8); if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_i, __pyx_t_3, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4597; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_j, __pyx_t_8, npy_intp, 1, __Pyx_PyInt_From_npy_intp, 0, 1, 1) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4597; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; /* "mtrand.pyx":4598 * j = rk_interval(i, self.internal_state) * x[i], x[j] = x[j], x[i] * i = i - 1 # <<<<<<<<<<<<<< * * def permutation(self, object x): */ __pyx_v_i = (__pyx_v_i - 1); } } __pyx_L3:; /* "mtrand.pyx":4541 * * # Shuffling and permutations: * def shuffle(self, object x): # <<<<<<<<<<<<<< * """ * shuffle(x) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("mtrand.RandomState.shuffle", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_buf); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "mtrand.pyx":4600 * i = i - 1 * * def permutation(self, object x): # <<<<<<<<<<<<<< * """ * permutation(x) */ /* Python wrapper */ static PyObject *__pyx_pw_6mtrand_11RandomState_105permutation(PyObject *__pyx_v_self, PyObject *__pyx_v_x); /*proto*/ static char __pyx_doc_6mtrand_11RandomState_104permutation[] = "\n permutation(x)\n\n Randomly permute a sequence, or return a permuted range.\n\n If `x` is a multi-dimensional array, it is only shuffled along its\n first index.\n\n Parameters\n ----------\n x : int or array_like\n If `x` is an integer, randomly permute ``np.arange(x)``.\n If `x` is an array, make a copy and shuffle the elements\n randomly.\n\n Returns\n -------\n out : ndarray\n Permuted sequence or array range.\n\n Examples\n --------\n >>> np.random.permutation(10)\n array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])\n\n >>> np.random.permutation([1, 4, 9, 12, 15])\n array([15, 1, 9, 4, 12])\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.permutation(arr)\n array([[6, 7, 8],\n [0, 1, 2],\n [3, 4, 5]])\n\n "; static PyObject *__pyx_pw_6mtrand_11RandomState_105permutation(PyObject *__pyx_v_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("permutation (wrapper)", 0); __pyx_r = __pyx_pf_6mtrand_11RandomState_104permutation(((struct __pyx_obj_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6mtrand_11RandomState_104permutation(struct __pyx_obj_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x) { PyObject *__pyx_v_arr = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("permutation", 0); /* "mtrand.pyx":4636 * * """ * if isinstance(x, (int, long, np.integer)): # <<<<<<<<<<<<<< * arr = np.arange(x) * else: */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4636; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_integer); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4636; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4636; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyInt_Type)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyInt_Type)))); __Pyx_INCREF(((PyObject *)((PyObject*)(&PyLong_Type)))); PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)((PyObject*)(&PyLong_Type)))); __Pyx_GIVEREF(((PyObject *)((PyObject*)(&PyLong_Type)))); PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_3 = PyObject_IsInstance(__pyx_v_x, __pyx_t_1); if (unlikely(__pyx_t_3 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4636; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { /* "mtrand.pyx":4637 * """ * if isinstance(x, (int, long, np.integer)): * arr = np.arange(x) # <<<<<<<<<<<<<< * else: * arr = np.array(x) */ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4637; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_arange); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4637; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4637; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4637; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_arr = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L3; } /*else*/ { /* "mtrand.pyx":4639 * arr = np.arange(x) * else: * arr = np.array(x) # <<<<<<<<<<<<<< * self.shuffle(arr) * return arr */ __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_array); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_5, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4639; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_arr = __pyx_t_2; __pyx_t_2 = 0; } __pyx_L3:; /* "mtrand.pyx":4640 * else: * arr = np.array(x) * self.shuffle(arr) # <<<<<<<<<<<<<< * return arr * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_shuffle); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4640; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4640; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_arr); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_arr); __Pyx_GIVEREF(__pyx_v_arr); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_5, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4640; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":4641 * arr = np.array(x) * self.shuffle(arr) * return arr # <<<<<<<<<<<<<< * * _rand = RandomState() */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_arr); __pyx_r = __pyx_v_arr; goto __pyx_L0; /* "mtrand.pyx":4600 * i = i - 1 * * def permutation(self, object x): # <<<<<<<<<<<<<< * """ * permutation(x) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("mtrand.RandomState.permutation", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_arr); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_tp_new_6mtrand_RandomState(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { struct __pyx_obj_6mtrand_RandomState *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_obj_6mtrand_RandomState *)o); p->lock = Py_None; Py_INCREF(Py_None); return o; } static void __pyx_tp_dealloc_6mtrand_RandomState(PyObject *o) { struct __pyx_obj_6mtrand_RandomState *p = (struct __pyx_obj_6mtrand_RandomState *)o; #if PY_VERSION_HEX >= 0x030400a1 if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); ++Py_REFCNT(o); __pyx_pw_6mtrand_11RandomState_3__dealloc__(o); --Py_REFCNT(o); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->lock); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_6mtrand_RandomState(PyObject *o, visitproc v, void *a) { int e; struct __pyx_obj_6mtrand_RandomState *p = (struct __pyx_obj_6mtrand_RandomState *)o; if (p->lock) { e = (*v)(p->lock, a); if (e) return e; } return 0; } static int __pyx_tp_clear_6mtrand_RandomState(PyObject *o) { PyObject* tmp; struct __pyx_obj_6mtrand_RandomState *p = (struct __pyx_obj_6mtrand_RandomState *)o; tmp = ((PyObject*)p->lock); p->lock = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); return 0; } static PyMethodDef __pyx_methods_6mtrand_RandomState[] = { {__Pyx_NAMESTR("seed"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_5seed, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_4seed)}, {__Pyx_NAMESTR("get_state"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_7get_state, METH_NOARGS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_6get_state)}, {__Pyx_NAMESTR("set_state"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_9set_state, METH_O, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_8set_state)}, {__Pyx_NAMESTR("__getstate__"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_11__getstate__, METH_NOARGS, __Pyx_DOCSTR(0)}, {__Pyx_NAMESTR("__setstate__"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_13__setstate__, METH_O, __Pyx_DOCSTR(0)}, {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_15__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)}, {__Pyx_NAMESTR("random_sample"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_17random_sample, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_16random_sample)}, {__Pyx_NAMESTR("tomaxint"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_19tomaxint, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_18tomaxint)}, {__Pyx_NAMESTR("randint"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_21randint, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_20randint)}, {__Pyx_NAMESTR("bytes"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_23bytes, METH_O, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_22bytes)}, {__Pyx_NAMESTR("choice"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_25choice, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_24choice)}, {__Pyx_NAMESTR("uniform"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_27uniform, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_26uniform)}, {__Pyx_NAMESTR("rand"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_29rand, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_28rand)}, {__Pyx_NAMESTR("randn"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_31randn, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_30randn)}, {__Pyx_NAMESTR("random_integers"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_33random_integers, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_32random_integers)}, {__Pyx_NAMESTR("standard_normal"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_35standard_normal, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_34standard_normal)}, {__Pyx_NAMESTR("normal"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_37normal, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_36normal)}, {__Pyx_NAMESTR("beta"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_39beta, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_38beta)}, {__Pyx_NAMESTR("exponential"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_41exponential, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_40exponential)}, {__Pyx_NAMESTR("standard_exponential"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_43standard_exponential, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_42standard_exponential)}, {__Pyx_NAMESTR("standard_gamma"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_45standard_gamma, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_44standard_gamma)}, {__Pyx_NAMESTR("gamma"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_47gamma, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_46gamma)}, {__Pyx_NAMESTR("f"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_49f, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_48f)}, {__Pyx_NAMESTR("noncentral_f"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_51noncentral_f, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_50noncentral_f)}, {__Pyx_NAMESTR("chisquare"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_53chisquare, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_52chisquare)}, {__Pyx_NAMESTR("noncentral_chisquare"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_55noncentral_chisquare, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_54noncentral_chisquare)}, {__Pyx_NAMESTR("standard_cauchy"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_57standard_cauchy, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_56standard_cauchy)}, {__Pyx_NAMESTR("standard_t"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_59standard_t, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_58standard_t)}, {__Pyx_NAMESTR("vonmises"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_61vonmises, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_60vonmises)}, {__Pyx_NAMESTR("pareto"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_63pareto, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_62pareto)}, {__Pyx_NAMESTR("weibull"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_65weibull, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_64weibull)}, {__Pyx_NAMESTR("power"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_67power, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_66power)}, {__Pyx_NAMESTR("laplace"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_69laplace, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_68laplace)}, {__Pyx_NAMESTR("gumbel"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_71gumbel, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_70gumbel)}, {__Pyx_NAMESTR("logistic"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_73logistic, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_72logistic)}, {__Pyx_NAMESTR("lognormal"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_75lognormal, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_74lognormal)}, {__Pyx_NAMESTR("rayleigh"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_77rayleigh, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_76rayleigh)}, {__Pyx_NAMESTR("wald"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_79wald, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_78wald)}, {__Pyx_NAMESTR("triangular"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_81triangular, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_80triangular)}, {__Pyx_NAMESTR("binomial"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_83binomial, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_82binomial)}, {__Pyx_NAMESTR("negative_binomial"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_85negative_binomial, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_84negative_binomial)}, {__Pyx_NAMESTR("poisson"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_87poisson, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_86poisson)}, {__Pyx_NAMESTR("zipf"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_89zipf, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_88zipf)}, {__Pyx_NAMESTR("geometric"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_91geometric, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_90geometric)}, {__Pyx_NAMESTR("hypergeometric"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_93hypergeometric, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_92hypergeometric)}, {__Pyx_NAMESTR("logseries"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_95logseries, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_94logseries)}, {__Pyx_NAMESTR("multivariate_normal"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_97multivariate_normal, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_96multivariate_normal)}, {__Pyx_NAMESTR("multinomial"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_99multinomial, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_98multinomial)}, {__Pyx_NAMESTR("dirichlet"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_101dirichlet, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_100dirichlet)}, {__Pyx_NAMESTR("shuffle"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_103shuffle, METH_O, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_102shuffle)}, {__Pyx_NAMESTR("permutation"), (PyCFunction)__pyx_pw_6mtrand_11RandomState_105permutation, METH_O, __Pyx_DOCSTR(__pyx_doc_6mtrand_11RandomState_104permutation)}, {0, 0, 0, 0} }; static PyTypeObject __pyx_type_6mtrand_RandomState = { PyVarObject_HEAD_INIT(0, 0) __Pyx_NAMESTR("mtrand.RandomState"), /*tp_name*/ sizeof(struct __pyx_obj_6mtrand_RandomState), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_6mtrand_RandomState, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #else 0, /*reserved*/ #endif 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ __Pyx_DOCSTR("\n RandomState(seed=None)\n\n Container for the Mersenne Twister pseudo-random number generator.\n\n `RandomState` exposes a number of methods for generating random numbers\n drawn from a variety of probability distributions. In addition to the\n distribution-specific arguments, each method takes a keyword argument\n `size` that defaults to ``None``. If `size` is ``None``, then a single\n value is generated and returned. If `size` is an integer, then a 1-D\n array filled with generated values is returned. If `size` is a tuple,\n then an array with that shape is filled and returned.\n\n Parameters\n ----------\n seed : {None, int, array_like}, optional\n Random seed initializing the pseudo-random number generator.\n Can be an integer, an array (or other sequence) of integers of\n any length, or ``None`` (the default).\n If `seed` is ``None``, then `RandomState` will try to read data from\n ``/dev/urandom`` (or the Windows analogue) if available or seed from\n the clock otherwise.\n\n Notes\n -----\n The Python stdlib module \"random\" also contains a Mersenne Twister\n pseudo-random number generator with a number of methods that are similar\n to the ones available in `RandomState`. `RandomState`, besides being\n NumPy-aware, has the advantage that it provides a much larger number\n of probability distributions to choose from.\n\n "), /*tp_doc*/ __pyx_tp_traverse_6mtrand_RandomState, /*tp_traverse*/ __pyx_tp_clear_6mtrand_RandomState, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_6mtrand_RandomState, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ __pyx_pw_6mtrand_11RandomState_1__init__, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_6mtrand_RandomState, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ #if PY_VERSION_HEX >= 0x02060000 0, /*tp_version_tag*/ #endif #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif }; static PyMethodDef __pyx_methods[] = { {0, 0, 0, 0} }; #if PY_MAJOR_VERSION >= 3 static struct PyModuleDef __pyx_moduledef = { #if PY_VERSION_HEX < 0x03020000 { PyObject_HEAD_INIT(NULL) NULL, 0, NULL }, #else PyModuleDef_HEAD_INIT, #endif __Pyx_NAMESTR("mtrand"), 0, /* m_doc */ -1, /* m_size */ __pyx_methods /* m_methods */, NULL, /* m_reload */ NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ }; #endif static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_s_Cannot_take_a_larger_sample_than, __pyx_k_Cannot_take_a_larger_sample_than, sizeof(__pyx_k_Cannot_take_a_larger_sample_than), 0, 0, 1, 0}, {&__pyx_kp_s_Fewer_non_zero_entries_in_p_than, __pyx_k_Fewer_non_zero_entries_in_p_than, sizeof(__pyx_k_Fewer_non_zero_entries_in_p_than), 0, 0, 1, 0}, {&__pyx_n_s_L, __pyx_k_L, sizeof(__pyx_k_L), 0, 0, 1, 1}, {&__pyx_n_s_Lock, __pyx_k_Lock, sizeof(__pyx_k_Lock), 0, 0, 1, 1}, {&__pyx_n_s_MT19937, __pyx_k_MT19937, sizeof(__pyx_k_MT19937), 0, 0, 1, 1}, {&__pyx_kp_u_RandomState_binomial_line_3535, __pyx_k_RandomState_binomial_line_3535, sizeof(__pyx_k_RandomState_binomial_line_3535), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_bytes_line_947, __pyx_k_RandomState_bytes_line_947, sizeof(__pyx_k_RandomState_bytes_line_947), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_chisquare_line_2087, __pyx_k_RandomState_chisquare_line_2087, sizeof(__pyx_k_RandomState_chisquare_line_2087), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_choice_line_976, __pyx_k_RandomState_choice_line_976, sizeof(__pyx_k_RandomState_choice_line_976), 0, 1, 0, 0}, {&__pyx_n_s_RandomState_ctor, __pyx_k_RandomState_ctor, sizeof(__pyx_k_RandomState_ctor), 0, 0, 1, 1}, {&__pyx_kp_u_RandomState_dirichlet_line_4427, __pyx_k_RandomState_dirichlet_line_4427, sizeof(__pyx_k_RandomState_dirichlet_line_4427), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_f_line_1887, __pyx_k_RandomState_f_line_1887, sizeof(__pyx_k_RandomState_f_line_1887), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_gamma_line_1793, __pyx_k_RandomState_gamma_line_1793, sizeof(__pyx_k_RandomState_gamma_line_1793), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_geometric_line_3909, __pyx_k_RandomState_geometric_line_3909, sizeof(__pyx_k_RandomState_geometric_line_3909), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_gumbel_line_2935, __pyx_k_RandomState_gumbel_line_2935, sizeof(__pyx_k_RandomState_gumbel_line_2935), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_hypergeometric_line, __pyx_k_RandomState_hypergeometric_line, sizeof(__pyx_k_RandomState_hypergeometric_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_laplace_line_2839, __pyx_k_RandomState_laplace_line_2839, sizeof(__pyx_k_RandomState_laplace_line_2839), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_logistic_line_3069, __pyx_k_RandomState_logistic_line_3069, sizeof(__pyx_k_RandomState_logistic_line_3069), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_lognormal_line_3160, __pyx_k_RandomState_lognormal_line_3160, sizeof(__pyx_k_RandomState_lognormal_line_3160), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_logseries_line_4097, __pyx_k_RandomState_logseries_line_4097, sizeof(__pyx_k_RandomState_logseries_line_4097), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_multinomial_line_433, __pyx_k_RandomState_multinomial_line_433, sizeof(__pyx_k_RandomState_multinomial_line_433), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_multivariate_normal, __pyx_k_RandomState_multivariate_normal, sizeof(__pyx_k_RandomState_multivariate_normal), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_negative_binomial_li, __pyx_k_RandomState_negative_binomial_li, sizeof(__pyx_k_RandomState_negative_binomial_li), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_noncentral_chisquare, __pyx_k_RandomState_noncentral_chisquare, sizeof(__pyx_k_RandomState_noncentral_chisquare), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_noncentral_f_line_19, __pyx_k_RandomState_noncentral_f_line_19, sizeof(__pyx_k_RandomState_noncentral_f_line_19), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_normal_line_1456, __pyx_k_RandomState_normal_line_1456, sizeof(__pyx_k_RandomState_normal_line_1456), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_pareto_line_2527, __pyx_k_RandomState_pareto_line_2527, sizeof(__pyx_k_RandomState_pareto_line_2527), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_permutation_line_460, __pyx_k_RandomState_permutation_line_460, sizeof(__pyx_k_RandomState_permutation_line_460), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_poisson_line_3744, __pyx_k_RandomState_poisson_line_3744, sizeof(__pyx_k_RandomState_poisson_line_3744), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_power_line_2728, __pyx_k_RandomState_power_line_2728, sizeof(__pyx_k_RandomState_power_line_2728), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_rand_line_1242, __pyx_k_RandomState_rand_line_1242, sizeof(__pyx_k_RandomState_rand_line_1242), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_randint_line_865, __pyx_k_RandomState_randint_line_865, sizeof(__pyx_k_RandomState_randint_line_865), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_randn_line_1286, __pyx_k_RandomState_randn_line_1286, sizeof(__pyx_k_RandomState_randn_line_1286), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_random_integers_line, __pyx_k_RandomState_random_integers_line, sizeof(__pyx_k_RandomState_random_integers_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_random_sample_line_7, __pyx_k_RandomState_random_sample_line_7, sizeof(__pyx_k_RandomState_random_sample_line_7), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_rayleigh_line_3284, __pyx_k_RandomState_rayleigh_line_3284, sizeof(__pyx_k_RandomState_rayleigh_line_3284), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_shuffle_line_4541, __pyx_k_RandomState_shuffle_line_4541, sizeof(__pyx_k_RandomState_shuffle_line_4541), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_cauchy_line, __pyx_k_RandomState_standard_cauchy_line, sizeof(__pyx_k_RandomState_standard_cauchy_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_exponential, __pyx_k_RandomState_standard_exponential, sizeof(__pyx_k_RandomState_standard_exponential), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_gamma_line, __pyx_k_RandomState_standard_gamma_line, sizeof(__pyx_k_RandomState_standard_gamma_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_normal_line, __pyx_k_RandomState_standard_normal_line, sizeof(__pyx_k_RandomState_standard_normal_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_t_line_2326, __pyx_k_RandomState_standard_t_line_2326, sizeof(__pyx_k_RandomState_standard_t_line_2326), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_tomaxint_line_818, __pyx_k_RandomState_tomaxint_line_818, sizeof(__pyx_k_RandomState_tomaxint_line_818), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_triangular_line_3446, __pyx_k_RandomState_triangular_line_3446, sizeof(__pyx_k_RandomState_triangular_line_3446), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_uniform_line_1152, __pyx_k_RandomState_uniform_line_1152, sizeof(__pyx_k_RandomState_uniform_line_1152), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_vonmises_line_2430, __pyx_k_RandomState_vonmises_line_2430, sizeof(__pyx_k_RandomState_vonmises_line_2430), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_wald_line_3359, __pyx_k_RandomState_wald_line_3359, sizeof(__pyx_k_RandomState_wald_line_3359), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_weibull_line_2625, __pyx_k_RandomState_weibull_line_2625, sizeof(__pyx_k_RandomState_weibull_line_2625), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_zipf_line_3822, __pyx_k_RandomState_zipf_line_3822, sizeof(__pyx_k_RandomState_zipf_line_3822), 