|
import numpy as np |
|
from core.leras import nn |
|
from tensorflow.python.ops import control_flow_ops, state_ops |
|
|
|
tf = nn.tf |
|
|
|
class AdaBelief(nn.OptimizerBase): |
|
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, lr_dropout=1.0, lr_cos=0, clipnorm=0.0, name=None, **kwargs): |
|
super().__init__(name=name) |
|
|
|
if name is None: |
|
raise ValueError('name must be defined.') |
|
|
|
self.lr = lr |
|
self.beta_1 = beta_1 |
|
self.beta_2 = beta_2 |
|
self.lr_dropout = lr_dropout |
|
self.lr_cos = lr_cos |
|
self.clipnorm = clipnorm |
|
|
|
with tf.device('/CPU:0') : |
|
with tf.variable_scope(self.name): |
|
self.iterations = tf.Variable(0, dtype=tf.int64, name='iters') |
|
|
|
self.ms_dict = {} |
|
self.vs_dict = {} |
|
self.lr_rnds_dict = {} |
|
|
|
def get_weights(self): |
|
return [self.iterations] + list(self.ms_dict.values()) + list(self.vs_dict.values()) |
|
|
|
def initialize_variables(self, trainable_weights, vars_on_cpu=True, lr_dropout_on_cpu=False): |
|
|
|
e = tf.device('/CPU:0') if vars_on_cpu else None |
|
if e: e.__enter__() |
|
with tf.variable_scope(self.name): |
|
ms = { v.name : tf.get_variable ( f'ms_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights } |
|
vs = { v.name : tf.get_variable ( f'vs_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights } |
|
self.ms_dict.update (ms) |
|
self.vs_dict.update (vs) |
|
|
|
if self.lr_dropout != 1.0: |
|
e = tf.device('/CPU:0') if lr_dropout_on_cpu else None |
|
if e: e.__enter__() |
|
lr_rnds = [ nn.random_binomial( v.shape, p=self.lr_dropout, dtype=v.dtype) for v in trainable_weights ] |
|
if e: e.__exit__(None, None, None) |
|
self.lr_rnds_dict.update ( { v.name : rnd for v,rnd in zip(trainable_weights,lr_rnds) } ) |
|
if e: e.__exit__(None, None, None) |
|
|
|
def get_update_op(self, grads_vars): |
|
updates = [] |
|
|
|
if self.clipnorm > 0.0: |
|
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars])) |
|
updates += [ state_ops.assign_add( self.iterations, 1) ] |
|
for i, (g,v) in enumerate(grads_vars): |
|
if self.clipnorm > 0.0: |
|
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) ) |
|
|
|
ms = self.ms_dict[ v.name ] |
|
vs = self.vs_dict[ v.name ] |
|
|
|
m_t = self.beta_1*ms + (1.0-self.beta_1) * g |
|
v_t = self.beta_2*vs + (1.0-self.beta_2) * tf.square(g-m_t) |
|
|
|
lr = tf.constant(self.lr, g.dtype) |
|
if self.lr_cos != 0: |
|
lr *= (tf.cos( tf.cast(self.iterations, g.dtype) * (2*3.1415926535/ float(self.lr_cos) ) ) + 1.0) / 2.0 |
|
|
|
v_diff = - lr * m_t / (tf.sqrt(v_t) + np.finfo( g.dtype.as_numpy_dtype ).resolution ) |
|
if self.lr_dropout != 1.0: |
|
lr_rnd = self.lr_rnds_dict[v.name] |
|
v_diff *= lr_rnd |
|
new_v = v + v_diff |
|
|
|
updates.append (state_ops.assign(ms, m_t)) |
|
updates.append (state_ops.assign(vs, v_t)) |
|
updates.append (state_ops.assign(v, new_v)) |
|
|
|
return control_flow_ops.group ( *updates, name=self.name+'_updates') |
|
nn.AdaBelief = AdaBelief |
|
|