0, 1, 0, 0}, {&__pyx_n_s_RuntimeWarning, __pyx_k_RuntimeWarning, sizeof(__pyx_k_RuntimeWarning), 0, 0, 1, 1}, {&__pyx_kp_s_Seed_must_be_between_0_and_42949, __pyx_k_Seed_must_be_between_0_and_42949, sizeof(__pyx_k_Seed_must_be_between_0_and_42949), 0, 0, 1, 0}, {&__pyx_n_s_T, __pyx_k_T, sizeof(__pyx_k_T), 0, 0, 1, 1}, {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_a, __pyx_k_a, sizeof(__pyx_k_a), 0, 0, 1, 1}, {&__pyx_kp_s_a_0, __pyx_k_a_0, sizeof(__pyx_k_a_0), 0, 0, 1, 0}, {&__pyx_kp_s_a_1_0, __pyx_k_a_1_0, sizeof(__pyx_k_a_1_0), 0, 0, 1, 0}, {&__pyx_kp_s_a_and_p_must_have_same_size, __pyx_k_a_and_p_must_have_same_size, sizeof(__pyx_k_a_and_p_must_have_same_size), 0, 0, 1, 0}, {&__pyx_kp_s_a_must_be_1_dimensional, __pyx_k_a_must_be_1_dimensional, sizeof(__pyx_k_a_must_be_1_dimensional), 0, 0, 1, 0}, {&__pyx_kp_s_a_must_be_1_dimensional_or_an_in, __pyx_k_a_must_be_1_dimensional_or_an_in, sizeof(__pyx_k_a_must_be_1_dimensional_or_an_in), 0, 0, 1, 0}, {&__pyx_kp_s_a_must_be_greater_than_0, __pyx_k_a_must_be_greater_than_0, sizeof(__pyx_k_a_must_be_greater_than_0), 0, 0, 1, 0}, {&__pyx_kp_s_a_must_be_non_empty, __pyx_k_a_must_be_non_empty, sizeof(__pyx_k_a_must_be_non_empty), 0, 0, 1, 0}, {&__pyx_n_s_add, __pyx_k_add, sizeof(__pyx_k_add), 0, 0, 1, 1}, {&__pyx_kp_s_algorithm_must_be_MT19937, __pyx_k_algorithm_must_be_MT19937, sizeof(__pyx_k_algorithm_must_be_MT19937), 0, 0, 1, 0}, {&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1}, {&__pyx_n_s_any, __pyx_k_any, sizeof(__pyx_k_any), 0, 0, 1, 1}, {&__pyx_n_s_arange, __pyx_k_arange, sizeof(__pyx_k_arange), 0, 0, 1, 1}, {&__pyx_n_s_array, __pyx_k_array, sizeof(__pyx_k_array), 0, 0, 1, 1}, {&__pyx_n_s_asarray, __pyx_k_asarray, sizeof(__pyx_k_asarray), 0, 0, 1, 1}, {&__pyx_n_s_astype, __pyx_k_astype, sizeof(__pyx_k_astype), 0, 0, 1, 1}, {&__pyx_n_s_axis, __pyx_k_axis, sizeof(__pyx_k_axis), 0, 0, 1, 1}, {&__pyx_n_s_b, __pyx_k_b, sizeof(__pyx_k_b), 0, 0, 1, 1}, {&__pyx_kp_s_b_0, __pyx_k_b_0, sizeof(__pyx_k_b_0), 0, 0, 1, 0}, {&__pyx_n_s_beta, __pyx_k_beta, sizeof(__pyx_k_beta), 0, 0, 1, 1}, {&__pyx_n_s_binomial, __pyx_k_binomial, sizeof(__pyx_k_binomial), 0, 0, 1, 1}, {&__pyx_kp_u_binomial_n_p_size_None_Draw_sam, __pyx_k_binomial_n_p_size_None_Draw_sam, sizeof(__pyx_k_binomial_n_p_size_None_Draw_sam), 0, 1, 0, 0}, {&__pyx_n_s_bytes, __pyx_k_bytes, sizeof(__pyx_k_bytes), 0, 0, 1, 1}, {&__pyx_kp_u_bytes_length_Return_random_byte, __pyx_k_bytes_length_Return_random_byte, sizeof(__pyx_k_bytes_length_Return_random_byte), 0, 1, 0, 0}, {&__pyx_n_s_casting, __pyx_k_casting, sizeof(__pyx_k_casting), 0, 0, 1, 1}, {&__pyx_n_s_chisquare, __pyx_k_chisquare, sizeof(__pyx_k_chisquare), 0, 0, 1, 1}, {&__pyx_kp_u_chisquare_df_size_None_Draw_sam, __pyx_k_chisquare_df_size_None_Draw_sam, sizeof(__pyx_k_chisquare_df_size_None_Draw_sam), 0, 1, 0, 0}, {&__pyx_n_s_choice, __pyx_k_choice, sizeof(__pyx_k_choice), 0, 0, 1, 1}, {&__pyx_kp_u_choice_a_size_None_replace_True, __pyx_k_choice_a_size_None_replace_True, sizeof(__pyx_k_choice_a_size_None_replace_True), 0, 1, 0, 0}, {&__pyx_n_s_copy, __pyx_k_copy, sizeof(__pyx_k_copy), 0, 0, 1, 1}, {&__pyx_n_s_count_nonzero, __pyx_k_count_nonzero, sizeof(__pyx_k_count_nonzero), 0, 0, 1, 1}, {&__pyx_n_s_cov, __pyx_k_cov, sizeof(__pyx_k_cov), 0, 0, 1, 1}, {&__pyx_kp_s_cov_must_be_2_dimensional_and_sq, __pyx_k_cov_must_be_2_dimensional_and_sq, sizeof(__pyx_k_cov_must_be_2_dimensional_and_sq), 0, 0, 1, 0}, {&__pyx_kp_s_covariance_is_not_positive_semid, __pyx_k_covariance_is_not_positive_semid, sizeof(__pyx_k_covariance_is_not_positive_semid), 0, 0, 1, 0}, {&__pyx_n_s_cumsum, __pyx_k_cumsum, sizeof(__pyx_k_cumsum), 0, 0, 1, 1}, {&__pyx_n_s_d, __pyx_k_d, sizeof(__pyx_k_d), 0, 0, 1, 1}, {&__pyx_n_s_df, __pyx_k_df, sizeof(__pyx_k_df), 0, 0, 1, 1}, {&__pyx_kp_s_df_0, __pyx_k_df_0, sizeof(__pyx_k_df_0), 0, 0, 1, 0}, {&__pyx_kp_s_df_1, __pyx_k_df_1, sizeof(__pyx_k_df_1), 0, 0, 1, 0}, {&__pyx_n_s_dfden, __pyx_k_dfden, sizeof(__pyx_k_dfden), 0, 0, 1, 1}, {&__pyx_kp_s_dfden_0, __pyx_k_dfden_0, sizeof(__pyx_k_dfden_0), 0, 0, 1, 0}, {&__pyx_n_s_dfnum, __pyx_k_dfnum, sizeof(__pyx_k_dfnum), 0, 0, 1, 1}, {&__pyx_kp_s_dfnum_0, __pyx_k_dfnum_0, sizeof(__pyx_k_dfnum_0), 0, 0, 1, 0}, {&__pyx_kp_s_dfnum_1, __pyx_k_dfnum_1, sizeof(__pyx_k_dfnum_1), 0, 0, 1, 0}, {&__pyx_n_s_dirichlet, __pyx_k_dirichlet, sizeof(__pyx_k_dirichlet), 0, 0, 1, 1}, {&__pyx_kp_u_dirichlet_alpha_size_None_Draw, __pyx_k_dirichlet_alpha_size_None_Draw, sizeof(__pyx_k_dirichlet_alpha_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_dot, __pyx_k_dot, sizeof(__pyx_k_dot), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, {&__pyx_n_s_empty_like, __pyx_k_empty_like, sizeof(__pyx_k_empty_like), 0, 0, 1, 1}, {&__pyx_n_s_enter, __pyx_k_enter, sizeof(__pyx_k_enter), 0, 0, 1, 1}, {&__pyx_n_s_equal, __pyx_k_equal, sizeof(__pyx_k_equal), 0, 0, 1, 1}, {&__pyx_n_s_exit, __pyx_k_exit, sizeof(__pyx_k_exit), 0, 0, 1, 1}, {&__pyx_n_s_exponential, __pyx_k_exponential, sizeof(__pyx_k_exponential), 0, 0, 1, 1}, {&__pyx_n_s_f, __pyx_k_f, sizeof(__pyx_k_f), 0, 0, 1, 1}, {&__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa, __pyx_k_f_dfnum_dfden_size_None_Draw_sa, sizeof(__pyx_k_f_dfnum_dfden_size_None_Draw_sa), 0, 1, 0, 0}, {&__pyx_n_s_fields, __pyx_k_fields, sizeof(__pyx_k_fields), 0, 0, 1, 1}, {&__pyx_n_s_float64, __pyx_k_float64, sizeof(__pyx_k_float64), 0, 0, 1, 1}, {&__pyx_n_s_gamma, __pyx_k_gamma, sizeof(__pyx_k_gamma), 0, 0, 1, 1}, {&__pyx_kp_u_gamma_shape_scale_1_0_size_None, __pyx_k_gamma_shape_scale_1_0_size_None, sizeof(__pyx_k_gamma_shape_scale_1_0_size_None), 0, 1, 0, 0}, {&__pyx_n_s_geometric, __pyx_k_geometric, sizeof(__pyx_k_geometric), 0, 0, 1, 1}, {&__pyx_kp_u_geometric_p_size_None_Draw_samp, __pyx_k_geometric_p_size_None_Draw_samp, sizeof(__pyx_k_geometric_p_size_None_Draw_samp), 0, 1, 0, 0}, {&__pyx_n_s_get_state, __pyx_k_get_state, sizeof(__pyx_k_get_state), 0, 0, 1, 1}, {&__pyx_n_s_greater, __pyx_k_greater, sizeof(__pyx_k_greater), 0, 0, 1, 1}, {&__pyx_n_s_greater_equal, __pyx_k_greater_equal, sizeof(__pyx_k_greater_equal), 0, 0, 1, 1}, {&__pyx_n_s_gumbel, __pyx_k_gumbel, sizeof(__pyx_k_gumbel), 0, 0, 1, 1}, {&__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N, __pyx_k_gumbel_loc_0_0_scale_1_0_size_N, sizeof(__pyx_k_gumbel_loc_0_0_scale_1_0_size_N), 0, 1, 0, 0}, {&__pyx_n_s_high, __pyx_k_high, sizeof(__pyx_k_high), 0, 0, 1, 1}, {&__pyx_kp_s_home_vagrant_repos_numpy_numpy, __pyx_k_home_vagrant_repos_numpy_numpy, sizeof(__pyx_k_home_vagrant_repos_numpy_numpy), 0, 0, 1, 0}, {&__pyx_n_s_hypergeometric, __pyx_k_hypergeometric, sizeof(__pyx_k_hypergeometric), 0, 0, 1, 1}, {&__pyx_kp_u_hypergeometric_ngood_nbad_nsamp, __pyx_k_hypergeometric_ngood_nbad_nsamp, sizeof(__pyx_k_hypergeometric_ngood_nbad_nsamp), 0, 1, 0, 0}, {&__pyx_n_s_iinfo, __pyx_k_iinfo, sizeof(__pyx_k_iinfo), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_index, __pyx_k_index, sizeof(__pyx_k_index), 0, 0, 1, 1}, {&__pyx_n_s_int, __pyx_k_int, sizeof(__pyx_k_int), 0, 0, 1, 1}, {&__pyx_n_s_int64, __pyx_k_int64, sizeof(__pyx_k_int64), 0, 0, 1, 1}, {&__pyx_n_s_integer, __pyx_k_integer, sizeof(__pyx_k_integer), 0, 0, 1, 1}, {&__pyx_n_s_intp, __pyx_k_intp, sizeof(__pyx_k_intp), 0, 0, 1, 1}, {&__pyx_n_s_isnan, __pyx_k_isnan, sizeof(__pyx_k_isnan), 0, 0, 1, 1}, {&__pyx_n_s_item, __pyx_k_item, sizeof(__pyx_k_item), 0, 0, 1, 1}, {&__pyx_n_s_kappa, __pyx_k_kappa, sizeof(__pyx_k_kappa), 0, 0, 1, 1}, {&__pyx_kp_s_kappa_0, __pyx_k_kappa_0, sizeof(__pyx_k_kappa_0), 0, 0, 1, 0}, {&__pyx_n_s_l, __pyx_k_l, sizeof(__pyx_k_l), 0, 0, 1, 1}, {&__pyx_n_s_lam, __pyx_k_lam, sizeof(__pyx_k_lam), 0, 0, 1, 1}, {&__pyx_kp_s_lam_0, __pyx_k_lam_0, sizeof(__pyx_k_lam_0), 0, 0, 1, 0}, {&__pyx_kp_s_lam_value_too_large, __pyx_k_lam_value_too_large, sizeof(__pyx_k_lam_value_too_large), 0, 0, 1, 0}, {&__pyx_kp_s_lam_value_too_large_2, __pyx_k_lam_value_too_large_2, sizeof(__pyx_k_lam_value_too_large_2), 0, 0, 1, 0}, {&__pyx_n_s_laplace, __pyx_k_laplace, sizeof(__pyx_k_laplace), 0, 0, 1, 1}, {&__pyx_kp_u_laplace_loc_0_0_scale_1_0_size, __pyx_k_laplace_loc_0_0_scale_1_0_size, sizeof(__pyx_k_laplace_loc_0_0_scale_1_0_size), 0, 1, 0, 0}, {&__pyx_n_s_left, __pyx_k_left, sizeof(__pyx_k_left), 0, 0, 1, 1}, {&__pyx_kp_s_left_mode, __pyx_k_left_mode, sizeof(__pyx_k_left_mode), 0, 0, 1, 0}, {&__pyx_kp_s_left_right, __pyx_k_left_right, sizeof(__pyx_k_left_right), 0, 0, 1, 0}, {&__pyx_n_s_less, __pyx_k_less, sizeof(__pyx_k_less), 0, 0, 1, 1}, {&__pyx_n_s_less_equal, __pyx_k_less_equal, sizeof(__pyx_k_less_equal), 0, 0, 1, 1}, {&__pyx_n_s_loc, __pyx_k_loc, sizeof(__pyx_k_loc), 0, 0, 1, 1}, {&__pyx_n_s_logical_or, __pyx_k_logical_or, sizeof(__pyx_k_logical_or), 0, 0, 1, 1}, {&__pyx_n_s_logistic, __pyx_k_logistic, sizeof(__pyx_k_logistic), 0, 0, 1, 1}, {&__pyx_kp_u_logistic_loc_0_0_scale_1_0_size, __pyx_k_logistic_loc_0_0_scale_1_0_size, sizeof(__pyx_k_logistic_loc_0_0_scale_1_0_size), 0, 1, 0, 0}, {&__pyx_n_s_lognormal, __pyx_k_lognormal, sizeof(__pyx_k_lognormal), 0, 0, 1, 1}, {&__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si, __pyx_k_lognormal_mean_0_0_sigma_1_0_si, sizeof(__pyx_k_lognormal_mean_0_0_sigma_1_0_si), 0, 1, 0, 0}, {&__pyx_n_s_logseries, __pyx_k_logseries, sizeof(__pyx_k_logseries), 0, 0, 1, 1}, {&__pyx_kp_u_logseries_p_size_None_Draw_samp, __pyx_k_logseries_p_size_None_Draw_samp, sizeof(__pyx_k_logseries_p_size_None_Draw_samp), 0, 1, 0, 0}, {&__pyx_n_s_low, __pyx_k_low, sizeof(__pyx_k_low), 0, 0, 1, 1}, {&__pyx_kp_s_low_high, __pyx_k_low_high, sizeof(__pyx_k_low_high), 0, 0, 1, 0}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_max, __pyx_k_max, sizeof(__pyx_k_max), 0, 0, 1, 1}, {&__pyx_n_s_mean, __pyx_k_mean, sizeof(__pyx_k_mean), 0, 0, 1, 1}, {&__pyx_kp_s_mean_0, __pyx_k_mean_0, sizeof(__pyx_k_mean_0), 0, 0, 1, 0}, {&__pyx_kp_s_mean_0_0, __pyx_k_mean_0_0, sizeof(__pyx_k_mean_0_0), 0, 0, 1, 0}, {&__pyx_kp_s_mean_and_cov_must_have_same_leng, __pyx_k_mean_and_cov_must_have_same_leng, sizeof(__pyx_k_mean_and_cov_must_have_same_leng), 0, 0, 1, 0}, {&__pyx_kp_s_mean_must_be_1_dimensional, __pyx_k_mean_must_be_1_dimensional, sizeof(__pyx_k_mean_must_be_1_dimensional), 0, 0, 1, 0}, {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, {&__pyx_kp_s_mode_right, __pyx_k_mode_right, sizeof(__pyx_k_mode_right), 0, 0, 1, 0}, {&__pyx_n_s_mtrand, __pyx_k_mtrand, sizeof(__pyx_k_mtrand), 0, 0, 1, 1}, {&__pyx_n_s_mu, __pyx_k_mu, sizeof(__pyx_k_mu), 0, 0, 1, 1}, {&__pyx_n_s_multinomial, __pyx_k_multinomial, sizeof(__pyx_k_multinomial), 0, 0, 1, 1}, {&__pyx_kp_u_multinomial_n_pvals_size_None_D, __pyx_k_multinomial_n_pvals_size_None_D, sizeof(__pyx_k_multinomial_n_pvals_size_None_D), 0, 1, 0, 0}, {&__pyx_n_s_multivariate_normal, __pyx_k_multivariate_normal, sizeof(__pyx_k_multivariate_normal), 0, 0, 1, 1}, {&__pyx_kp_u_multivariate_normal_mean_cov_si, __pyx_k_multivariate_normal_mean_cov_si, sizeof(__pyx_k_multivariate_normal_mean_cov_si), 0, 1, 0, 0}, {&__pyx_n_s_n, __pyx_k_n, sizeof(__pyx_k_n), 0, 0, 1, 1}, {&__pyx_kp_s_n_0, __pyx_k_n_0, sizeof(__pyx_k_n_0), 0, 0, 1, 0}, {&__pyx_kp_s_n_0_2, __pyx_k_n_0_2, sizeof(__pyx_k_n_0_2), 0, 0, 1, 0}, {&__pyx_n_s_nbad, __pyx_k_nbad, sizeof(__pyx_k_nbad), 0, 0, 1, 1}, {&__pyx_kp_s_nbad_0, __pyx_k_nbad_0, sizeof(__pyx_k_nbad_0), 0, 0, 1, 0}, {&__pyx_n_s_ndarray, __pyx_k_ndarray, sizeof(__pyx_k_ndarray), 0, 0, 1, 1}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, {&__pyx_n_s_negative_binomial, __pyx_k_negative_binomial, sizeof(__pyx_k_negative_binomial), 0, 0, 1, 1}, {&__pyx_kp_u_negative_binomial_n_p_size_None, __pyx_k_negative_binomial_n_p_size_None, sizeof(__pyx_k_negative_binomial_n_p_size_None), 0, 1, 0, 0}, {&__pyx_n_s_ngood, __pyx_k_ngood, sizeof(__pyx_k_ngood), 0, 0, 1, 1}, {&__pyx_kp_s_ngood_0, __pyx_k_ngood_0, sizeof(__pyx_k_ngood_0), 0, 0, 1, 0}, {&__pyx_kp_s_ngood_nbad_nsample, __pyx_k_ngood_nbad_nsample, sizeof(__pyx_k_ngood_nbad_nsample), 0, 0, 1, 0}, {&__pyx_n_s_nonc, __pyx_k_nonc, sizeof(__pyx_k_nonc), 0, 0, 1, 1}, {&__pyx_kp_s_nonc_0, __pyx_k_nonc_0, sizeof(__pyx_k_nonc_0), 0, 0, 1, 0}, {&__pyx_kp_s_nonc_0_2, __pyx_k_nonc_0_2, sizeof(__pyx_k_nonc_0_2), 0, 0, 1, 0}, {&__pyx_n_s_noncentral_chisquare, __pyx_k_noncentral_chisquare, sizeof(__pyx_k_noncentral_chisquare), 0, 0, 1, 1}, {&__pyx_kp_u_noncentral_chisquare_df_nonc_si, __pyx_k_noncentral_chisquare_df_nonc_si, sizeof(__pyx_k_noncentral_chisquare_df_nonc_si), 0, 1, 0, 0}, {&__pyx_n_s_noncentral_f, __pyx_k_noncentral_f, sizeof(__pyx_k_noncentral_f), 0, 0, 1, 1}, {&__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s, __pyx_k_noncentral_f_dfnum_dfden_nonc_s, sizeof(__pyx_k_noncentral_f_dfnum_dfden_nonc_s), 0, 1, 0, 0}, {&__pyx_n_s_normal, __pyx_k_normal, sizeof(__pyx_k_normal), 0, 0, 1, 1}, {&__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N, __pyx_k_normal_loc_0_0_scale_1_0_size_N, sizeof(__pyx_k_normal_loc_0_0_scale_1_0_size_N), 0, 1, 0, 0}, {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, {&__pyx_n_s_nsample, __pyx_k_nsample, sizeof(__pyx_k_nsample), 0, 0, 1, 1}, {&__pyx_kp_s_nsample_1, __pyx_k_nsample_1, sizeof(__pyx_k_nsample_1), 0, 0, 1, 0}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_n_s_numpy_dual, __pyx_k_numpy_dual, sizeof(__pyx_k_numpy_dual), 0, 0, 1, 1}, {&__pyx_n_s_operator, __pyx_k_operator, sizeof(__pyx_k_operator), 0, 0, 1, 1}, {&__pyx_n_s_p, __pyx_k_p, sizeof(__pyx_k_p), 0, 0, 1, 1}, {&__pyx_kp_s_p_0, __pyx_k_p_0, sizeof(__pyx_k_p_0), 0, 0, 1, 0}, {&__pyx_kp_s_p_0_0, __pyx_k_p_0_0, sizeof(__pyx_k_p_0_0), 0, 0, 1, 0}, {&__pyx_kp_s_p_0_0_2, __pyx_k_p_0_0_2, sizeof(__pyx_k_p_0_0_2), 0, 0, 1, 0}, {&__pyx_kp_s_p_1, __pyx_k_p_1, sizeof(__pyx_k_p_1), 0, 0, 1, 0}, {&__pyx_kp_s_p_1_0, __pyx_k_p_1_0, sizeof(__pyx_k_p_1_0), 0, 0, 1, 0}, {&__pyx_kp_s_p_1_0_2, __pyx_k_p_1_0_2, sizeof(__pyx_k_p_1_0_2), 0, 0, 1, 0}, {&__pyx_kp_s_p_is_nan, __pyx_k_p_is_nan, sizeof(__pyx_k_p_is_nan), 0, 0, 1, 0}, {&__pyx_kp_s_p_must_be_1_dimensional, __pyx_k_p_must_be_1_dimensional, sizeof(__pyx_k_p_must_be_1_dimensional), 0, 0, 1, 0}, {&__pyx_n_s_pareto, __pyx_k_pareto, sizeof(__pyx_k_pareto), 0, 0, 1, 1}, {&__pyx_kp_u_pareto_a_size_None_Draw_samples, __pyx_k_pareto_a_size_None_Draw_samples, sizeof(__pyx_k_pareto_a_size_None_Draw_samples), 0, 1, 0, 0}, {&__pyx_n_s_permutation, __pyx_k_permutation, sizeof(__pyx_k_permutation), 0, 0, 1, 1}, {&__pyx_kp_u_permutation_x_Randomly_permute, __pyx_k_permutation_x_Randomly_permute, sizeof(__pyx_k_permutation_x_Randomly_permute), 0, 1, 0, 0}, {&__pyx_n_s_poisson, __pyx_k_poisson, sizeof(__pyx_k_poisson), 0, 0, 1, 1}, {&__pyx_kp_u_poisson_lam_1_0_size_None_Draw, __pyx_k_poisson_lam_1_0_size_None_Draw, sizeof(__pyx_k_poisson_lam_1_0_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_poisson_lam_max, __pyx_k_poisson_lam_max, sizeof(__pyx_k_poisson_lam_max), 0, 0, 1, 1}, {&__pyx_n_s_power, __pyx_k_power, sizeof(__pyx_k_power), 0, 0, 1, 1}, {&__pyx_kp_u_power_a_size_None_Draws_samples, __pyx_k_power_a_size_None_Draws_samples, sizeof(__pyx_k_power_a_size_None_Draws_samples), 0, 1, 0, 0}, {&__pyx_kp_s_probabilities_are_not_non_negati, __pyx_k_probabilities_are_not_non_negati, sizeof(__pyx_k_probabilities_are_not_non_negati), 0, 0, 1, 0}, {&__pyx_kp_s_probabilities_do_not_sum_to_1, __pyx_k_probabilities_do_not_sum_to_1, sizeof(__pyx_k_probabilities_do_not_sum_to_1), 0, 0, 1, 0}, {&__pyx_n_s_prod, __pyx_k_prod, sizeof(__pyx_k_prod), 0, 0, 1, 1}, {&__pyx_n_s_pvals, __pyx_k_pvals, sizeof(__pyx_k_pvals), 0, 0, 1, 1}, {&__pyx_n_s_rand, __pyx_k_rand, sizeof(__pyx_k_rand), 0, 0, 1, 1}, {&__pyx_n_s_rand_2, __pyx_k_rand_2, sizeof(__pyx_k_rand_2), 0, 0, 1, 1}, {&__pyx_kp_u_rand_d0_d1_dn_Random_values_in, __pyx_k_rand_d0_d1_dn_Random_values_in, sizeof(__pyx_k_rand_d0_d1_dn_Random_values_in), 0, 1, 0, 0}, {&__pyx_n_s_randint, __pyx_k_randint, sizeof(__pyx_k_randint), 0, 0, 1, 1}, {&__pyx_kp_u_randint_low_high_None_size_None, __pyx_k_randint_low_high_None_size_None, sizeof(__pyx_k_randint_low_high_None_size_None), 0, 1, 0, 0}, {&__pyx_n_s_randn, __pyx_k_randn, sizeof(__pyx_k_randn), 0, 0, 1, 1}, {&__pyx_kp_u_randn_d0_d1_dn_Return_a_sample, __pyx_k_randn_d0_d1_dn_Return_a_sample, sizeof(__pyx_k_randn_d0_d1_dn_Return_a_sample), 0, 1, 0, 0}, {&__pyx_n_s_random, __pyx_k_random, sizeof(__pyx_k_random), 0, 0, 1, 1}, {&__pyx_n_s_random_integers, __pyx_k_random_integers, sizeof(__pyx_k_random_integers), 0, 0, 1, 1}, {&__pyx_kp_u_random_integers_low_high_None_s, __pyx_k_random_integers_low_high_None_s, sizeof(__pyx_k_random_integers_low_high_None_s), 0, 1, 0, 0}, {&__pyx_n_s_random_sample, __pyx_k_random_sample, sizeof(__pyx_k_random_sample), 0, 0, 1, 1}, {&__pyx_kp_u_random_sample_size_None_Return, __pyx_k_random_sample_size_None_Return, sizeof(__pyx_k_random_sample_size_None_Return), 0, 1, 0, 0}, {&__pyx_n_s_ravel, __pyx_k_ravel, sizeof(__pyx_k_ravel), 0, 0, 1, 1}, {&__pyx_n_s_rayleigh, __pyx_k_rayleigh, sizeof(__pyx_k_rayleigh), 0, 0, 1, 1}, {&__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr, __pyx_k_rayleigh_scale_1_0_size_None_Dr, sizeof(__pyx_k_rayleigh_scale_1_0_size_None_Dr), 0, 1, 0, 0}, {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, {&__pyx_n_s_replace, __pyx_k_replace, sizeof(__pyx_k_replace), 0, 0, 1, 1}, {&__pyx_n_s_reshape, __pyx_k_reshape, sizeof(__pyx_k_reshape), 0, 0, 1, 1}, {&__pyx_n_s_return_index, __pyx_k_return_index, sizeof(__pyx_k_return_index), 0, 0, 1, 1}, {&__pyx_n_s_right, __pyx_k_right, sizeof(__pyx_k_right), 0, 0, 1, 1}, {&__pyx_n_s_safe, __pyx_k_safe, sizeof(__pyx_k_safe), 0, 0, 1, 1}, {&__pyx_n_s_scale, __pyx_k_scale, sizeof(__pyx_k_scale), 0, 0, 1, 1}, {&__pyx_kp_s_scale_0, __pyx_k_scale_0, sizeof(__pyx_k_scale_0), 0, 0, 1, 0}, {&__pyx_kp_s_scale_0_0, __pyx_k_scale_0_0, sizeof(__pyx_k_scale_0_0), 0, 0, 1, 0}, {&__pyx_n_s_searchsorted, __pyx_k_searchsorted, sizeof(__pyx_k_searchsorted), 0, 0, 1, 1}, {&__pyx_n_s_seed, __pyx_k_seed, sizeof(__pyx_k_seed), 0, 0, 1, 1}, {&__pyx_n_s_set_state, __pyx_k_set_state, sizeof(__pyx_k_set_state), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_kp_s_shape_0, __pyx_k_shape_0, sizeof(__pyx_k_shape_0), 0, 0, 1, 0}, {&__pyx_n_s_shape_from_size, __pyx_k_shape_from_size, sizeof(__pyx_k_shape_from_size), 0, 0, 1, 1}, {&__pyx_n_s_shuffle, __pyx_k_shuffle, sizeof(__pyx_k_shuffle), 0, 0, 1, 1}, {&__pyx_kp_u_shuffle_x_Modify_a_sequence_in, __pyx_k_shuffle_x_Modify_a_sequence_in, sizeof(__pyx_k_shuffle_x_Modify_a_sequence_in), 0, 1, 0, 0}, {&__pyx_n_s_side, __pyx_k_side, sizeof(__pyx_k_side), 0, 0, 1, 1}, {&__pyx_n_s_sigma, __pyx_k_sigma, sizeof(__pyx_k_sigma), 0, 0, 1, 1}, {&__pyx_kp_s_sigma_0, __pyx_k_sigma_0, sizeof(__pyx_k_sigma_0), 0, 0, 1, 0}, {&__pyx_kp_s_sigma_0_0, __pyx_k_sigma_0_0, sizeof(__pyx_k_sigma_0_0), 0, 0, 1, 0}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_kp_s_size_is_not_compatible_with_inpu, __pyx_k_size_is_not_compatible_with_inpu, sizeof(__pyx_k_size_is_not_compatible_with_inpu), 0, 0, 1, 0}, {&__pyx_n_s_sort, __pyx_k_sort, sizeof(__pyx_k_sort), 0, 0, 1, 1}, {&__pyx_n_s_sqrt, __pyx_k_sqrt, sizeof(__pyx_k_sqrt), 0, 0, 1, 1}, {&__pyx_n_s_standard_cauchy, __pyx_k_standard_cauchy, sizeof(__pyx_k_standard_cauchy), 0, 0, 1, 1}, {&__pyx_kp_u_standard_cauchy_size_None_Stand, __pyx_k_standard_cauchy_size_None_Stand, sizeof(__pyx_k_standard_cauchy_size_None_Stand), 0, 1, 0, 0}, {&__pyx_n_s_standard_exponential, __pyx_k_standard_exponential, sizeof(__pyx_k_standard_exponential), 0, 0, 1, 1}, {&__pyx_kp_u_standard_exponential_size_None, __pyx_k_standard_exponential_size_None, sizeof(__pyx_k_standard_exponential_size_None), 0, 1, 0, 0}, {&__pyx_n_s_standard_gamma, __pyx_k_standard_gamma, sizeof(__pyx_k_standard_gamma), 0, 0, 1, 1}, {&__pyx_kp_u_standard_gamma_shape_size_None, __pyx_k_standard_gamma_shape_size_None, sizeof(__pyx_k_standard_gamma_shape_size_None), 0, 1, 0, 0}, {&__pyx_n_s_standard_normal, __pyx_k_standard_normal, sizeof(__pyx_k_standard_normal), 0, 0, 1, 1}, {&__pyx_kp_u_standard_normal_size_None_Retur, __pyx_k_standard_normal_size_None_Retur, sizeof(__pyx_k_standard_normal_size_None_Retur), 0, 1, 0, 0}, {&__pyx_n_s_standard_t, __pyx_k_standard_t, sizeof(__pyx_k_standard_t), 0, 0, 1, 1}, {&__pyx_kp_u_standard_t_df_size_None_Standar, __pyx_k_standard_t_df_size_None_Standar, sizeof(__pyx_k_standard_t_df_size_None_Standar), 0, 1, 0, 0}, {&__pyx_kp_s_state_must_be_624_longs, __pyx_k_state_must_be_624_longs, sizeof(__pyx_k_state_must_be_624_longs), 0, 0, 1, 0}, {&__pyx_n_s_subtract, __pyx_k_subtract, sizeof(__pyx_k_subtract), 0, 0, 1, 1}, {&__pyx_n_s_sum, __pyx_k_sum, sizeof(__pyx_k_sum), 0, 0, 1, 1}, {&__pyx_kp_s_sum_pvals_1_1_0, __pyx_k_sum_pvals_1_1_0, sizeof(__pyx_k_sum_pvals_1_1_0), 0, 0, 1, 0}, {&__pyx_n_s_svd, __pyx_k_svd, sizeof(__pyx_k_svd), 0, 0, 1, 1}, {&__pyx_n_s_take, __pyx_k_take, sizeof(__pyx_k_take), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_n_s_threading, __pyx_k_threading, sizeof(__pyx_k_threading), 0, 0, 1, 1}, {&__pyx_kp_u_tomaxint_size_None_Random_integ, __pyx_k_tomaxint_size_None_Random_integ, sizeof(__pyx_k_tomaxint_size_None_Random_integ), 0, 1, 0, 0}, {&__pyx_n_s_triangular, __pyx_k_triangular, sizeof(__pyx_k_triangular), 0, 0, 1, 1}, {&__pyx_kp_u_triangular_left_mode_right_size, __pyx_k_triangular_left_mode_right_size, sizeof(__pyx_k_triangular_left_mode_right_size), 0, 1, 0, 0}, {&__pyx_n_s_uint, __pyx_k_uint, sizeof(__pyx_k_uint), 0, 0, 1, 1}, {&__pyx_n_s_uint32, __pyx_k_uint32, sizeof(__pyx_k_uint32), 0, 0, 1, 1}, {&__pyx_n_s_uniform, __pyx_k_uniform, sizeof(__pyx_k_uniform), 0, 0, 1, 1}, {&__pyx_kp_u_uniform_low_0_0_high_1_0_size_N, __pyx_k_uniform_low_0_0_high_1_0_size_N, sizeof(__pyx_k_uniform_low_0_0_high_1_0_size_N), 0, 1, 0, 0}, {&__pyx_n_s_unique, __pyx_k_unique, sizeof(__pyx_k_unique), 0, 0, 1, 1}, {&__pyx_n_s_unsafe, __pyx_k_unsafe, sizeof(__pyx_k_unsafe), 0, 0, 1, 1}, {&__pyx_n_s_vonmises, __pyx_k_vonmises, sizeof(__pyx_k_vonmises), 0, 0, 1, 1}, {&__pyx_kp_u_vonmises_mu_kappa_size_None_Dra, __pyx_k_vonmises_mu_kappa_size_None_Dra, sizeof(__pyx_k_vonmises_mu_kappa_size_None_Dra), 0, 1, 0, 0}, {&__pyx_n_s_wald, __pyx_k_wald, sizeof(__pyx_k_wald), 0, 0, 1, 1}, {&__pyx_kp_u_wald_mean_scale_size_None_Draw, __pyx_k_wald_mean_scale_size_None_Draw, sizeof(__pyx_k_wald_mean_scale_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_warn, __pyx_k_warn, sizeof(__pyx_k_warn), 0, 0, 1, 1}, {&__pyx_n_s_warnings, __pyx_k_warnings, sizeof(__pyx_k_warnings), 0, 0, 1, 1}, {&__pyx_n_s_weibull, __pyx_k_weibull, sizeof(__pyx_k_weibull), 0, 0, 1, 1}, {&__pyx_kp_u_weibull_a_size_None_Weibull_dis, __pyx_k_weibull_a_size_None_Weibull_dis, sizeof(__pyx_k_weibull_a_size_None_Weibull_dis), 0, 1, 0, 0}, {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {&__pyx_n_s_zipf, __pyx_k_zipf, sizeof(__pyx_k_zipf), 0, 0, 1, 1}, {&__pyx_kp_u_zipf_a_size_None_Draw_samples_f, __pyx_k_zipf_a_size_None_Draw_samples_f, sizeof(__pyx_k_zipf_a_size_None_Draw_samples_f), 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0} }; static int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 566; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_builtin_RuntimeWarning = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeWarning); if (!__pyx_builtin_RuntimeWarning) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4330; __pyx_clineno = __LINE__; goto __pyx_L1_error;} return 0; __pyx_L1_error:; return -1; } static int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); /* "mtrand.pyx":145 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state) */ __pyx_tuple_ = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); /* "mtrand.pyx":164 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a) */ __pyx_tuple__2 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__2); __Pyx_GIVEREF(__pyx_tuple__2); /* "mtrand.pyx":185 * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) */ __pyx_tuple__3 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 185; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__3); __Pyx_GIVEREF(__pyx_tuple__3); /* "mtrand.pyx":195 * oa) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__4); __Pyx_GIVEREF(__pyx_tuple__4); /* "mtrand.pyx":196 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__5 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 196; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__5); __Pyx_GIVEREF(__pyx_tuple__5); /* "mtrand.pyx":216 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a, b) */ __pyx_tuple__6 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 216; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__6); __Pyx_GIVEREF(__pyx_tuple__6); /* "mtrand.pyx":236 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) */ __pyx_tuple__7 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 236; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__7); __Pyx_GIVEREF(__pyx_tuple__7); /* "mtrand.pyx":247 * multi = PyArray_MultiIterNew(3, array, oa, ob) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 247; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__8); __Pyx_GIVEREF(__pyx_tuple__8); /* "mtrand.pyx":248 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__9 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__9)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 248; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__9); __Pyx_GIVEREF(__pyx_tuple__9); /* "mtrand.pyx":271 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a, b, c) */ __pyx_tuple__10 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__10); __Pyx_GIVEREF(__pyx_tuple__10); /* "mtrand.pyx":292 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 0) */ __pyx_tuple__11 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 292; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__11); __Pyx_GIVEREF(__pyx_tuple__11); /* "mtrand.pyx":305 * ob, oc) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 305; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__12); __Pyx_GIVEREF(__pyx_tuple__12); /* "mtrand.pyx":306 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__13 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__13); __Pyx_GIVEREF(__pyx_tuple__13); /* "mtrand.pyx":327 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state) */ __pyx_tuple__14 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__14)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__14); __Pyx_GIVEREF(__pyx_tuple__14); /* "mtrand.pyx":345 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, p) */ __pyx_tuple__15 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 345; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__15); __Pyx_GIVEREF(__pyx_tuple__15); /* "mtrand.pyx":364 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ __pyx_tuple__16 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 364; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__16); __Pyx_GIVEREF(__pyx_tuple__16); /* "mtrand.pyx":375 * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 375; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__17); __Pyx_GIVEREF(__pyx_tuple__17); /* "mtrand.pyx":376 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__18 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 376; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__18); __Pyx_GIVEREF(__pyx_tuple__18); /* "mtrand.pyx":399 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, p) */ __pyx_tuple__19 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 399; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__19); __Pyx_GIVEREF(__pyx_tuple__19); /* "mtrand.pyx":418 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ __pyx_tuple__20 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__20)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 418; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__20); __Pyx_GIVEREF(__pyx_tuple__20); /* "mtrand.pyx":429 * multi = PyArray_MultiIterNew(3, array, on, op) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__21)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 429; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); /* "mtrand.pyx":430 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__22 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__22)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 430; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); /* "mtrand.pyx":453 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, n, m, N) */ __pyx_tuple__23 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__23)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 453; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__23); __Pyx_GIVEREF(__pyx_tuple__23); /* "mtrand.pyx":473 * array = PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 0) */ __pyx_tuple__24 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__24)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 473; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); /* "mtrand.pyx":486 * oN) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__25 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__25)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 486; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__25); __Pyx_GIVEREF(__pyx_tuple__25); /* "mtrand.pyx":487 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * on_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__26 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__26)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 487; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__26); __Pyx_GIVEREF(__pyx_tuple__26); /* "mtrand.pyx":510 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, a) */ __pyx_tuple__27 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__27)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 510; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__27); __Pyx_GIVEREF(__pyx_tuple__27); /* "mtrand.pyx":531 * array_data = PyArray_DATA(array) * itera = PyArray_IterNew(oa) * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * array_data[i] = func(state, ((itera.dataptr))[0]) */ __pyx_tuple__28 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__28)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__28); __Pyx_GIVEREF(__pyx_tuple__28); /* "mtrand.pyx":540 * multi = PyArray_MultiIterNew(2, array, oa) * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") # <<<<<<<<<<<<<< * with lock, nogil: * for i from 0 <= i < multi.size: */ __pyx_tuple__29 = PyTuple_Pack(1, __pyx_kp_s_size_is_not_compatible_with_inpu); if (unlikely(!__pyx_tuple__29)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 540; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__29); __Pyx_GIVEREF(__pyx_tuple__29); /* "mtrand.pyx":541 * if (multi.size != PyArray_SIZE(array)): * raise ValueError("size is not compatible with inputs") * with lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < multi.size: * oa_data = PyArray_MultiIter_DATA(multi, 1) */ __pyx_tuple__30 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__30)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 541; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__30); __Pyx_GIVEREF(__pyx_tuple__30); /* "mtrand.pyx":646 * idx = operator.index(seed) * if idx > int(2**32 - 1) or idx < 0: * raise ValueError("Seed must be between 0 and 4294967295") # <<<<<<<<<<<<<< * rk_seed(idx, self.internal_state) * except TypeError: */ __pyx_tuple__31 = PyTuple_Pack(1, __pyx_kp_s_Seed_must_be_between_0_and_42949); if (unlikely(!__pyx_tuple__31)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 646; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__31); __Pyx_GIVEREF(__pyx_tuple__31); /* "mtrand.pyx":651 * obj = np.asarray(seed).astype(np.int64, casting='safe') * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): * raise ValueError("Seed must be between 0 and 4294967295") # <<<<<<<<<<<<<< * obj = obj.astype('L', casting='unsafe') * init_by_array(self.internal_state, PyArray_DATA(obj), */ __pyx_tuple__32 = PyTuple_Pack(1, __pyx_kp_s_Seed_must_be_between_0_and_42949); if (unlikely(!__pyx_tuple__32)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 651; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__32); __Pyx_GIVEREF(__pyx_tuple__32); /* "mtrand.pyx":652 * if ((obj > int(2**32 - 1)) | (obj < 0)).any(): * raise ValueError("Seed must be between 0 and 4294967295") * obj = obj.astype('L', casting='unsafe') # <<<<<<<<<<<<<< * init_by_array(self.internal_state, PyArray_DATA(obj), * PyArray_DIM(obj, 0)) */ __pyx_tuple__33 = PyTuple_Pack(1, __pyx_n_s_L); if (unlikely(!__pyx_tuple__33)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__33); __Pyx_GIVEREF(__pyx_tuple__33); /* "mtrand.pyx":744 * algorithm_name = state[0] * if algorithm_name != 'MT19937': * raise ValueError("algorithm must be 'MT19937'") # <<<<<<<<<<<<<< * key, pos = state[1:3] * if len(state) == 3: */ __pyx_tuple__34 = PyTuple_Pack(1, __pyx_kp_s_algorithm_must_be_MT19937); if (unlikely(!__pyx_tuple__34)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 744; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__34); __Pyx_GIVEREF(__pyx_tuple__34); /* "mtrand.pyx":745 * if algorithm_name != 'MT19937': * raise ValueError("algorithm must be 'MT19937'") * key, pos = state[1:3] # <<<<<<<<<<<<<< * if len(state) == 3: * has_gauss = 0 */ __pyx_slice__35 = PySlice_New(__pyx_int_1, __pyx_int_3, Py_None); if (unlikely(!__pyx_slice__35)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 745; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_slice__35); __Pyx_GIVEREF(__pyx_slice__35); /* "mtrand.pyx":750 * cached_gaussian = 0.0 * else: * has_gauss, cached_gaussian = state[3:5] # <<<<<<<<<<<<<< * try: * obj = PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1) */ __pyx_slice__36 = PySlice_New(__pyx_int_3, __pyx_int_5, Py_None); if (unlikely(!__pyx_slice__36)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 750; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_slice__36); __Pyx_GIVEREF(__pyx_slice__36); /* "mtrand.pyx":757 * obj = PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1) * if PyArray_DIM(obj, 0) != 624: * raise ValueError("state must be 624 longs") # <<<<<<<<<<<<<< * memcpy((self.internal_state.key), PyArray_DATA(obj), 624*sizeof(long)) * self.internal_state.pos = pos */ __pyx_tuple__37 = PyTuple_Pack(1, __pyx_kp_s_state_must_be_624_longs); if (unlikely(!__pyx_tuple__37)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 757; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__37); __Pyx_GIVEREF(__pyx_tuple__37); /* "mtrand.pyx":931 * * if lo >= hi : * raise ValueError("low >= high") # <<<<<<<<<<<<<< * * diff = hi - lo - 1UL */ __pyx_tuple__38 = PyTuple_Pack(1, __pyx_kp_s_low_high); if (unlikely(!__pyx_tuple__38)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 931; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__38); __Pyx_GIVEREF(__pyx_tuple__38); /* "mtrand.pyx":941 * length = PyArray_SIZE(array) * array_data = PyArray_DATA(array) * with self.lock, nogil: # <<<<<<<<<<<<<< * for i from 0 <= i < length: * rv = lo + rk_interval(diff, self. internal_state) */ __pyx_tuple__39 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__39)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 941; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__39); __Pyx_GIVEREF(__pyx_tuple__39); /* "mtrand.pyx":971 * cdef void *bytes * bytestring = empty_py_bytes(length, &bytes) * with self.lock, nogil: # <<<<<<<<<<<<<< * rk_fill(bytes, length, self.internal_state) * return bytestring */ __pyx_tuple__40 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__40)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 971; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__40); __Pyx_GIVEREF(__pyx_tuple__40); /* "mtrand.pyx":1061 * pop_size = operator.index(a.item()) * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") # <<<<<<<<<<<<<< * if pop_size <= 0: * raise ValueError("a must be greater than 0") */ __pyx_tuple__41 = PyTuple_Pack(1, __pyx_kp_s_a_must_be_1_dimensional_or_an_in); if (unlikely(!__pyx_tuple__41)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1061; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__41); __Pyx_GIVEREF(__pyx_tuple__41); /* "mtrand.pyx":1063 * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0: * raise ValueError("a must be greater than 0") # <<<<<<<<<<<<<< * elif a.ndim != 1: * raise ValueError("a must be 1-dimensional") */ __pyx_tuple__42 = PyTuple_Pack(1, __pyx_kp_s_a_must_be_greater_than_0); if (unlikely(!__pyx_tuple__42)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1063; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__42); __Pyx_GIVEREF(__pyx_tuple__42); /* "mtrand.pyx":1065 * raise ValueError("a must be greater than 0") * elif a.ndim != 1: * raise ValueError("a must be 1-dimensional") # <<<<<<<<<<<<<< * else: * pop_size = a.shape[0] */ __pyx_tuple__43 = PyTuple_Pack(1, __pyx_kp_s_a_must_be_1_dimensional); if (unlikely(!__pyx_tuple__43)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1065; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__43); __Pyx_GIVEREF(__pyx_tuple__43); /* "mtrand.pyx":1069 * pop_size = a.shape[0] * if pop_size is 0: * raise ValueError("a must be non-empty") # <<<<<<<<<<<<<< * * if p is not None: */ __pyx_tuple__44 = PyTuple_Pack(1, __pyx_kp_s_a_must_be_non_empty); if (unlikely(!__pyx_tuple__44)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1069; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__44); __Pyx_GIVEREF(__pyx_tuple__44); /* "mtrand.pyx":1077 * * if p.ndim != 1: * raise ValueError("p must be 1-dimensional") # <<<<<<<<<<<<<< * if p.size != pop_size: * raise ValueError("a and p must have same size") */ __pyx_tuple__45 = PyTuple_Pack(1, __pyx_kp_s_p_must_be_1_dimensional); if (unlikely(!__pyx_tuple__45)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1077; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__45); __Pyx_GIVEREF(__pyx_tuple__45); /* "mtrand.pyx":1079 * raise ValueError("p must be 1-dimensional") * if p.size != pop_size: * raise ValueError("a and p must have same size") # <<<<<<<<<<<<<< * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") */ __pyx_tuple__46 = PyTuple_Pack(1, __pyx_kp_s_a_and_p_must_have_same_size); if (unlikely(!__pyx_tuple__46)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1079; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__46); __Pyx_GIVEREF(__pyx_tuple__46); /* "mtrand.pyx":1081 * raise ValueError("a and p must have same size") * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") # <<<<<<<<<<<<<< * if abs(kahan_sum(pix, d) - 1.) > 1e-8: * raise ValueError("probabilities do not sum to 1") */ __pyx_tuple__47 = PyTuple_Pack(1, __pyx_kp_s_probabilities_are_not_non_negati); if (unlikely(!__pyx_tuple__47)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1081; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__47); __Pyx_GIVEREF(__pyx_tuple__47); /* "mtrand.pyx":1083 * raise ValueError("probabilities are not non-negative") * if abs(kahan_sum(pix, d) - 1.) > 1e-8: * raise ValueError("probabilities do not sum to 1") # <<<<<<<<<<<<<< * * shape = size */ __pyx_tuple__48 = PyTuple_Pack(1, __pyx_kp_s_probabilities_do_not_sum_to_1); if (unlikely(!__pyx_tuple__48)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__48); __Pyx_GIVEREF(__pyx_tuple__48); /* "mtrand.pyx":1103 * else: * if size > pop_size: * raise ValueError("Cannot take a larger sample than " # <<<<<<<<<<<<<< * "population when 'replace=False'") * */ __pyx_tuple__49 = PyTuple_Pack(1, __pyx_kp_s_Cannot_take_a_larger_sample_than); if (unlikely(!__pyx_tuple__49)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1103; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__49); __Pyx_GIVEREF(__pyx_tuple__49); /* "mtrand.pyx":1108 * if p is not None: * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") # <<<<<<<<<<<<<< * n_uniq = 0 * p = p.copy() */ __pyx_tuple__50 = PyTuple_Pack(1, __pyx_kp_s_Fewer_non_zero_entries_in_p_than); if (unlikely(!__pyx_tuple__50)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1108; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__50); __Pyx_GIVEREF(__pyx_tuple__50); /* "mtrand.pyx":1133 * if shape is None and isinstance(idx, np.ndarray): * # In most cases a scalar will have been made an array * idx = idx.item(0) # <<<<<<<<<<<<<< * * #Use samples as indices for a if a is array-like */ __pyx_tuple__51 = PyTuple_Pack(1, __pyx_int_0); if (unlikely(!__pyx_tuple__51)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1133; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__51); __Pyx_GIVEREF(__pyx_tuple__51); /* "mtrand.pyx":1145 * # array, taking into account that np.array(item) may not work * # for object arrays. * res = np.empty((), dtype=a.dtype) # <<<<<<<<<<<<<< * res[()] = a[idx] * return res */ __pyx_tuple__52 = PyTuple_Pack(1, __pyx_empty_tuple); if (unlikely(!__pyx_tuple__52)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__52); __Pyx_GIVEREF(__pyx_tuple__52); /* "mtrand.pyx":1546 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_normal, size, floc, * fscale, self.lock) */ __pyx_tuple__53 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__53)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1546; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__53); __Pyx_GIVEREF(__pyx_tuple__53); /* "mtrand.pyx":1555 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_normal, size, oloc, oscale, * self.lock) */ __pyx_tuple__54 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__54)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1555; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__54); __Pyx_GIVEREF(__pyx_tuple__54); /* "mtrand.pyx":1604 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * if fb <= 0: * raise ValueError("b <= 0") */ __pyx_tuple__55 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__55)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1604; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__55); __Pyx_GIVEREF(__pyx_tuple__55); /* "mtrand.pyx":1606 * raise ValueError("a <= 0") * if fb <= 0: * raise ValueError("b <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb, * self.lock) */ __pyx_tuple__56 = PyTuple_Pack(1, __pyx_kp_s_b_0); if (unlikely(!__pyx_tuple__56)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1606; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__56); __Pyx_GIVEREF(__pyx_tuple__56); /* "mtrand.pyx":1615 * ob = PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * if np.any(np.less_equal(ob, 0)): * raise ValueError("b <= 0") */ __pyx_tuple__57 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__57)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1615; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__57); __Pyx_GIVEREF(__pyx_tuple__57); /* "mtrand.pyx":1617 * raise ValueError("a <= 0") * if np.any(np.less_equal(ob, 0)): * raise ValueError("b <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_beta, size, oa, ob, * self.lock) */ __pyx_tuple__58 = PyTuple_Pack(1, __pyx_kp_s_b_0); if (unlikely(!__pyx_tuple__58)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1617; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__58); __Pyx_GIVEREF(__pyx_tuple__58); /* "mtrand.pyx":1666 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_exponential, size, * fscale, self.lock) */ __pyx_tuple__59 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__59)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1666; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__59); __Pyx_GIVEREF(__pyx_tuple__59); /* "mtrand.pyx":1674 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_exponential, size, oscale, * self.lock) */ __pyx_tuple__60 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__60)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1674; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__60); __Pyx_GIVEREF(__pyx_tuple__60); /* "mtrand.pyx":1783 * if not PyErr_Occurred(): * if fshape <= 0: * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape, self.lock) * */ __pyx_tuple__61 = PyTuple_Pack(1, __pyx_kp_s_shape_0); if (unlikely(!__pyx_tuple__61)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1783; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__61); __Pyx_GIVEREF(__pyx_tuple__61); /* "mtrand.pyx":1789 * oshape = PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_standard_gamma, size, * oshape, self.lock) */ __pyx_tuple__62 = PyTuple_Pack(1, __pyx_kp_s_shape_0); if (unlikely(!__pyx_tuple__62)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1789; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__62); __Pyx_GIVEREF(__pyx_tuple__62); /* "mtrand.pyx":1871 * if not PyErr_Occurred(): * if fshape <= 0: * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_tuple__63 = PyTuple_Pack(1, __pyx_kp_s_shape_0); if (unlikely(!__pyx_tuple__63)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1871; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__63); __Pyx_GIVEREF(__pyx_tuple__63); /* "mtrand.pyx":1873 * raise ValueError("shape <= 0") * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, * fscale, self.lock) */ __pyx_tuple__64 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__64)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1873; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__64); __Pyx_GIVEREF(__pyx_tuple__64); /* "mtrand.pyx":1881 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oshape, 0.0)): * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") */ __pyx_tuple__65 = PyTuple_Pack(1, __pyx_kp_s_shape_0); if (unlikely(!__pyx_tuple__65)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1881; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__65); __Pyx_GIVEREF(__pyx_tuple__65); /* "mtrand.pyx":1883 * raise ValueError("shape <= 0") * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale, * self.lock) */ __pyx_tuple__66 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__66)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1883; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__66); __Pyx_GIVEREF(__pyx_tuple__66); /* "mtrand.pyx":1974 * if not PyErr_Occurred(): * if fdfnum <= 0: * raise ValueError("shape <= 0") # <<<<<<<<<<<<<< * if fdfden <= 0: * raise ValueError("scale <= 0") */ __pyx_tuple__67 = PyTuple_Pack(1, __pyx_kp_s_shape_0); if (unlikely(!__pyx_tuple__67)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1974; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__67); __Pyx_GIVEREF(__pyx_tuple__67); /* "mtrand.pyx":1976 * raise ValueError("shape <= 0") * if fdfden <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, * fdfden, self.lock) */ __pyx_tuple__68 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__68)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1976; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__68); __Pyx_GIVEREF(__pyx_tuple__68); /* "mtrand.pyx":1985 * odfden = PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odfnum, 0.0)): * raise ValueError("dfnum <= 0") # <<<<<<<<<<<<<< * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") */ __pyx_tuple__69 = PyTuple_Pack(1, __pyx_kp_s_dfnum_0); if (unlikely(!__pyx_tuple__69)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1985; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__69); __Pyx_GIVEREF(__pyx_tuple__69); /* "mtrand.pyx":1987 * raise ValueError("dfnum <= 0") * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_f, size, odfnum, odfden, * self.lock) */ __pyx_tuple__70 = PyTuple_Pack(1, __pyx_kp_s_dfden_0); if (unlikely(!__pyx_tuple__70)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1987; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__70); __Pyx_GIVEREF(__pyx_tuple__70); /* "mtrand.pyx":2064 * if not PyErr_Occurred(): * if fdfnum <= 1: * raise ValueError("dfnum <= 1") # <<<<<<<<<<<<<< * if fdfden <= 0: * raise ValueError("dfden <= 0") */ __pyx_tuple__71 = PyTuple_Pack(1, __pyx_kp_s_dfnum_1); if (unlikely(!__pyx_tuple__71)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2064; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__71); __Pyx_GIVEREF(__pyx_tuple__71); /* "mtrand.pyx":2066 * raise ValueError("dfnum <= 1") * if fdfden <= 0: * raise ValueError("dfden <= 0") # <<<<<<<<<<<<<< * if fnonc < 0: * raise ValueError("nonc < 0") */ __pyx_tuple__72 = PyTuple_Pack(1, __pyx_kp_s_dfden_0); if (unlikely(!__pyx_tuple__72)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2066; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__72); __Pyx_GIVEREF(__pyx_tuple__72); /* "mtrand.pyx":2068 * raise ValueError("dfden <= 0") * if fnonc < 0: * raise ValueError("nonc < 0") # <<<<<<<<<<<<<< * return cont3_array_sc(self.internal_state, rk_noncentral_f, size, * fdfnum, fdfden, fnonc, self.lock) */ __pyx_tuple__73 = PyTuple_Pack(1, __pyx_kp_s_nonc_0); if (unlikely(!__pyx_tuple__73)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2068; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__73); __Pyx_GIVEREF(__pyx_tuple__73); /* "mtrand.pyx":2079 * * if np.any(np.less_equal(odfnum, 1.0)): * raise ValueError("dfnum <= 1") # <<<<<<<<<<<<<< * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") */ __pyx_tuple__74 = PyTuple_Pack(1, __pyx_kp_s_dfnum_1); if (unlikely(!__pyx_tuple__74)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2079; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__74); __Pyx_GIVEREF(__pyx_tuple__74); /* "mtrand.pyx":2081 * raise ValueError("dfnum <= 1") * if np.any(np.less_equal(odfden, 0.0)): * raise ValueError("dfden <= 0") # <<<<<<<<<<<<<< * if np.any(np.less(ononc, 0.0)): * raise ValueError("nonc < 0") */ __pyx_tuple__75 = PyTuple_Pack(1, __pyx_kp_s_dfden_0); if (unlikely(!__pyx_tuple__75)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2081; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__75); __Pyx_GIVEREF(__pyx_tuple__75); /* "mtrand.pyx":2083 * raise ValueError("dfden <= 0") * if np.any(np.less(ononc, 0.0)): * raise ValueError("nonc < 0") # <<<<<<<<<<<<<< * return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum, * odfden, ononc, self.lock) */ __pyx_tuple__76 = PyTuple_Pack(1, __pyx_kp_s_nonc_0); if (unlikely(!__pyx_tuple__76)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2083; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__76); __Pyx_GIVEREF(__pyx_tuple__76); /* "mtrand.pyx":2156 * if not PyErr_Occurred(): * if fdf <= 0: * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf, * self.lock) */ __pyx_tuple__77 = PyTuple_Pack(1, __pyx_kp_s_df_0); if (unlikely(!__pyx_tuple__77)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2156; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__77); __Pyx_GIVEREF(__pyx_tuple__77); /* "mtrand.pyx":2164 * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_chisquare, size, odf, * self.lock) */ __pyx_tuple__78 = PyTuple_Pack(1, __pyx_kp_s_df_0); if (unlikely(!__pyx_tuple__78)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__78); __Pyx_GIVEREF(__pyx_tuple__78); /* "mtrand.pyx":2245 * if not PyErr_Occurred(): * if fdf <= 1: * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * if fnonc <= 0: * raise ValueError("nonc <= 0") */ __pyx_tuple__79 = PyTuple_Pack(1, __pyx_kp_s_df_0); if (unlikely(!__pyx_tuple__79)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2245; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__79); __Pyx_GIVEREF(__pyx_tuple__79); /* "mtrand.pyx":2247 * raise ValueError("df <= 0") * if fnonc <= 0: * raise ValueError("nonc <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_noncentral_chisquare, * size, fdf, fnonc, self.lock) */ __pyx_tuple__80 = PyTuple_Pack(1, __pyx_kp_s_nonc_0_2); if (unlikely(!__pyx_tuple__80)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2247; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__80); __Pyx_GIVEREF(__pyx_tuple__80); /* "mtrand.pyx":2256 * ononc = PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 1") # <<<<<<<<<<<<<< * if np.any(np.less_equal(ononc, 0.0)): * raise ValueError("nonc < 0") */ __pyx_tuple__81 = PyTuple_Pack(1, __pyx_kp_s_df_1); if (unlikely(!__pyx_tuple__81)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2256; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__81); __Pyx_GIVEREF(__pyx_tuple__81); /* "mtrand.pyx":2258 * raise ValueError("df <= 1") * if np.any(np.less_equal(ononc, 0.0)): * raise ValueError("nonc < 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_noncentral_chisquare, size, * odf, ononc, self.lock) */ __pyx_tuple__82 = PyTuple_Pack(1, __pyx_kp_s_nonc_0); if (unlikely(!__pyx_tuple__82)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2258; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__82); __Pyx_GIVEREF(__pyx_tuple__82); /* "mtrand.pyx":2418 * if not PyErr_Occurred(): * if fdf <= 0: * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_standard_t, size, * fdf, self.lock) */ __pyx_tuple__83 = PyTuple_Pack(1, __pyx_kp_s_df_0); if (unlikely(!__pyx_tuple__83)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2418; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__83); __Pyx_GIVEREF(__pyx_tuple__83); /* "mtrand.pyx":2426 * odf = PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(odf, 0.0)): * raise ValueError("df <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_standard_t, size, odf, * self.lock) */ __pyx_tuple__84 = PyTuple_Pack(1, __pyx_kp_s_df_0); if (unlikely(!__pyx_tuple__84)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2426; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__84); __Pyx_GIVEREF(__pyx_tuple__84); /* "mtrand.pyx":2514 * if not PyErr_Occurred(): * if fkappa < 0: * raise ValueError("kappa < 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, * fkappa, self.lock) */ __pyx_tuple__85 = PyTuple_Pack(1, __pyx_kp_s_kappa_0); if (unlikely(!__pyx_tuple__85)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__85); __Pyx_GIVEREF(__pyx_tuple__85); /* "mtrand.pyx":2523 * okappa = PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(okappa, 0.0)): * raise ValueError("kappa < 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa, * self.lock) */ __pyx_tuple__86 = PyTuple_Pack(1, __pyx_kp_s_kappa_0); if (unlikely(!__pyx_tuple__86)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__86); __Pyx_GIVEREF(__pyx_tuple__86); /* "mtrand.pyx":2614 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_pareto, size, fa, * self.lock) */ __pyx_tuple__87 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__87)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__87); __Pyx_GIVEREF(__pyx_tuple__87); /* "mtrand.pyx":2622 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock) * */ __pyx_tuple__88 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__88)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2622; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__88); __Pyx_GIVEREF(__pyx_tuple__88); /* "mtrand.pyx":2716 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_weibull, size, fa, * self.lock) */ __pyx_tuple__89 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__89)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2716; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__89); __Pyx_GIVEREF(__pyx_tuple__89); /* "mtrand.pyx":2724 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_weibull, size, oa, * self.lock) */ __pyx_tuple__90 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__90)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2724; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__90); __Pyx_GIVEREF(__pyx_tuple__90); /* "mtrand.pyx":2828 * if not PyErr_Occurred(): * if fa <= 0: * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_power, size, fa, * self.lock) */ __pyx_tuple__91 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__91)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2828; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__91); __Pyx_GIVEREF(__pyx_tuple__91); /* "mtrand.pyx":2836 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 0.0)): * raise ValueError("a <= 0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_power, size, oa, self.lock) * */ __pyx_tuple__92 = PyTuple_Pack(1, __pyx_kp_s_a_0); if (unlikely(!__pyx_tuple__92)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2836; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__92); __Pyx_GIVEREF(__pyx_tuple__92); /* "mtrand.pyx":2923 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_laplace, size, floc, * fscale, self.lock) */ __pyx_tuple__93 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__93)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2923; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__93); __Pyx_GIVEREF(__pyx_tuple__93); /* "mtrand.pyx":2931 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale, * self.lock) */ __pyx_tuple__94 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__94)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2931; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__94); __Pyx_GIVEREF(__pyx_tuple__94); /* "mtrand.pyx":3057 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, * fscale, self.lock) */ __pyx_tuple__95 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__95)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3057; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__95); __Pyx_GIVEREF(__pyx_tuple__95); /* "mtrand.pyx":3065 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale, * self.lock) */ __pyx_tuple__96 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__96)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3065; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__96); __Pyx_GIVEREF(__pyx_tuple__96); /* "mtrand.pyx":3148 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_logistic, size, floc, * fscale, self.lock) */ __pyx_tuple__97 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__97)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3148; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__97); __Pyx_GIVEREF(__pyx_tuple__97); /* "mtrand.pyx":3156 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_logistic, size, oloc, * oscale, self.lock) */ __pyx_tuple__98 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__98)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3156; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__98); __Pyx_GIVEREF(__pyx_tuple__98); /* "mtrand.pyx":3271 * if not PyErr_Occurred(): * if fsigma <= 0: * raise ValueError("sigma <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_lognormal, size, * fmean, fsigma, self.lock) */ __pyx_tuple__99 = PyTuple_Pack(1, __pyx_kp_s_sigma_0); if (unlikely(!__pyx_tuple__99)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3271; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__99); __Pyx_GIVEREF(__pyx_tuple__99); /* "mtrand.pyx":3280 * osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(osigma, 0.0)): * raise ValueError("sigma <= 0.0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_lognormal, size, omean, * osigma, self.lock) */ __pyx_tuple__100 = PyTuple_Pack(1, __pyx_kp_s_sigma_0_0); if (unlikely(!__pyx_tuple__100)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3280; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__100); __Pyx_GIVEREF(__pyx_tuple__100); /* "mtrand.pyx":3347 * if not PyErr_Occurred(): * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont1_array_sc(self.internal_state, rk_rayleigh, size, * fscale, self.lock) */ __pyx_tuple__101 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__101)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3347; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__101); __Pyx_GIVEREF(__pyx_tuple__101); /* "mtrand.pyx":3355 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oscale, 0.0)): * raise ValueError("scale <= 0.0") # <<<<<<<<<<<<<< * return cont1_array(self.internal_state, rk_rayleigh, size, oscale, * self.lock) */ __pyx_tuple__102 = PyTuple_Pack(1, __pyx_kp_s_scale_0_0); if (unlikely(!__pyx_tuple__102)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3355; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__102); __Pyx_GIVEREF(__pyx_tuple__102); /* "mtrand.pyx":3430 * if not PyErr_Occurred(): * if fmean <= 0: * raise ValueError("mean <= 0") # <<<<<<<<<<<<<< * if fscale <= 0: * raise ValueError("scale <= 0") */ __pyx_tuple__103 = PyTuple_Pack(1, __pyx_kp_s_mean_0); if (unlikely(!__pyx_tuple__103)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3430; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__103); __Pyx_GIVEREF(__pyx_tuple__103); /* "mtrand.pyx":3432 * raise ValueError("mean <= 0") * if fscale <= 0: * raise ValueError("scale <= 0") # <<<<<<<<<<<<<< * return cont2_array_sc(self.internal_state, rk_wald, size, fmean, * fscale, self.lock) */ __pyx_tuple__104 = PyTuple_Pack(1, __pyx_kp_s_scale_0); if (unlikely(!__pyx_tuple__104)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3432; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__104); __Pyx_GIVEREF(__pyx_tuple__104); /* "mtrand.pyx":3440 * oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(omean,0.0)): * raise ValueError("mean <= 0.0") # <<<<<<<<<<<<<< * elif np.any(np.less_equal(oscale,0.0)): * raise ValueError("scale <= 0.0") */ __pyx_tuple__105 = PyTuple_Pack(1, __pyx_kp_s_mean_0_0); if (unlikely(!__pyx_tuple__105)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3440; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__105); __Pyx_GIVEREF(__pyx_tuple__105); /* "mtrand.pyx":3442 * raise ValueError("mean <= 0.0") * elif np.any(np.less_equal(oscale,0.0)): * raise ValueError("scale <= 0.0") # <<<<<<<<<<<<<< * return cont2_array(self.internal_state, rk_wald, size, omean, oscale, * self.lock) */ __pyx_tuple__106 = PyTuple_Pack(1, __pyx_kp_s_scale_0_0); if (unlikely(!__pyx_tuple__106)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3442; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__106); __Pyx_GIVEREF(__pyx_tuple__106); /* "mtrand.pyx":3512 * if not PyErr_Occurred(): * if fleft > fmode: * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if fmode > fright: * raise ValueError("mode > right") */ __pyx_tuple__107 = PyTuple_Pack(1, __pyx_kp_s_left_mode); if (unlikely(!__pyx_tuple__107)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3512; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__107); __Pyx_GIVEREF(__pyx_tuple__107); /* "mtrand.pyx":3514 * raise ValueError("left > mode") * if fmode > fright: * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if fleft == fright: * raise ValueError("left == right") */ __pyx_tuple__108 = PyTuple_Pack(1, __pyx_kp_s_mode_right); if (unlikely(!__pyx_tuple__108)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__108); __Pyx_GIVEREF(__pyx_tuple__108); /* "mtrand.pyx":3516 * raise ValueError("mode > right") * if fleft == fright: * raise ValueError("left == right") # <<<<<<<<<<<<<< * return cont3_array_sc(self.internal_state, rk_triangular, size, fleft, * fmode, fright, self.lock) */ __pyx_tuple__109 = PyTuple_Pack(1, __pyx_kp_s_left_right); if (unlikely(!__pyx_tuple__109)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3516; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__109); __Pyx_GIVEREF(__pyx_tuple__109); /* "mtrand.pyx":3526 * * if np.any(np.greater(oleft, omode)): * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") */ __pyx_tuple__110 = PyTuple_Pack(1, __pyx_kp_s_left_mode); if (unlikely(!__pyx_tuple__110)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__110); __Pyx_GIVEREF(__pyx_tuple__110); /* "mtrand.pyx":3528 * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") */ __pyx_tuple__111 = PyTuple_Pack(1, __pyx_kp_s_mode_right); if (unlikely(!__pyx_tuple__111)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3528; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__111); __Pyx_GIVEREF(__pyx_tuple__111); /* "mtrand.pyx":3530 * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") # <<<<<<<<<<<<<< * return cont3_array(self.internal_state, rk_triangular, size, oleft, * omode, oright, self.lock) */ __pyx_tuple__112 = PyTuple_Pack(1, __pyx_kp_s_left_right); if (unlikely(!__pyx_tuple__112)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3530; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__112); __Pyx_GIVEREF(__pyx_tuple__112); /* "mtrand.pyx":3625 * if not PyErr_Occurred(): * if ln < 0: * raise ValueError("n < 0") # <<<<<<<<<<<<<< * if fp < 0: * raise ValueError("p < 0") */ __pyx_tuple__113 = PyTuple_Pack(1, __pyx_kp_s_n_0); if (unlikely(!__pyx_tuple__113)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3625; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__113); __Pyx_GIVEREF(__pyx_tuple__113); /* "mtrand.pyx":3627 * raise ValueError("n < 0") * if fp < 0: * raise ValueError("p < 0") # <<<<<<<<<<<<<< * elif fp > 1: * raise ValueError("p > 1") */ __pyx_tuple__114 = PyTuple_Pack(1, __pyx_kp_s_p_0); if (unlikely(!__pyx_tuple__114)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3627; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__114); __Pyx_GIVEREF(__pyx_tuple__114); /* "mtrand.pyx":3629 * raise ValueError("p < 0") * elif fp > 1: * raise ValueError("p > 1") # <<<<<<<<<<<<<< * elif np.isnan(fp): * raise ValueError("p is nan") */ __pyx_tuple__115 = PyTuple_Pack(1, __pyx_kp_s_p_1); if (unlikely(!__pyx_tuple__115)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3629; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__115); __Pyx_GIVEREF(__pyx_tuple__115); /* "mtrand.pyx":3631 * raise ValueError("p > 1") * elif np.isnan(fp): * raise ValueError("p is nan") # <<<<<<<<<<<<<< * return discnp_array_sc(self.internal_state, rk_binomial, size, ln, * fp, self.lock) */ __pyx_tuple__116 = PyTuple_Pack(1, __pyx_kp_s_p_is_nan); if (unlikely(!__pyx_tuple__116)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3631; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__116); __Pyx_GIVEREF(__pyx_tuple__116); /* "mtrand.pyx":3640 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(n, 0)): * raise ValueError("n < 0") # <<<<<<<<<<<<<< * if np.any(np.less(p, 0)): * raise ValueError("p < 0") */ __pyx_tuple__117 = PyTuple_Pack(1, __pyx_kp_s_n_0); if (unlikely(!__pyx_tuple__117)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3640; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__117); __Pyx_GIVEREF(__pyx_tuple__117); /* "mtrand.pyx":3642 * raise ValueError("n < 0") * if np.any(np.less(p, 0)): * raise ValueError("p < 0") # <<<<<<<<<<<<<< * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") */ __pyx_tuple__118 = PyTuple_Pack(1, __pyx_kp_s_p_0); if (unlikely(!__pyx_tuple__118)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3642; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__118); __Pyx_GIVEREF(__pyx_tuple__118); /* "mtrand.pyx":3644 * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") # <<<<<<<<<<<<<< * return discnp_array(self.internal_state, rk_binomial, size, on, op, * self.lock) */ __pyx_tuple__119 = PyTuple_Pack(1, __pyx_kp_s_p_1); if (unlikely(!__pyx_tuple__119)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3644; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__119); __Pyx_GIVEREF(__pyx_tuple__119); /* "mtrand.pyx":3723 * if not PyErr_Occurred(): * if fn <= 0: * raise ValueError("n <= 0") # <<<<<<<<<<<<<< * if fp < 0: * raise ValueError("p < 0") */ __pyx_tuple__120 = PyTuple_Pack(1, __pyx_kp_s_n_0_2); if (unlikely(!__pyx_tuple__120)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__120); __Pyx_GIVEREF(__pyx_tuple__120); /* "mtrand.pyx":3725 * raise ValueError("n <= 0") * if fp < 0: * raise ValueError("p < 0") # <<<<<<<<<<<<<< * elif fp > 1: * raise ValueError("p > 1") */ __pyx_tuple__121 = PyTuple_Pack(1, __pyx_kp_s_p_0); if (unlikely(!__pyx_tuple__121)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3725; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__121); __Pyx_GIVEREF(__pyx_tuple__121); /* "mtrand.pyx":3727 * raise ValueError("p < 0") * elif fp > 1: * raise ValueError("p > 1") # <<<<<<<<<<<<<< * return discdd_array_sc(self.internal_state, rk_negative_binomial, * size, fn, fp, self.lock) */ __pyx_tuple__122 = PyTuple_Pack(1, __pyx_kp_s_p_1); if (unlikely(!__pyx_tuple__122)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3727; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__122); __Pyx_GIVEREF(__pyx_tuple__122); /* "mtrand.pyx":3736 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(n, 0)): * raise ValueError("n <= 0") # <<<<<<<<<<<<<< * if np.any(np.less(p, 0)): * raise ValueError("p < 0") */ __pyx_tuple__123 = PyTuple_Pack(1, __pyx_kp_s_n_0_2); if (unlikely(!__pyx_tuple__123)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3736; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__123); __Pyx_GIVEREF(__pyx_tuple__123); /* "mtrand.pyx":3738 * raise ValueError("n <= 0") * if np.any(np.less(p, 0)): * raise ValueError("p < 0") # <<<<<<<<<<<<<< * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") */ __pyx_tuple__124 = PyTuple_Pack(1, __pyx_kp_s_p_0); if (unlikely(!__pyx_tuple__124)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3738; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__124); __Pyx_GIVEREF(__pyx_tuple__124); /* "mtrand.pyx":3740 * raise ValueError("p < 0") * if np.any(np.greater(p, 1)): * raise ValueError("p > 1") # <<<<<<<<<<<<<< * return discdd_array(self.internal_state, rk_negative_binomial, size, * on, op, self.lock) */ __pyx_tuple__125 = PyTuple_Pack(1, __pyx_kp_s_p_1); if (unlikely(!__pyx_tuple__125)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3740; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__125); __Pyx_GIVEREF(__pyx_tuple__125); /* "mtrand.pyx":3807 * if not PyErr_Occurred(): * if lam < 0: * raise ValueError("lam < 0") # <<<<<<<<<<<<<< * if lam > self.poisson_lam_max: * raise ValueError("lam value too large") */ __pyx_tuple__126 = PyTuple_Pack(1, __pyx_kp_s_lam_0); if (unlikely(!__pyx_tuple__126)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3807; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__126); __Pyx_GIVEREF(__pyx_tuple__126); /* "mtrand.pyx":3809 * raise ValueError("lam < 0") * if lam > self.poisson_lam_max: * raise ValueError("lam value too large") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_poisson, size, flam, * self.lock) */ __pyx_tuple__127 = PyTuple_Pack(1, __pyx_kp_s_lam_value_too_large); if (unlikely(!__pyx_tuple__127)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3809; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__127); __Pyx_GIVEREF(__pyx_tuple__127); /* "mtrand.pyx":3817 * olam = PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(olam, 0)): * raise ValueError("lam < 0") # <<<<<<<<<<<<<< * if np.any(np.greater(olam, self.poisson_lam_max)): * raise ValueError("lam value too large.") */ __pyx_tuple__128 = PyTuple_Pack(1, __pyx_kp_s_lam_0); if (unlikely(!__pyx_tuple__128)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3817; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__128); __Pyx_GIVEREF(__pyx_tuple__128); /* "mtrand.pyx":3819 * raise ValueError("lam < 0") * if np.any(np.greater(olam, self.poisson_lam_max)): * raise ValueError("lam value too large.") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_poisson, size, olam, self.lock) * */ __pyx_tuple__129 = PyTuple_Pack(1, __pyx_kp_s_lam_value_too_large_2); if (unlikely(!__pyx_tuple__129)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3819; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__129); __Pyx_GIVEREF(__pyx_tuple__129); /* "mtrand.pyx":3898 * if not PyErr_Occurred(): * if fa <= 1.0: * raise ValueError("a <= 1.0") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_zipf, size, fa, * self.lock) */ __pyx_tuple__130 = PyTuple_Pack(1, __pyx_kp_s_a_1_0); if (unlikely(!__pyx_tuple__130)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3898; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__130); __Pyx_GIVEREF(__pyx_tuple__130); /* "mtrand.pyx":3906 * oa = PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(oa, 1.0)): * raise ValueError("a <= 1.0") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_zipf, size, oa, self.lock) * */ __pyx_tuple__131 = PyTuple_Pack(1, __pyx_kp_s_a_1_0); if (unlikely(!__pyx_tuple__131)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3906; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__131); __Pyx_GIVEREF(__pyx_tuple__131); /* "mtrand.pyx":3961 * if not PyErr_Occurred(): * if fp < 0.0: * raise ValueError("p < 0.0") # <<<<<<<<<<<<<< * if fp > 1.0: * raise ValueError("p > 1.0") */ __pyx_tuple__132 = PyTuple_Pack(1, __pyx_kp_s_p_0_0); if (unlikely(!__pyx_tuple__132)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3961; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__132); __Pyx_GIVEREF(__pyx_tuple__132); /* "mtrand.pyx":3963 * raise ValueError("p < 0.0") * if fp > 1.0: * raise ValueError("p > 1.0") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_geometric, size, fp, * self.lock) */ __pyx_tuple__133 = PyTuple_Pack(1, __pyx_kp_s_p_1_0); if (unlikely(!__pyx_tuple__133)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3963; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__133); __Pyx_GIVEREF(__pyx_tuple__133); /* "mtrand.pyx":3972 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less(op, 0.0)): * raise ValueError("p < 0.0") # <<<<<<<<<<<<<< * if np.any(np.greater(op, 1.0)): * raise ValueError("p > 1.0") */ __pyx_tuple__134 = PyTuple_Pack(1, __pyx_kp_s_p_0_0); if (unlikely(!__pyx_tuple__134)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3972; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__134); __Pyx_GIVEREF(__pyx_tuple__134); /* "mtrand.pyx":3974 * raise ValueError("p < 0.0") * if np.any(np.greater(op, 1.0)): * raise ValueError("p > 1.0") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_geometric, size, op, self.lock) * */ __pyx_tuple__135 = PyTuple_Pack(1, __pyx_kp_s_p_1_0); if (unlikely(!__pyx_tuple__135)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3974; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__135); __Pyx_GIVEREF(__pyx_tuple__135); /* "mtrand.pyx":4071 * if not PyErr_Occurred(): * if lngood < 0: * raise ValueError("ngood < 0") # <<<<<<<<<<<<<< * if lnbad < 0: * raise ValueError("nbad < 0") */ __pyx_tuple__136 = PyTuple_Pack(1, __pyx_kp_s_ngood_0); if (unlikely(!__pyx_tuple__136)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4071; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__136); __Pyx_GIVEREF(__pyx_tuple__136); /* "mtrand.pyx":4073 * raise ValueError("ngood < 0") * if lnbad < 0: * raise ValueError("nbad < 0") # <<<<<<<<<<<<<< * if lnsample < 1: * raise ValueError("nsample < 1") */ __pyx_tuple__137 = PyTuple_Pack(1, __pyx_kp_s_nbad_0); if (unlikely(!__pyx_tuple__137)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4073; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__137); __Pyx_GIVEREF(__pyx_tuple__137); /* "mtrand.pyx":4075 * raise ValueError("nbad < 0") * if lnsample < 1: * raise ValueError("nsample < 1") # <<<<<<<<<<<<<< * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") */ __pyx_tuple__138 = PyTuple_Pack(1, __pyx_kp_s_nsample_1); if (unlikely(!__pyx_tuple__138)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4075; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__138); __Pyx_GIVEREF(__pyx_tuple__138); /* "mtrand.pyx":4077 * raise ValueError("nsample < 1") * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * return discnmN_array_sc(self.internal_state, rk_hypergeometric, * size, lngood, lnbad, lnsample, self.lock) */ __pyx_tuple__139 = PyTuple_Pack(1, __pyx_kp_s_ngood_nbad_nsample); if (unlikely(!__pyx_tuple__139)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4077; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__139); __Pyx_GIVEREF(__pyx_tuple__139); /* "mtrand.pyx":4087 * onsample = PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED) * if np.any(np.less(ongood, 0)): * raise ValueError("ngood < 0") # <<<<<<<<<<<<<< * if np.any(np.less(onbad, 0)): * raise ValueError("nbad < 0") */ __pyx_tuple__140 = PyTuple_Pack(1, __pyx_kp_s_ngood_0); if (unlikely(!__pyx_tuple__140)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4087; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__140); __Pyx_GIVEREF(__pyx_tuple__140); /* "mtrand.pyx":4089 * raise ValueError("ngood < 0") * if np.any(np.less(onbad, 0)): * raise ValueError("nbad < 0") # <<<<<<<<<<<<<< * if np.any(np.less(onsample, 1)): * raise ValueError("nsample < 1") */ __pyx_tuple__141 = PyTuple_Pack(1, __pyx_kp_s_nbad_0); if (unlikely(!__pyx_tuple__141)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4089; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__141); __Pyx_GIVEREF(__pyx_tuple__141); /* "mtrand.pyx":4091 * raise ValueError("nbad < 0") * if np.any(np.less(onsample, 1)): * raise ValueError("nsample < 1") # <<<<<<<<<<<<<< * if np.any(np.less(np.add(ongood, onbad),onsample)): * raise ValueError("ngood + nbad < nsample") */ __pyx_tuple__142 = PyTuple_Pack(1, __pyx_kp_s_nsample_1); if (unlikely(!__pyx_tuple__142)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4091; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__142); __Pyx_GIVEREF(__pyx_tuple__142); /* "mtrand.pyx":4093 * raise ValueError("nsample < 1") * if np.any(np.less(np.add(ongood, onbad),onsample)): * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * return discnmN_array(self.internal_state, rk_hypergeometric, size, * ongood, onbad, onsample, self.lock) */ __pyx_tuple__143 = PyTuple_Pack(1, __pyx_kp_s_ngood_nbad_nsample); if (unlikely(!__pyx_tuple__143)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4093; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__143); __Pyx_GIVEREF(__pyx_tuple__143); /* "mtrand.pyx":4178 * if not PyErr_Occurred(): * if fp <= 0.0: * raise ValueError("p <= 0.0") # <<<<<<<<<<<<<< * if fp >= 1.0: * raise ValueError("p >= 1.0") */ __pyx_tuple__144 = PyTuple_Pack(1, __pyx_kp_s_p_0_0_2); if (unlikely(!__pyx_tuple__144)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4178; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__144); __Pyx_GIVEREF(__pyx_tuple__144); /* "mtrand.pyx":4180 * raise ValueError("p <= 0.0") * if fp >= 1.0: * raise ValueError("p >= 1.0") # <<<<<<<<<<<<<< * return discd_array_sc(self.internal_state, rk_logseries, size, fp, * self.lock) */ __pyx_tuple__145 = PyTuple_Pack(1, __pyx_kp_s_p_1_0_2); if (unlikely(!__pyx_tuple__145)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4180; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__145); __Pyx_GIVEREF(__pyx_tuple__145); /* "mtrand.pyx":4188 * op = PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED) * if np.any(np.less_equal(op, 0.0)): * raise ValueError("p <= 0.0") # <<<<<<<<<<<<<< * if np.any(np.greater_equal(op, 1.0)): * raise ValueError("p >= 1.0") */ __pyx_tuple__146 = PyTuple_Pack(1, __pyx_kp_s_p_0_0_2); if (unlikely(!__pyx_tuple__146)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4188; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__146); __Pyx_GIVEREF(__pyx_tuple__146); /* "mtrand.pyx":4190 * raise ValueError("p <= 0.0") * if np.any(np.greater_equal(op, 1.0)): * raise ValueError("p >= 1.0") # <<<<<<<<<<<<<< * return discd_array(self.internal_state, rk_logseries, size, op, self.lock) * */ __pyx_tuple__147 = PyTuple_Pack(1, __pyx_kp_s_p_1_0_2); if (unlikely(!__pyx_tuple__147)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4190; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__147); __Pyx_GIVEREF(__pyx_tuple__147); /* "mtrand.pyx":4298 * * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") # <<<<<<<<<<<<<< * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") */ __pyx_tuple__148 = PyTuple_Pack(1, __pyx_kp_s_mean_must_be_1_dimensional); if (unlikely(!__pyx_tuple__148)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4298; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__148); __Pyx_GIVEREF(__pyx_tuple__148); /* "mtrand.pyx":4300 * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") # <<<<<<<<<<<<<< * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") */ __pyx_tuple__149 = PyTuple_Pack(1, __pyx_kp_s_cov_must_be_2_dimensional_and_sq); if (unlikely(!__pyx_tuple__149)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4300; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__149); __Pyx_GIVEREF(__pyx_tuple__149); /* "mtrand.pyx":4302 * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") # <<<<<<<<<<<<<< * * # Compute shape of output and create a matrix of independent */ __pyx_tuple__150 = PyTuple_Pack(1, __pyx_kp_s_mean_and_cov_must_have_same_leng); if (unlikely(!__pyx_tuple__150)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4302; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__150); __Pyx_GIVEREF(__pyx_tuple__150); /* "mtrand.pyx":4308 * # with the same length as mean and as many rows are necessary to * # form a matrix of shape final_shape. * final_shape = list(shape[:]) # <<<<<<<<<<<<<< * final_shape.append(mean.shape[0]) * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) */ __pyx_slice__151 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__151)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4308; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_slice__151); __Pyx_GIVEREF(__pyx_slice__151); /* "mtrand.pyx":4332 * RuntimeWarning) * * x = np.dot(x, np.sqrt(s)[:, None] * v) # <<<<<<<<<<<<<< * x += mean * x.shape = tuple(final_shape) */ __pyx_slice__152 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__152)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_slice__152); __Pyx_GIVEREF(__pyx_slice__152); __pyx_tuple__153 = PyTuple_Pack(2, __pyx_slice__152, Py_None); if (unlikely(!__pyx_tuple__153)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4332; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__153); __Pyx_GIVEREF(__pyx_tuple__153); /* "mtrand.pyx":4401 * * if kahan_sum(pix, d-1) > (1.0 + 1e-12): * raise ValueError("sum(pvals[:-1]) > 1.0") # <<<<<<<<<<<<<< * * shape = _shape_from_size(size, d) */ __pyx_tuple__154 = PyTuple_Pack(1, __pyx_kp_s_sum_pvals_1_1_0); if (unlikely(!__pyx_tuple__154)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4401; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__154); __Pyx_GIVEREF(__pyx_tuple__154); /* "mtrand.pyx":4409 * mnix = PyArray_DATA(mnarr) * sz = PyArray_SIZE(mnarr) * with self.lock, nogil: # <<<<<<<<<<<<<< * i = 0 * while i < sz: */ __pyx_tuple__155 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__155)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4409; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__155); __Pyx_GIVEREF(__pyx_tuple__155); /* "mtrand.pyx":4526 * i = 0 * totsize = PyArray_SIZE(val_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * while i < totsize: * acc = 0.0 */ __pyx_tuple__156 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__156)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4526; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__156); __Pyx_GIVEREF(__pyx_tuple__156); /* "mtrand.pyx":560 * return sum * * def _shape_from_size(size, d): # <<<<<<<<<<<<<< * if size is None: * shape = (d,) */ __pyx_tuple__157 = PyTuple_Pack(3, __pyx_n_s_size, __pyx_n_s_d, __pyx_n_s_shape); if (unlikely(!__pyx_tuple__157)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__157); __Pyx_GIVEREF(__pyx_tuple__157); __pyx_codeobj__158 = (PyObject*)__Pyx_PyCode_New(2, 0, 3, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__157, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_vagrant_repos_numpy_numpy, __pyx_n_s_shape_from_size, 560, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__158)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L1_error;} /* "mtrand.pyx":605 * cdef rk_state *internal_state * cdef object lock * poisson_lam_max = np.iinfo('l').max - np.sqrt(np.iinfo('l').max)*10 # <<<<<<<<<<<<<< * * def __init__(self, seed=None): */ __pyx_tuple__159 = PyTuple_Pack(1, __pyx_n_s_l); if (unlikely(!__pyx_tuple__159)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__159); __Pyx_GIVEREF(__pyx_tuple__159); __pyx_tuple__160 = PyTuple_Pack(1, __pyx_n_s_l); if (unlikely(!__pyx_tuple__160)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple__160); __Pyx_GIVEREF(__pyx_tuple__160); __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __pyx_float_0_ = PyFloat_FromDouble(0.); if (unlikely(!__pyx_float_0_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_float_0_0 = PyFloat_FromDouble(0.0); if (unlikely(!__pyx_float_0_0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_float_1_0 = PyFloat_FromDouble(1.0); if (unlikely(!__pyx_float_1_0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_3 = PyInt_FromLong(3); if (unlikely(!__pyx_int_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_5 = PyInt_FromLong(5); if (unlikely(!__pyx_int_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_10 = PyInt_FromLong(10); if (unlikely(!__pyx_int_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_624 = PyInt_FromLong(624); if (unlikely(!__pyx_int_624)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_4294967295 = PyInt_FromString((char *)"4294967295", 0, 0); if (unlikely(!__pyx_int_4294967295)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} return 0; __pyx_L1_error:; return -1; } #if PY_MAJOR_VERSION < 3 PyMODINIT_FUNC initmtrand(void); /*proto*/ PyMODINIT_FUNC initmtrand(void) #else PyMODINIT_FUNC PyInit_mtrand(void); /*proto*/ PyMODINIT_FUNC PyInit_mtrand(void) #endif { PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannyDeclarations #if CYTHON_REFNANNY __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); if (!__Pyx_RefNanny) { PyErr_Clear(); __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); if (!__Pyx_RefNanny) Py_FatalError("failed to import 'refnanny' module"); } #endif __Pyx_RefNannySetupContext("PyMODINIT_FUNC PyInit_mtrand(void)", 0); if ( __Pyx_check_binary_version() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #ifdef __Pyx_CyFunction_USED if (__Pyx_CyFunction_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif #ifdef __Pyx_FusedFunction_USED if (__pyx_FusedFunction_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif /*--- Library function declarations ---*/ /*--- Threads initialization code ---*/ #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS #ifdef WITH_THREAD /* Python build with threading support? */ PyEval_InitThreads(); #endif #endif /*--- Module creation code ---*/ #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4(__Pyx_NAMESTR("mtrand"), __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_NAMESTR(__Pyx_BUILTIN_MODULE_NAME)); if (unlikely(!__pyx_b)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #if CYTHON_COMPILING_IN_PYPY Py_INCREF(__pyx_b); #endif if (__Pyx_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; /*--- Initialize various global constants etc. ---*/ if (unlikely(__Pyx_InitGlobals() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) if (__Pyx_init_sys_getdefaultencoding_params() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif if (__pyx_module_is_main_mtrand) { if (__Pyx_SetAttrString(__pyx_m, "__name__", __pyx_n_s_main) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; } #if PY_MAJOR_VERSION >= 3 { PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (!PyDict_GetItemString(modules, "mtrand")) { if (unlikely(PyDict_SetItemString(modules, "mtrand", __pyx_m) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } } #endif /*--- Builtin init code ---*/ if (unlikely(__Pyx_InitCachedBuiltins() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} /*--- Constants init code ---*/ if (unlikely(__Pyx_InitCachedConstants() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} /*--- Global init code ---*/ /*--- Variable export code ---*/ /*--- Function export code ---*/ /*--- Type init code ---*/ __pyx_ptype_6mtrand_dtype = __Pyx_ImportType("numpy", "dtype", sizeof(PyArray_Descr), 0); if (unlikely(!__pyx_ptype_6mtrand_dtype)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_ptype_6mtrand_ndarray = __Pyx_ImportType("numpy", "ndarray", sizeof(PyArrayObject), 0); if (unlikely(!__pyx_ptype_6mtrand_ndarray)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_ptype_6mtrand_flatiter = __Pyx_ImportType("numpy", "flatiter", sizeof(PyArrayIterObject), 0); if (unlikely(!__pyx_ptype_6mtrand_flatiter)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_ptype_6mtrand_broadcast = __Pyx_ImportType("numpy", "broadcast", sizeof(PyArrayMultiIterObject), 0); if (unlikely(!__pyx_ptype_6mtrand_broadcast)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyType_Ready(&__pyx_type_6mtrand_RandomState) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 570; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_type_6mtrand_RandomState.tp_print = 0; if (__Pyx_SetAttrString(__pyx_m, "RandomState", (PyObject *)&__pyx_type_6mtrand_RandomState) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 570; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_ptype_6mtrand_RandomState = &__pyx_type_6mtrand_RandomState; /*--- Type import code ---*/ /*--- Variable import code ---*/ /*--- Function import code ---*/ /*--- Execution code ---*/ /* "mtrand.pyx":125 * * # Initialize numpy * import_array() # <<<<<<<<<<<<<< * * import numpy as np */ import_array(); /* "mtrand.pyx":127 * import_array() * * import numpy as np # <<<<<<<<<<<<<< * import operator * import warnings */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":128 * * import numpy as np * import operator # <<<<<<<<<<<<<< * import warnings * from threading import Lock */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_operator, 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 128; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_operator, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 128; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":129 * import numpy as np * import operator * import warnings # <<<<<<<<<<<<<< * from threading import Lock * */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_warnings, 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 129; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_warnings, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 129; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "mtrand.pyx":130 * import operator * import warnings * from threading import Lock # <<<<<<<<<<<<<< * * cdef object cont0_array(rk_state *state, rk_cont0 func, object size, */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_Lock); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_Lock); __Pyx_GIVEREF(__pyx_n_s_Lock); __pyx_t_2 = __Pyx_Import(__pyx_n_s_threading, __pyx_t_1, -1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_Lock); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_Lock, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":560 * return sum * * def _shape_from_size(size, d): # <<<<<<<<<<<<<< * if size is None: * shape = (d,) */ __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_6mtrand_1_shape_from_size, NULL, __pyx_n_s_mtrand); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_shape_from_size, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 560; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":605 * cdef rk_state *internal_state * cdef object lock * poisson_lam_max = np.iinfo('l').max - np.sqrt(np.iinfo('l').max)*10 # <<<<<<<<<<<<<< * * def __init__(self, seed=None): */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_iinfo); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_tuple__159, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_max); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_iinfo); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_tuple__160, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_max); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_Multiply(__pyx_t_4, __pyx_int_10); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyNumber_Subtract(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem((PyObject *)__pyx_ptype_6mtrand_RandomState->tp_dict, __pyx_n_s_poisson_lam_max, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 605; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; PyType_Modified(__pyx_ptype_6mtrand_RandomState); /* "mtrand.pyx":4643 * return arr * * _rand = RandomState() # <<<<<<<<<<<<<< * seed = _rand.seed * get_state = _rand.get_state */ __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)((PyObject*)__pyx_ptype_6mtrand_RandomState)), __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); if (PyDict_SetItem(__pyx_d, __pyx_n_s_rand_2, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4643; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4644 * * _rand = RandomState() * seed = _rand.seed # <<<<<<<<<<<<<< * get_state = _rand.get_state * set_state = _rand.set_state */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4644; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_seed); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4644; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_seed, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4644; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4645 * _rand = RandomState() * seed = _rand.seed * get_state = _rand.get_state # <<<<<<<<<<<<<< * set_state = _rand.set_state * random_sample = _rand.random_sample */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_get_state); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_get_state, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4646 * seed = _rand.seed * get_state = _rand.get_state * set_state = _rand.set_state # <<<<<<<<<<<<<< * random_sample = _rand.random_sample * choice = _rand.choice */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4646; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_set_state); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4646; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_set_state, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4646; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4647 * get_state = _rand.get_state * set_state = _rand.set_state * random_sample = _rand.random_sample # <<<<<<<<<<<<<< * choice = _rand.choice * randint = _rand.randint */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4647; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_random_sample); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4647; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_random_sample, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4647; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4648 * set_state = _rand.set_state * random_sample = _rand.random_sample * choice = _rand.choice # <<<<<<<<<<<<<< * randint = _rand.randint * bytes = _rand.bytes */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4648; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_choice); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4648; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_choice, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4648; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4649 * random_sample = _rand.random_sample * choice = _rand.choice * randint = _rand.randint # <<<<<<<<<<<<<< * bytes = _rand.bytes * uniform = _rand.uniform */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4649; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_randint); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4649; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_randint, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4649; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4650 * choice = _rand.choice * randint = _rand.randint * bytes = _rand.bytes # <<<<<<<<<<<<<< * uniform = _rand.uniform * rand = _rand.rand */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4650; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_bytes); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4650; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_bytes, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4650; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4651 * randint = _rand.randint * bytes = _rand.bytes * uniform = _rand.uniform # <<<<<<<<<<<<<< * rand = _rand.rand * randn = _rand.randn */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4651; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_uniform); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4651; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_uniform, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4651; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4652 * bytes = _rand.bytes * uniform = _rand.uniform * rand = _rand.rand # <<<<<<<<<<<<<< * randn = _rand.randn * random_integers = _rand.random_integers */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_rand); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_rand, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4653 * uniform = _rand.uniform * rand = _rand.rand * randn = _rand.randn # <<<<<<<<<<<<<< * random_integers = _rand.random_integers * standard_normal = _rand.standard_normal */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4653; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_randn); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4653; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_randn, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4653; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4654 * rand = _rand.rand * randn = _rand.randn * random_integers = _rand.random_integers # <<<<<<<<<<<<<< * standard_normal = _rand.standard_normal * normal = _rand.normal */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_random_integers); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_random_integers, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4655 * randn = _rand.randn * random_integers = _rand.random_integers * standard_normal = _rand.standard_normal # <<<<<<<<<<<<<< * normal = _rand.normal * beta = _rand.beta */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4655; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4655; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_normal, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4655; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4656 * random_integers = _rand.random_integers * standard_normal = _rand.standard_normal * normal = _rand.normal # <<<<<<<<<<<<<< * beta = _rand.beta * exponential = _rand.exponential */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4656; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_normal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4656; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_normal, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4656; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4657 * standard_normal = _rand.standard_normal * normal = _rand.normal * beta = _rand.beta # <<<<<<<<<<<<<< * exponential = _rand.exponential * standard_exponential = _rand.standard_exponential */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4657; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_beta); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4657; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_beta, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4657; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4658 * normal = _rand.normal * beta = _rand.beta * exponential = _rand.exponential # <<<<<<<<<<<<<< * standard_exponential = _rand.standard_exponential * standard_gamma = _rand.standard_gamma */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4658; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_exponential); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4658; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_exponential, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4658; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4659 * beta = _rand.beta * exponential = _rand.exponential * standard_exponential = _rand.standard_exponential # <<<<<<<<<<<<<< * standard_gamma = _rand.standard_gamma * gamma = _rand.gamma */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4659; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_standard_exponential); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4659; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_exponential, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4659; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4660 * exponential = _rand.exponential * standard_exponential = _rand.standard_exponential * standard_gamma = _rand.standard_gamma # <<<<<<<<<<<<<< * gamma = _rand.gamma * f = _rand.f */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4660; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_standard_gamma); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4660; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_gamma, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4660; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4661 * standard_exponential = _rand.standard_exponential * standard_gamma = _rand.standard_gamma * gamma = _rand.gamma # <<<<<<<<<<<<<< * f = _rand.f * noncentral_f = _rand.noncentral_f */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4661; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_gamma); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4661; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_gamma, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4661; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4662 * standard_gamma = _rand.standard_gamma * gamma = _rand.gamma * f = _rand.f # <<<<<<<<<<<<<< * noncentral_f = _rand.noncentral_f * chisquare = _rand.chisquare */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4662; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_f); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4662; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_f, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4662; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4663 * gamma = _rand.gamma * f = _rand.f * noncentral_f = _rand.noncentral_f # <<<<<<<<<<<<<< * chisquare = _rand.chisquare * noncentral_chisquare = _rand.noncentral_chisquare */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4663; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_noncentral_f); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4663; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_noncentral_f, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4663; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4664 * f = _rand.f * noncentral_f = _rand.noncentral_f * chisquare = _rand.chisquare # <<<<<<<<<<<<<< * noncentral_chisquare = _rand.noncentral_chisquare * standard_cauchy = _rand.standard_cauchy */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4664; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_chisquare); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4664; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_chisquare, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4664; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4665 * noncentral_f = _rand.noncentral_f * chisquare = _rand.chisquare * noncentral_chisquare = _rand.noncentral_chisquare # <<<<<<<<<<<<<< * standard_cauchy = _rand.standard_cauchy * standard_t = _rand.standard_t */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4665; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_noncentral_chisquare); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4665; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_noncentral_chisquare, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4665; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4666 * chisquare = _rand.chisquare * noncentral_chisquare = _rand.noncentral_chisquare * standard_cauchy = _rand.standard_cauchy # <<<<<<<<<<<<<< * standard_t = _rand.standard_t * vonmises = _rand.vonmises */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4666; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_standard_cauchy); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4666; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_cauchy, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4666; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4667 * noncentral_chisquare = _rand.noncentral_chisquare * standard_cauchy = _rand.standard_cauchy * standard_t = _rand.standard_t # <<<<<<<<<<<<<< * vonmises = _rand.vonmises * pareto = _rand.pareto */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4667; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_standard_t); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4667; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_t, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4667; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4668 * standard_cauchy = _rand.standard_cauchy * standard_t = _rand.standard_t * vonmises = _rand.vonmises # <<<<<<<<<<<<<< * pareto = _rand.pareto * weibull = _rand.weibull */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4668; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_vonmises); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4668; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_vonmises, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4668; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4669 * standard_t = _rand.standard_t * vonmises = _rand.vonmises * pareto = _rand.pareto # <<<<<<<<<<<<<< * weibull = _rand.weibull * power = _rand.power */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4669; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_pareto); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4669; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_pareto, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4669; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4670 * vonmises = _rand.vonmises * pareto = _rand.pareto * weibull = _rand.weibull # <<<<<<<<<<<<<< * power = _rand.power * laplace = _rand.laplace */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4670; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_weibull); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4670; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_weibull, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4670; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4671 * pareto = _rand.pareto * weibull = _rand.weibull * power = _rand.power # <<<<<<<<<<<<<< * laplace = _rand.laplace * gumbel = _rand.gumbel */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4671; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_power); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4671; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_power, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4671; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4672 * weibull = _rand.weibull * power = _rand.power * laplace = _rand.laplace # <<<<<<<<<<<<<< * gumbel = _rand.gumbel * logistic = _rand.logistic */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4672; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_laplace); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4672; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_laplace, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4672; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4673 * power = _rand.power * laplace = _rand.laplace * gumbel = _rand.gumbel # <<<<<<<<<<<<<< * logistic = _rand.logistic * lognormal = _rand.lognormal */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_gumbel); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_gumbel, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4673; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4674 * laplace = _rand.laplace * gumbel = _rand.gumbel * logistic = _rand.logistic # <<<<<<<<<<<<<< * lognormal = _rand.lognormal * rayleigh = _rand.rayleigh */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4674; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_logistic); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4674; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_logistic, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4674; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4675 * gumbel = _rand.gumbel * logistic = _rand.logistic * lognormal = _rand.lognormal # <<<<<<<<<<<<<< * rayleigh = _rand.rayleigh * wald = _rand.wald */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4675; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_lognormal); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4675; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_lognormal, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4675; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4676 * logistic = _rand.logistic * lognormal = _rand.lognormal * rayleigh = _rand.rayleigh # <<<<<<<<<<<<<< * wald = _rand.wald * triangular = _rand.triangular */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4676; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_rayleigh); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4676; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_rayleigh, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4676; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4677 * lognormal = _rand.lognormal * rayleigh = _rand.rayleigh * wald = _rand.wald # <<<<<<<<<<<<<< * triangular = _rand.triangular * */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4677; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_wald); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4677; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_wald, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4677; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4678 * rayleigh = _rand.rayleigh * wald = _rand.wald * triangular = _rand.triangular # <<<<<<<<<<<<<< * * binomial = _rand.binomial */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4678; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_triangular); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4678; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_triangular, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4678; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4680 * triangular = _rand.triangular * * binomial = _rand.binomial # <<<<<<<<<<<<<< * negative_binomial = _rand.negative_binomial * poisson = _rand.poisson */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4680; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_binomial); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4680; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_binomial, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4680; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4681 * * binomial = _rand.binomial * negative_binomial = _rand.negative_binomial # <<<<<<<<<<<<<< * poisson = _rand.poisson * zipf = _rand.zipf */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4681; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_negative_binomial); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4681; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_negative_binomial, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4681; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4682 * binomial = _rand.binomial * negative_binomial = _rand.negative_binomial * poisson = _rand.poisson # <<<<<<<<<<<<<< * zipf = _rand.zipf * geometric = _rand.geometric */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4682; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_poisson); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4682; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_poisson, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4682; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4683 * negative_binomial = _rand.negative_binomial * poisson = _rand.poisson * zipf = _rand.zipf # <<<<<<<<<<<<<< * geometric = _rand.geometric * hypergeometric = _rand.hypergeometric */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4683; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_zipf); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4683; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_zipf, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4683; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4684 * poisson = _rand.poisson * zipf = _rand.zipf * geometric = _rand.geometric # <<<<<<<<<<<<<< * hypergeometric = _rand.hypergeometric * logseries = _rand.logseries */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4684; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_geometric); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4684; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_geometric, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4684; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4685 * zipf = _rand.zipf * geometric = _rand.geometric * hypergeometric = _rand.hypergeometric # <<<<<<<<<<<<<< * logseries = _rand.logseries * */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4685; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_hypergeometric); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4685; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_hypergeometric, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4685; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4686 * geometric = _rand.geometric * hypergeometric = _rand.hypergeometric * logseries = _rand.logseries # <<<<<<<<<<<<<< * * multivariate_normal = _rand.multivariate_normal */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4686; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_logseries); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4686; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_logseries, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4686; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4688 * logseries = _rand.logseries * * multivariate_normal = _rand.multivariate_normal # <<<<<<<<<<<<<< * multinomial = _rand.multinomial * dirichlet = _rand.dirichlet */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4688; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_multivariate_normal); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4688; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_multivariate_normal, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4688; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4689 * * multivariate_normal = _rand.multivariate_normal * multinomial = _rand.multinomial # <<<<<<<<<<<<<< * dirichlet = _rand.dirichlet * */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_multinomial); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_multinomial, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4689; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4690 * multivariate_normal = _rand.multivariate_normal * multinomial = _rand.multinomial * dirichlet = _rand.dirichlet # <<<<<<<<<<<<<< * * shuffle = _rand.shuffle */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4690; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_dirichlet); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4690; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_dirichlet, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4690; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":4692 * dirichlet = _rand.dirichlet * * shuffle = _rand.shuffle # <<<<<<<<<<<<<< * permutation = _rand.permutation */ __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4692; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_shuffle); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4692; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_shuffle, __pyx_t_4) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4692; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "mtrand.pyx":4693 * * shuffle = _rand.shuffle * permutation = _rand.permutation # <<<<<<<<<<<<<< */ __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_rand_2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4693; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_permutation); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4693; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_permutation, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 4693; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "mtrand.pyx":1 * # mtrand.pyx -- A Pyrex wrapper of Jean-Sebastien Roy's RandomKit # <<<<<<<<<<<<<< * # * # Copyright 2005 Robert Kern (robert.kern@gmail.com) */ __pyx_t_2 = PyDict_New(); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_random_sample_line_7, __pyx_kp_u_random_sample_size_None_Return) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_tomaxint_line_818, __pyx_kp_u_tomaxint_size_None_Random_integ) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_randint_line_865, __pyx_kp_u_randint_low_high_None_size_None) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_bytes_line_947, __pyx_kp_u_bytes_length_Return_random_byte) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_choice_line_976, __pyx_kp_u_choice_a_size_None_replace_True) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_uniform_line_1152, __pyx_kp_u_uniform_low_0_0_high_1_0_size_N) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_rand_line_1242, __pyx_kp_u_rand_d0_d1_dn_Random_values_in) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_randn_line_1286, __pyx_kp_u_randn_d0_d1_dn_Return_a_sample) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_random_integers_line, __pyx_kp_u_random_integers_low_high_None_s) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_standard_normal_line, __pyx_kp_u_standard_normal_size_None_Retur) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_normal_line_1456, __pyx_kp_u_normal_loc_0_0_scale_1_0_size_N) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_standard_exponential, __pyx_kp_u_standard_exponential_size_None) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_standard_gamma_line, __pyx_kp_u_standard_gamma_shape_size_None) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_gamma_line_1793, __pyx_kp_u_gamma_shape_scale_1_0_size_None) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_f_line_1887, __pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_noncentral_f_line_19, __pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_chisquare_line_2087, __pyx_kp_u_chisquare_df_size_None_Draw_sam) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_noncentral_chisquare, __pyx_kp_u_noncentral_chisquare_df_nonc_si) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_standard_cauchy_line, __pyx_kp_u_standard_cauchy_size_None_Stand) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_standard_t_line_2326, __pyx_kp_u_standard_t_df_size_None_Standar) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_vonmises_line_2430, __pyx_kp_u_vonmises_mu_kappa_size_None_Dra) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_pareto_line_2527, __pyx_kp_u_pareto_a_size_None_Draw_samples) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_weibull_line_2625, __pyx_kp_u_weibull_a_size_None_Weibull_dis) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_power_line_2728, __pyx_kp_u_power_a_size_None_Draws_samples) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_laplace_line_2839, __pyx_kp_u_laplace_loc_0_0_scale_1_0_size) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_gumbel_line_2935, __pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_logistic_line_3069, __pyx_kp_u_logistic_loc_0_0_scale_1_0_size) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_lognormal_line_3160, __pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_rayleigh_line_3284, __pyx_kp_u_rayleigh_scale_1_0_size_None_Dr) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_wald_line_3359, __pyx_kp_u_wald_mean_scale_size_None_Draw) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_triangular_line_3446, __pyx_kp_u_triangular_left_mode_right_size) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_binomial_line_3535, __pyx_kp_u_binomial_n_p_size_None_Draw_sam) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_negative_binomial_li, __pyx_kp_u_negative_binomial_n_p_size_None) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_poisson_line_3744, __pyx_kp_u_poisson_lam_1_0_size_None_Draw) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_zipf_line_3822, __pyx_kp_u_zipf_a_size_None_Draw_samples_f) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_geometric_line_3909, __pyx_kp_u_geometric_p_size_None_Draw_samp) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_hypergeometric_line, __pyx_kp_u_hypergeometric_ngood_nbad_nsamp) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_logseries_line_4097, __pyx_kp_u_logseries_p_size_None_Draw_samp) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_multivariate_normal, __pyx_kp_u_multivariate_normal_mean_cov_si) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_multinomial_line_433, __pyx_kp_u_multinomial_n_pvals_size_None_D) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_dirichlet_line_4427, __pyx_kp_u_dirichlet_alpha_size_None_Draw) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_shuffle_line_4541, __pyx_kp_u_shuffle_x_Modify_a_sequence_in) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_t_2, __pyx_kp_u_RandomState_permutation_line_460, __pyx_kp_u_permutation_x_Randomly_permute) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); if (__pyx_m) { __Pyx_AddTraceback("init mtrand", __pyx_clineno, __pyx_lineno, __pyx_filename); Py_DECREF(__pyx_m); __pyx_m = 0; } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ImportError, "init mtrand"); } __pyx_L0:; __Pyx_RefNannyFinishContext(); #if PY_MAJOR_VERSION < 3 return; #else return __pyx_m; #endif } /* Runtime support code */ #if CYTHON_REFNANNY static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { PyObject *m = NULL, *p = NULL; void *r = NULL; m = PyImport_ImportModule((char *)modname); if (!m) goto end; p = PyObject_GetAttrString(m, (char *)"RefNannyAPI"); if (!p) goto end; r = PyLong_AsVoidPtr(p); end: Py_XDECREF(p); Py_XDECREF(m); return (__Pyx_RefNannyAPIStruct *)r; } #endif /* CYTHON_REFNANNY */ static PyObject *__Pyx_GetBuiltinName(PyObject *name) { PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); if (unlikely(!result)) { PyErr_Format(PyExc_NameError, #if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); #endif } return result; } static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { PyObject *result; #if CYTHON_COMPILING_IN_CPYTHON result = PyDict_GetItem(__pyx_d, name); if (result) { Py_INCREF(result); } else { #else result = PyObject_GetItem(__pyx_d, name); if (!result) { PyErr_Clear(); #endif result = __Pyx_GetBuiltinName(name); } return result; } #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = func->ob_type->tp_call; if (unlikely(!call)) return PyObject_Call(func, arg, kw); #if PY_VERSION_HEX >= 0x02060000 if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; #endif result = (*call)(func, arg, kw); #if PY_VERSION_HEX >= 0x02060000 Py_LeaveRecursiveCall(); #endif if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb) { #if CYTHON_COMPILING_IN_CPYTHON PyObject *tmp_type, *tmp_value, *tmp_tb; PyThreadState *tstate = PyThreadState_GET(); tmp_type = tstate->curexc_type; tmp_value = tstate->curexc_value; tmp_tb = tstate->curexc_traceback; tstate->curexc_type = type; tstate->curexc_value = value; tstate->curexc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_Restore(type, value, tb); #endif } static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb) { #if CYTHON_COMPILING_IN_CPYTHON PyThreadState *tstate = PyThreadState_GET(); *type = tstate->curexc_type; *value = tstate->curexc_value; *tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; #else PyErr_Fetch(type, value, tb); #endif } #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { Py_XINCREF(type); if (!value || value == Py_None) value = NULL; else Py_INCREF(value); if (!tb || tb == Py_None) tb = NULL; else { Py_INCREF(tb); if (!PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } } #if PY_VERSION_HEX < 0x02050000 if (PyClass_Check(type)) { #else if (PyType_Check(type)) { #endif #if CYTHON_COMPILING_IN_PYPY if (!value) { Py_INCREF(Py_None); value = Py_None; } #endif PyErr_NormalizeException(&type, &value, &tb); } else { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } value = type; #if PY_VERSION_HEX < 0x02050000 if (PyInstance_Check(type)) { type = (PyObject*) ((PyInstanceObject*)type)->in_class; Py_INCREF(type); } else { type = 0; PyErr_SetString(PyExc_TypeError, "raise: exception must be an old-style class or instance"); goto raise_error; } #else type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } #endif } __Pyx_ErrRestore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } #else /* Python 3+ */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { PyObject* owned_instance = NULL; if (tb == Py_None) { tb = 0; } else if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto bad; } if (value == Py_None) value = 0; if (PyExceptionInstance_Check(type)) { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto bad; } value = type; type = (PyObject*) Py_TYPE(value); } else if (PyExceptionClass_Check(type)) { PyObject *instance_class = NULL; if (value && PyExceptionInstance_Check(value)) { instance_class = (PyObject*) Py_TYPE(value); if (instance_class != type) { if (PyObject_IsSubclass(instance_class, type)) { type = instance_class; } else { instance_class = NULL; } } } if (!instance_class) { PyObject *args; if (!value) args = PyTuple_New(0); else if (PyTuple_Check(value)) { Py_INCREF(value); args = value; } else args = PyTuple_Pack(1, value); if (!args) goto bad; owned_instance = PyObject_Call(type, args, NULL); Py_DECREF(args); if (!owned_instance) goto bad; value = owned_instance; if (!PyExceptionInstance_Check(value)) { PyErr_Format(PyExc_TypeError, "calling %R should have returned an instance of " "BaseException, not %R", type, Py_TYPE(value)); goto bad; } } } else { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto bad; } #if PY_VERSION_HEX >= 0x03030000 if (cause) { #else if (cause && cause != Py_None) { #endif PyObject *fixed_cause; if (cause == Py_None) { fixed_cause = NULL; } else if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto bad; } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; Py_INCREF(fixed_cause); } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto bad; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); if (tb) { PyThreadState *tstate = PyThreadState_GET(); PyObject* tmp_tb = tstate->curexc_traceback; if (tb != tmp_tb) { Py_INCREF(tb); tstate->curexc_traceback = tb; Py_XDECREF(tmp_tb); } } bad: Py_XDECREF(owned_instance); return; } #endif static void __Pyx_RaiseArgtupleInvalid( const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found) { Py_ssize_t num_expected; const char *more_or_less; if (num_found < num_min) { num_expected = num_min; more_or_less = "at least"; } else { num_expected = num_max; more_or_less = "at most"; } if (exact) { more_or_less = "exactly"; } PyErr_Format(PyExc_TypeError, "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", func_name, more_or_less, num_expected, (num_expected == 1) ? "" : "s", num_found); } static void __Pyx_RaiseDoubleKeywordsError( const char* func_name, PyObject* kw_name) { PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION >= 3 "%s() got multiple values for keyword argument '%U'", func_name, kw_name); #else "%s() got multiple values for keyword argument '%s'", func_name, PyString_AsString(kw_name)); #endif } static int __Pyx_ParseOptionalKeywords( PyObject *kwds, PyObject **argnames[], PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, const char* function_name) { PyObject *key = 0, *value = 0; Py_ssize_t pos = 0; PyObject*** name; PyObject*** first_kw_arg = argnames + num_pos_args; while (PyDict_Next(kwds, &pos, &key, &value)) { name = first_kw_arg; while (*name && (**name != key)) name++; if (*name) { values[name-argnames] = value; continue; } name = first_kw_arg; #if PY_MAJOR_VERSION < 3 if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { while (*name) { if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) && _PyString_Eq(**name, key)) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { if ((**argname == key) || ( (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) && _PyString_Eq(**argname, key))) { goto arg_passed_twice; } argname++; } } } else #endif if (likely(PyUnicode_Check(key))) { while (*name) { int cmp = (**name == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : #endif PyUnicode_Compare(**name, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { int cmp = (**argname == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : #endif PyUnicode_Compare(**argname, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) goto arg_passed_twice; argname++; } } } else goto invalid_keyword_type; if (kwds2) { if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; } else { goto invalid_keyword; } } return 0; arg_passed_twice: __Pyx_RaiseDoubleKeywordsError(function_name, key); goto bad; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); goto bad; invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif bad: return -1; } static CYTHON_INLINE void __Pyx_ExceptionSave(PyObject **type, PyObject **value, PyObject **tb) { #if CYTHON_COMPILING_IN_CPYTHON PyThreadState *tstate = PyThreadState_GET(); *type = tstate->exc_type; *value = tstate->exc_value; *tb = tstate->exc_traceback; Py_XINCREF(*type); Py_XINCREF(*value); Py_XINCREF(*tb); #else PyErr_GetExcInfo(type, value, tb); #endif } static void __Pyx_ExceptionReset(PyObject *type, PyObject *value, PyObject *tb) { #if CYTHON_COMPILING_IN_CPYTHON PyObject *tmp_type, *tmp_value, *tmp_tb; PyThreadState *tstate = PyThreadState_GET(); tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_SetExcInfo(type, value, tb); #endif } static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { PyObject *local_type, *local_value, *local_tb; #if CYTHON_COMPILING_IN_CPYTHON PyObject *tmp_type, *tmp_value, *tmp_tb; PyThreadState *tstate = PyThreadState_GET(); local_type = tstate->curexc_type; local_value = tstate->curexc_value; local_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; #else PyErr_Fetch(&local_type, &local_value, &local_tb); #endif PyErr_NormalizeException(&local_type, &local_value, &local_tb); #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(tstate->curexc_type)) #else if (unlikely(PyErr_Occurred())) #endif goto bad; #if PY_MAJOR_VERSION >= 3 if (local_tb) { if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) goto bad; } #endif Py_XINCREF(local_tb); Py_XINCREF(local_type); Py_XINCREF(local_value); *type = local_type; *value = local_value; *tb = local_tb; #if CYTHON_COMPILING_IN_CPYTHON tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = local_type; tstate->exc_value = local_value; tstate->exc_traceback = local_tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_SetExcInfo(local_type, local_value, local_tb); #endif return 0; bad: *type = 0; *value = 0; *tb = 0; Py_XDECREF(local_type); Py_XDECREF(local_value); Py_XDECREF(local_tb); return -1; } static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } if (likely(PyObject_TypeCheck(obj, type))) return 1; PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", Py_TYPE(obj)->tp_name, type->tp_name); return 0; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); Py_DECREF(j); return r; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck) { #if CYTHON_COMPILING_IN_CPYTHON if (wraparound & unlikely(i < 0)) i += PyList_GET_SIZE(o); if ((!boundscheck) || likely((0 <= i) & (i < PyList_GET_SIZE(o)))) { PyObject *r = PyList_GET_ITEM(o, i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck) { #if CYTHON_COMPILING_IN_CPYTHON if (wraparound & unlikely(i < 0)) i += PyTuple_GET_SIZE(o); if ((!boundscheck) || likely((0 <= i) & (i < PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck) { #if CYTHON_COMPILING_IN_CPYTHON if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); if ((!boundscheck) || (likely((n >= 0) & (n < PyList_GET_SIZE(o))))) { PyObject *r = PyList_GET_ITEM(o, n); Py_INCREF(r); return r; } } else if (PyTuple_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); if ((!boundscheck) || likely((n >= 0) & (n < PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, n); Py_INCREF(r); return r; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (PyErr_ExceptionMatches(PyExc_OverflowError)) PyErr_Clear(); else return NULL; } } return m->sq_item(o, i); } } #else if (is_list || PySequence_Check(o)) { return PySequence_GetItem(o, i); } #endif return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); } static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else if (s1 == s2) { return (equals == Py_EQ); } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { const char *ps1, *ps2; Py_ssize_t length = PyBytes_GET_SIZE(s1); if (length != PyBytes_GET_SIZE(s2)) return (equals == Py_NE); ps1 = PyBytes_AS_STRING(s1); ps2 = PyBytes_AS_STRING(s2); if (ps1[0] != ps2[0]) { return (equals == Py_NE); } else if (length == 1) { return (equals == Py_EQ); } else { int result = memcmp(ps1, ps2, (size_t)length); return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { return (equals == Py_NE); } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { return (equals == Py_NE); } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } #endif } static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else #if PY_MAJOR_VERSION < 3 PyObject* owned_ref = NULL; #endif int s1_is_unicode, s2_is_unicode; if (s1 == s2) { goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); #if PY_MAJOR_VERSION < 3 if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { owned_ref = PyUnicode_FromObject(s2); if (unlikely(!owned_ref)) return -1; s2 = owned_ref; s2_is_unicode = 1; } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { owned_ref = PyUnicode_FromObject(s1); if (unlikely(!owned_ref)) return -1; s1 = owned_ref; s1_is_unicode = 1; } else if (((!s2_is_unicode) & (!s1_is_unicode))) { return __Pyx_PyBytes_Equals(s1, s2, equals); } #endif if (s1_is_unicode & s2_is_unicode) { Py_ssize_t length; int kind; void *data1, *data2; #if CYTHON_PEP393_ENABLED if (unlikely(PyUnicode_READY(s1) < 0) || unlikely(PyUnicode_READY(s2) < 0)) return -1; #endif length = __Pyx_PyUnicode_GET_LENGTH(s1); if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; } data1 = __Pyx_PyUnicode_DATA(s1); data2 = __Pyx_PyUnicode_DATA(s2); if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { goto return_ne; } else if (length == 1) { goto return_eq; } else { int result = memcmp(data1, data2, (size_t)(length * kind)); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & s2_is_unicode) { goto return_ne; } else if ((s2 == Py_None) & s1_is_unicode) { goto return_ne; } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } return_eq: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ); return_ne: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_NE); #endif } static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice( PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice, int has_cstart, int has_cstop, CYTHON_UNUSED int wraparound) { #if CYTHON_COMPILING_IN_CPYTHON PyMappingMethods* mp; #if PY_MAJOR_VERSION < 3 PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence; if (likely(ms && ms->sq_slice)) { if (!has_cstart) { if (_py_start && (*_py_start != Py_None)) { cstart = __Pyx_PyIndex_AsSsize_t(*_py_start); if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstart = 0; } if (!has_cstop) { if (_py_stop && (*_py_stop != Py_None)) { cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop); if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstop = PY_SSIZE_T_MAX; } if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) { Py_ssize_t l = ms->sq_length(obj); if (likely(l >= 0)) { if (cstop < 0) { cstop += l; if (cstop < 0) cstop = 0; } if (cstart < 0) { cstart += l; if (cstart < 0) cstart = 0; } } else { if (PyErr_ExceptionMatches(PyExc_OverflowError)) PyErr_Clear(); else goto bad; } } return ms->sq_slice(obj, cstart, cstop); } #endif mp = Py_TYPE(obj)->tp_as_mapping; if (likely(mp && mp->mp_subscript)) #endif { PyObject* result; PyObject *py_slice, *py_start, *py_stop; if (_py_slice) { py_slice = *_py_slice; } else { PyObject* owned_start = NULL; PyObject* owned_stop = NULL; if (_py_start) { py_start = *_py_start; } else { if (has_cstart) { owned_start = py_start = PyInt_FromSsize_t(cstart); if (unlikely(!py_start)) goto bad; } else py_start = Py_None; } if (_py_stop) { py_stop = *_py_stop; } else { if (has_cstop) { owned_stop = py_stop = PyInt_FromSsize_t(cstop); if (unlikely(!py_stop)) { Py_XDECREF(owned_start); goto bad; } } else py_stop = Py_None; } py_slice = PySlice_New(py_start, py_stop, Py_None); Py_XDECREF(owned_start); Py_XDECREF(owned_stop); if (unlikely(!py_slice)) goto bad; } #if CYTHON_COMPILING_IN_CPYTHON result = mp->mp_subscript(obj, py_slice); #else result = PyObject_GetItem(obj, py_slice); #endif if (!_py_slice) { Py_DECREF(py_slice); } return result; } PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", Py_TYPE(obj)->tp_name); bad: return NULL; } static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } static CYTHON_INLINE int __Pyx_IterFinish(void) { #if CYTHON_COMPILING_IN_CPYTHON PyThreadState *tstate = PyThreadState_GET(); PyObject* exc_type = tstate->curexc_type; if (unlikely(exc_type)) { if (likely(exc_type == PyExc_StopIteration) || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration)) { PyObject *exc_value, *exc_tb; exc_value = tstate->curexc_value; exc_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; Py_DECREF(exc_type); Py_XDECREF(exc_value); Py_XDECREF(exc_tb); return 0; } else { return -1; } } return 0; #else if (unlikely(PyErr_Occurred())) { if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) { PyErr_Clear(); return 0; } else { return -1; } } return 0; #endif } static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) { if (unlikely(retval)) { Py_DECREF(retval); __Pyx_RaiseTooManyValuesError(expected); return -1; } else { return __Pyx_IterFinish(); } return 0; } static CYTHON_INLINE int __Pyx_PyObject_SetSlice( PyObject* obj, PyObject* value, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice, int has_cstart, int has_cstop, CYTHON_UNUSED int wraparound) { #if CYTHON_COMPILING_IN_CPYTHON PyMappingMethods* mp; #if PY_MAJOR_VERSION < 3 PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence; if (likely(ms && ms->sq_ass_slice)) { if (!has_cstart) { if (_py_start && (*_py_start != Py_None)) { cstart = __Pyx_PyIndex_AsSsize_t(*_py_start); if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstart = 0; } if (!has_cstop) { if (_py_stop && (*_py_stop != Py_None)) { cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop); if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstop = PY_SSIZE_T_MAX; } if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) { Py_ssize_t l = ms->sq_length(obj); if (likely(l >= 0)) { if (cstop < 0) { cstop += l; if (cstop < 0) cstop = 0; } if (cstart < 0) { cstart += l; if (cstart < 0) cstart = 0; } } else { if (PyErr_ExceptionMatches(PyExc_OverflowError)) PyErr_Clear(); else goto bad; } } return ms->sq_ass_slice(obj, cstart, cstop, value); } #endif mp = Py_TYPE(obj)->tp_as_mapping; if (likely(mp && mp->mp_ass_subscript)) #endif { int result; PyObject *py_slice, *py_start, *py_stop; if (_py_slice) { py_slice = *_py_slice; } else { PyObject* owned_start = NULL; PyObject* owned_stop = NULL; if (_py_start) { py_start = *_py_start; } else { if (has_cstart) { owned_start = py_start = PyInt_FromSsize_t(cstart); if (unlikely(!py_start)) goto bad; } else py_start = Py_None; } if (_py_stop) { py_stop = *_py_stop; } else { if (has_cstop) { owned_stop = py_stop = PyInt_FromSsize_t(cstop); if (unlikely(!py_stop)) { Py_XDECREF(owned_start); goto bad; } } else py_stop = Py_None; } py_slice = PySlice_New(py_start, py_stop, Py_None); Py_XDECREF(owned_start); Py_XDECREF(owned_stop); if (unlikely(!py_slice)) goto bad; } #if CYTHON_COMPILING_IN_CPYTHON result = mp->mp_ass_subscript(obj, py_slice, value); #else result = value ? PyObject_SetItem(obj, py_slice, value) : PyObject_DelItem(obj, py_slice); #endif if (!_py_slice) { Py_DECREF(py_slice); } return result; } PyErr_Format(PyExc_TypeError, "'%.200s' object does not support slice %.10s", Py_TYPE(obj)->tp_name, value ? "assignment" : "deletion"); bad: return -1; } static CYTHON_INLINE int __Pyx_CheckKeywordStrings( PyObject *kwdict, const char* function_name, int kw_allowed) { PyObject* key = 0; Py_ssize_t pos = 0; #if CYTHON_COMPILING_IN_PYPY if (!kw_allowed && PyDict_Next(kwdict, &pos, &key, 0)) goto invalid_keyword; return 1; #else while (PyDict_Next(kwdict, &pos, &key, 0)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyString_CheckExact(key)) && unlikely(!PyString_Check(key))) #endif if (unlikely(!PyUnicode_Check(key))) goto invalid_keyword_type; } if ((!kw_allowed) && unlikely(key)) goto invalid_keyword; return 1; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); return 0; #endif invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif return 0; } static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, #if PY_MAJOR_VERSION < 3 "cannot import name %.230s", PyString_AS_STRING(name)); #else "cannot import name %S", name); #endif } return value; } static CYTHON_INLINE int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v) { int r; if (!j) return -1; r = PyObject_SetItem(o, j, v); Py_DECREF(j); return r; } static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, int wraparound, int boundscheck) { #if CYTHON_COMPILING_IN_CPYTHON if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = (!wraparound) ? i : ((likely(i >= 0)) ? i : i + PyList_GET_SIZE(o)); if ((!boundscheck) || likely((n >= 0) & (n < PyList_GET_SIZE(o)))) { PyObject* old = PyList_GET_ITEM(o, n); Py_INCREF(v); PyList_SET_ITEM(o, n, v); Py_DECREF(old); return 1; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_ass_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (PyErr_ExceptionMatches(PyExc_OverflowError)) PyErr_Clear(); else return -1; } } return m->sq_ass_item(o, i, v); } } #else #if CYTHON_COMPILING_IN_PYPY if (is_list || (PySequence_Check(o) && !PyDict_Check(o))) { #else if (is_list || PySequence_Check(o)) { #endif return PySequence_SetItem(o, i, v); } #endif return __Pyx_SetItemInt_Generic(o, PyInt_FromSsize_t(i), v); } static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; #if PY_VERSION_HEX < 0x03030000 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) goto bad; #endif if (from_list) list = from_list; else { empty_list = PyList_New(0); if (!empty_list) goto bad; list = empty_list; } global_dict = PyModule_GetDict(__pyx_m); if (!global_dict) goto bad; empty_dict = PyDict_New(); if (!empty_dict) goto bad; #if PY_VERSION_HEX >= 0x02050000 { #if PY_MAJOR_VERSION >= 3 if (level == -1) { if (strchr(__Pyx_MODULE_NAME, '.')) { #if PY_VERSION_HEX < 0x03030000 PyObject *py_level = PyInt_FromLong(1); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); #endif if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; PyErr_Clear(); } } level = 0; /* try absolute import on failure */ } #endif if (!module) { #if PY_VERSION_HEX < 0x03030000 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, level); #endif } } #else if (level>0) { PyErr_SetString(PyExc_RuntimeError, "Relative import is not supported for Python <=2.4."); goto bad; } module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, NULL); #endif bad: #if PY_VERSION_HEX < 0x03030000 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); Py_XDECREF(empty_dict); return module; } #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func) \ { \ func_type value = func(x); \ if (sizeof(target_type) < sizeof(func_type)) { \ if (unlikely(value != (func_type) (target_type) value)) { \ func_type zero = 0; \ PyErr_SetString(PyExc_OverflowError, \ (is_unsigned && unlikely(value < zero)) ? \ "can't convert negative value to " #target_type : \ "value too large to convert to " #target_type); \ return (target_type) -1; \ } \ } \ return (target_type) value; \ } #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #endif #endif static CYTHON_INLINE npy_intp __Pyx_PyInt_As_npy_intp(PyObject *x) { const npy_intp neg_one = (npy_intp) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(npy_intp) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(npy_intp, long, PyInt_AS_LONG) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to npy_intp"); return (npy_intp) -1; } return (npy_intp) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(npy_intp)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return (npy_intp) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (unlikely(Py_SIZE(x) < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to npy_intp"); return (npy_intp) -1; } if (sizeof(npy_intp) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT(npy_intp, unsigned long, PyLong_AsUnsignedLong) } else if (sizeof(npy_intp) <= sizeof(unsigned long long)) { __PYX_VERIFY_RETURN_INT(npy_intp, unsigned long long, PyLong_AsUnsignedLongLong) } } else { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(npy_intp)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return +(npy_intp) ((PyLongObject*)x)->ob_digit[0]; case -1: return -(npy_intp) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (sizeof(npy_intp) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT(npy_intp, long, PyLong_AsLong) } else if (sizeof(npy_intp) <= sizeof(long long)) { __PYX_VERIFY_RETURN_INT(npy_intp, long long, PyLong_AsLongLong) } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else npy_intp val; PyObject *v = __Pyx_PyNumber_Int(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (npy_intp) -1; } } else { npy_intp val; PyObject *tmp = __Pyx_PyNumber_Int(x); if (!tmp) return (npy_intp) -1; val = __Pyx_PyInt_As_npy_intp(tmp); Py_DECREF(tmp); return val; } } static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { const long neg_one = (long) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(long) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); } else if (sizeof(long) <= sizeof(unsigned long long)) { return PyLong_FromUnsignedLongLong((unsigned long long) value); } } else { if (sizeof(long) <= sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(long long)) { return PyLong_FromLongLong((long long) value); } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(long), little, !is_unsigned); } } #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #endif #endif static CYTHON_INLINE unsigned long __Pyx_PyInt_As_unsigned_long(PyObject *x) { const unsigned long neg_one = (unsigned long) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(unsigned long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(unsigned long, long, PyInt_AS_LONG) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to unsigned long"); return (unsigned long) -1; } return (unsigned long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(unsigned long)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return (unsigned long) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (unlikely(Py_SIZE(x) < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to unsigned long"); return (unsigned long) -1; } if (sizeof(unsigned long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, PyLong_AsUnsignedLong) } else if (sizeof(unsigned long) <= sizeof(unsigned long long)) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long long, PyLong_AsUnsignedLongLong) } } else { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(unsigned long)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return +(unsigned long) ((PyLongObject*)x)->ob_digit[0]; case -1: return -(unsigned long) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (sizeof(unsigned long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT(unsigned long, long, PyLong_AsLong) } else if (sizeof(unsigned long) <= sizeof(long long)) { __PYX_VERIFY_RETURN_INT(unsigned long, long long, PyLong_AsLongLong) } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else unsigned long val; PyObject *v = __Pyx_PyNumber_Int(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (unsigned long) -1; } } else { unsigned long val; PyObject *tmp = __Pyx_PyNumber_Int(x); if (!tmp) return (unsigned long) -1; val = __Pyx_PyInt_As_unsigned_long(tmp); Py_DECREF(tmp); return val; } } static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { const int neg_one = (int) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(int) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); } else if (sizeof(int) <= sizeof(unsigned long long)) { return PyLong_FromUnsignedLongLong((unsigned long long) value); } } else { if (sizeof(int) <= sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int) <= sizeof(long long)) { return PyLong_FromLongLong((long long) value); } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(int), little, !is_unsigned); } } #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #endif #endif static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { const int neg_one = (int) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } return (int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(int)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return (int) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (unlikely(Py_SIZE(x) < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } if (sizeof(int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT(int, unsigned long, PyLong_AsUnsignedLong) } else if (sizeof(int) <= sizeof(unsigned long long)) { __PYX_VERIFY_RETURN_INT(int, unsigned long long, PyLong_AsUnsignedLongLong) } } else { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(int)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return +(int) ((PyLongObject*)x)->ob_digit[0]; case -1: return -(int) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (sizeof(int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyLong_AsLong) } else if (sizeof(int) <= sizeof(long long)) { __PYX_VERIFY_RETURN_INT(int, long long, PyLong_AsLongLong) } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int val; PyObject *v = __Pyx_PyNumber_Int(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int) -1; } } else { int val; PyObject *tmp = __Pyx_PyNumber_Int(x); if (!tmp) return (int) -1; val = __Pyx_PyInt_As_int(tmp); Py_DECREF(tmp); return val; } } #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #endif #endif static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { const long neg_one = (long) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } return (long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(long)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return (long) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (unlikely(Py_SIZE(x) < 0)) { PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } if (sizeof(long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT(long, unsigned long, PyLong_AsUnsignedLong) } else if (sizeof(long) <= sizeof(unsigned long long)) { __PYX_VERIFY_RETURN_INT(long, unsigned long long, PyLong_AsUnsignedLongLong) } } else { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS if (sizeof(digit) <= sizeof(long)) { switch (Py_SIZE(x)) { case 0: return 0; case 1: return +(long) ((PyLongObject*)x)->ob_digit[0]; case -1: return -(long) ((PyLongObject*)x)->ob_digit[0]; } } #endif #endif if (sizeof(long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyLong_AsLong) } else if (sizeof(long) <= sizeof(long long)) { __PYX_VERIFY_RETURN_INT(long, long long, PyLong_AsLongLong) } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else long val; PyObject *v = __Pyx_PyNumber_Int(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (long) -1; } } else { long val; PyObject *tmp = __Pyx_PyNumber_Int(x); if (!tmp) return (long) -1; val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } } static CYTHON_INLINE PyObject* __Pyx_PyInt_From_npy_intp(npy_intp value) { const npy_intp neg_one = (npy_intp) -1, const_zero = 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(npy_intp) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(npy_intp) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); } else if (sizeof(npy_intp) <= sizeof(unsigned long long)) { return PyLong_FromUnsignedLongLong((unsigned long long) value); } } else { if (sizeof(npy_intp) <= sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(npy_intp) <= sizeof(long long)) { return PyLong_FromLongLong((long long) value); } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(npy_intp), little, !is_unsigned); } } static int __Pyx_check_binary_version(void) { char ctversion[4], rtversion[4]; PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) { char message[200]; PyOS_snprintf(message, sizeof(message), "compiletime version %s of module '%.100s' " "does not match runtime version %s", ctversion, __Pyx_MODULE_NAME, rtversion); #if PY_VERSION_HEX < 0x02050000 return PyErr_Warn(NULL, message); #else return PyErr_WarnEx(NULL, message, 1); #endif } return 0; } #ifndef __PYX_HAVE_RT_ImportModule #define __PYX_HAVE_RT_ImportModule static PyObject *__Pyx_ImportModule(const char *name) { PyObject *py_name = 0; PyObject *py_module = 0; py_name = __Pyx_PyIdentifier_FromString(name); if (!py_name) goto bad; py_module = PyImport_Import(py_name); Py_DECREF(py_name); return py_module; bad: Py_XDECREF(py_name); return 0; } #endif #ifndef __PYX_HAVE_RT_ImportType #define __PYX_HAVE_RT_ImportType static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, size_t size, int strict) { PyObject *py_module = 0; PyObject *result = 0; PyObject *py_name = 0; char warning[200]; Py_ssize_t basicsize; #ifdef Py_LIMITED_API PyObject *py_basicsize; #endif py_module = __Pyx_ImportModule(module_name); if (!py_module) goto bad; py_name = __Pyx_PyIdentifier_FromString(class_name); if (!py_name) goto bad; result = PyObject_GetAttr(py_module, py_name); Py_DECREF(py_name); py_name = 0; Py_DECREF(py_module); py_module = 0; if (!result) goto bad; if (!PyType_Check(result)) { PyErr_Format(PyExc_TypeError, "%.200s.%.200s is not a type object", module_name, class_name); goto bad; } #ifndef Py_LIMITED_API basicsize = ((PyTypeObject *)result)->tp_basicsize; #else py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); if (!py_basicsize) goto bad; basicsize = PyLong_AsSsize_t(py_basicsize); Py_DECREF(py_basicsize); py_basicsize = 0; if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) goto bad; #endif if (!strict && (size_t)basicsize > size) { PyOS_snprintf(warning, sizeof(warning), "%s.%s size changed, may indicate binary incompatibility", module_name, class_name); #if PY_VERSION_HEX < 0x02050000 if (PyErr_Warn(NULL, warning) < 0) goto bad; #else if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; #endif } else if ((size_t)basicsize != size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s has the wrong size, try recompiling", module_name, class_name); goto bad; } return (PyTypeObject *)result; bad: Py_XDECREF(py_module); Py_XDECREF(result); return NULL; } #endif static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; } while (start < end) { mid = (start + end) / 2; if (code_line < entries[mid].code_line) { end = mid; } else if (code_line > entries[mid].code_line) { start = mid + 1; } else { return mid; } } if (code_line <= entries[mid].code_line) { return mid; } else { return mid + 1; } } static PyCodeObject *__pyx_find_code_object(int code_line) { PyCodeObject* code_object; int pos; if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { return NULL; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { return NULL; } code_object = __pyx_code_cache.entries[pos].code_object; Py_INCREF(code_object); return code_object; } static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { int pos, i; __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; if (unlikely(!code_line)) { return; } if (unlikely(!entries)) { entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); if (likely(entries)) { __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = 64; __pyx_code_cache.count = 1; entries[0].code_line = code_line; entries[0].code_object = code_object; Py_INCREF(code_object); } return; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { PyCodeObject* tmp = entries[pos].code_object; entries[pos].code_object = code_object; Py_DECREF(tmp); return; } if (__pyx_code_cache.count == __pyx_code_cache.max_count) { int new_max = __pyx_code_cache.max_count + 64; entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); if (unlikely(!entries)) { return; } __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = new_max; } for (i=__pyx_code_cache.count; i>pos; i--) { entries[i] = entries[i-1]; } entries[pos].code_line = code_line; entries[pos].code_object = code_object; __pyx_code_cache.count++; Py_INCREF(code_object); } #include "compile.h" #include "frameobject.h" #include "traceback.h" static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyObject *py_srcfile = 0; PyObject *py_funcname = 0; #if PY_MAJOR_VERSION < 3 py_srcfile = PyString_FromString(filename); #else py_srcfile = PyUnicode_FromString(filename); #endif if (!py_srcfile) goto bad; if (c_line) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); #else py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); #else py_funcname = PyUnicode_FromString(funcname); #endif } if (!py_funcname) goto bad; py_code = __Pyx_PyCode_New( 0, /*int argcount,*/ 0, /*int kwonlyargcount,*/ 0, /*int nlocals,*/ 0, /*int stacksize,*/ 0, /*int flags,*/ __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ py_line, /*int firstlineno,*/ __pyx_empty_bytes /*PyObject *lnotab*/ ); Py_DECREF(py_srcfile); Py_DECREF(py_funcname); return py_code; bad: Py_XDECREF(py_srcfile); Py_XDECREF(py_funcname); return NULL; } static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyObject *py_globals = 0; PyFrameObject *py_frame = 0; py_code = __pyx_find_code_object(c_line ? c_line : py_line); if (!py_code) { py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) goto bad; __pyx_insert_code_object(c_line ? c_line : py_line, py_code); } py_globals = PyModule_GetDict(__pyx_m); if (!py_globals) goto bad; py_frame = PyFrame_New( PyThreadState_GET(), /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ py_globals, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; py_frame->f_lineno = py_line; PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_code); Py_XDECREF(py_frame); } static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else /* Python 3+ has unicode identifiers */ if (t->is_unicode | t->is_str) { if (t->intern) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->encoding) { *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); } else { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; ++t; } return 0; } static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT if ( #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII __Pyx_sys_getdefaultencoding_not_ascii && #endif PyUnicode_Check(o)) { #if PY_VERSION_HEX < 0x03030000 char* defenc_c; PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); if (!defenc) return NULL; defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII { char* end = defenc_c + PyBytes_GET_SIZE(defenc); char* c; for (c = defenc_c; c < end; c++) { if ((unsigned char) (*c) >= 128) { PyUnicode_AsASCIIString(o); return NULL; } } } #endif /*__PYX_DEFAULT_STRING_ENCODING_IS_ASCII*/ *length = PyBytes_GET_SIZE(defenc); return defenc_c; #else /* PY_VERSION_HEX < 0x03030000 */ if (PyUnicode_READY(o) == -1) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII if (PyUnicode_IS_ASCII(o)) { *length = PyUnicode_GET_LENGTH(o); return PyUnicode_AsUTF8(o); } else { PyUnicode_AsASCIIString(o); return NULL; } #else /* __PYX_DEFAULT_STRING_ENCODING_IS_ASCII */ return PyUnicode_AsUTF8AndSize(o, length); #endif /* __PYX_DEFAULT_STRING_ENCODING_IS_ASCII */ #endif /* PY_VERSION_HEX < 0x03030000 */ } else #endif /* __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT */ #if !CYTHON_COMPILING_IN_PYPY #if PY_VERSION_HEX >= 0x02060000 if (PyByteArray_Check(o)) { *length = PyByteArray_GET_SIZE(o); return PyByteArray_AS_STRING(o); } else #endif #endif { char* result; int r = PyBytes_AsStringAndSize(o, &result, length); if (unlikely(r < 0)) { return NULL; } else { return result; } } } static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { int is_true = x == Py_True; if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x) { PyNumberMethods *m; const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 if (PyInt_Check(x) || PyLong_Check(x)) #else if (PyLong_Check(x)) #endif return Py_INCREF(x), x; m = Py_TYPE(x)->tp_as_number; #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; res = PyNumber_Int(x); } else if (m && m->nb_long) { name = "long"; res = PyNumber_Long(x); } #else if (m && m->nb_int) { name = "int"; res = PyNumber_Long(x); } #endif if (res) { #if PY_MAJOR_VERSION < 3 if (!PyInt_Check(res) && !PyLong_Check(res)) { #else if (!PyLong_Check(res)) { #endif PyErr_Format(PyExc_TypeError, "__%.4s__ returned non-%.4s (type %.200s)", name, name, Py_TYPE(res)->tp_name); Py_DECREF(res); return NULL; } } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "an integer is required"); } return res; } #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #endif #endif static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_ssize_t ival; PyObject *x; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(b))) return PyInt_AS_LONG(b); #endif if (likely(PyLong_CheckExact(b))) { #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 #if CYTHON_USE_PYLONG_INTERNALS switch (Py_SIZE(b)) { case -1: return -(sdigit)((PyLongObject*)b)->ob_digit[0]; case 0: return 0; case 1: return ((PyLongObject*)b)->ob_digit[0]; } #endif #endif #if PY_VERSION_HEX < 0x02060000 return PyInt_AsSsize_t(b); #else return PyLong_AsSsize_t(b); #endif } x = PyNumber_Index(b); if (!x) return -1; ival = PyInt_AsSsize_t(x); Py_DECREF(x); return ival; } static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { #if PY_VERSION_HEX < 0x02050000 if (ival <= LONG_MAX) return PyInt_FromLong((long)ival); else { unsigned char *bytes = (unsigned char *) &ival; int one = 1; int little = (int)*(unsigned char*)&one; return _PyLong_FromByteArray(bytes, sizeof(size_t), little, 0); } #else return PyInt_FromSize_t(ival); #endif } #endif /* Py_PYTHON_H */