File size: 14,335 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import multiprocessing
import operator
from functools import partial

import numpy as np

from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType, XSegNet
from models import ModelBase
from samplelib import *

class XSegModel(ModelBase):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, force_model_class_name='XSeg', **kwargs)

    #override
    def on_initialize_options(self):
        ask_override = self.ask_override()

        if not self.is_first_run() and ask_override:
            if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
                self.set_iter(0)

        default_face_type          = self.options['face_type']          = self.load_or_def_option('face_type', 'wf')
        default_pretrain           = self.options['pretrain']           = self.load_or_def_option('pretrain', False)

        if self.is_first_run():
            self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()

        if self.is_first_run() or ask_override:
            self.ask_batch_size(4, range=[2,16])
            self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
        
        if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
            raise Exception("pretraining_data_path is not defined")
            
        self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
        
    #override
    def on_initialize(self):
        device_config = nn.getCurrentDeviceConfig()
        self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC"
        nn.initialize(data_format=self.model_data_format)
        tf = nn.tf

        device_config = nn.getCurrentDeviceConfig()
        devices = device_config.devices

        self.resolution = resolution = 256


        self.face_type = {'h'  : FaceType.HALF,
                          'mf' : FaceType.MID_FULL,
                          'f'  : FaceType.FULL,
                          'wf' : FaceType.WHOLE_FACE,
                          'head' : FaceType.HEAD}[ self.options['face_type'] ]
        
            
        place_model_on_cpu = len(devices) == 0
        models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name

        bgr_shape = nn.get4Dshape(resolution,resolution,3)
        mask_shape = nn.get4Dshape(resolution,resolution,1)

        # Initializing model classes
        self.model = XSegNet(name='XSeg',
                               resolution=resolution,
                               load_weights=not self.is_first_run(),
                               weights_file_root=self.get_model_root_path(),
                               training=True,
                               place_model_on_cpu=place_model_on_cpu,
                               optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
                               data_format=nn.data_format)
        
        self.pretrain = self.options['pretrain']
        if self.pretrain_just_disabled:
            self.set_iter(0)
            
        if self.is_training:
            # Adjust batch size for multiple GPU
            gpu_count = max(1, len(devices) )
            bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
            self.set_batch_size( gpu_count*bs_per_gpu)

            # Compute losses per GPU
            gpu_pred_list = []

            gpu_losses = []
            gpu_loss_gvs = []

            for gpu_id in range(gpu_count):
                with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
                    with tf.device(f'/CPU:0'):
                        # slice on CPU, otherwise all batch data will be transfered to GPU first
                        batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
                        gpu_input_t       = self.model.input_t [batch_slice,:,:,:]
                        gpu_target_t      = self.model.target_t [batch_slice,:,:,:]

                    # process model tensors
                    gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
                    gpu_pred_list.append(gpu_pred_t)
                    
                    
                    if self.pretrain:
                        # Structural loss
                        gpu_loss =  tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
                        gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
                        # Pixel loss
                        gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3])
                    else:
                        gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
                      
                    gpu_losses += [gpu_loss]

                    gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.get_weights() ) ]


            # Average losses and gradients, and create optimizer update ops
            #with tf.device(f'/CPU:0'): # Temporary fix. Unknown bug with training freeze starts from 2.4.0, but 2.3.1 was ok
            with tf.device (models_opt_device):
                pred = tf.concat(gpu_pred_list, 0)
                loss = tf.concat(gpu_losses, 0)
                loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs))


            # Initializing training and view functions
            if self.pretrain:
                def train(input_np, target_np):
                    l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np})
                    return l
            else:
                def train(input_np, target_np):
                    l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
                    return l
            self.train = train

            def view(input_np):
                return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
            self.view = view

            # initializing sample generators
            cpu_count = min(multiprocessing.cpu_count(), 8)
            src_dst_generators_count = cpu_count // 2
            src_generators_count = cpu_count // 2
            dst_generators_count = cpu_count // 2
            
            if self.pretrain:
                pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(),
                                    sample_process_options=SampleProcessor.Options(random_flip=True),
                                    output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                            {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,   'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},                                                            
                                                          ],
                                    uniform_yaw_distribution=False,
                                    generators_count=cpu_count )
                self.set_training_data_generators ([pretrain_gen])
            else:   
                srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
                                                            debug=self.is_debug(),
                                                            batch_size=self.get_batch_size(),
                                                            resolution=resolution,
                                                            face_type=self.face_type,
                                                            generators_count=src_dst_generators_count,
                                                            data_format=nn.data_format)

                src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
                                                    sample_process_options=SampleProcessor.Options(random_flip=False),
                                                    output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,  'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                                        ],
                                                    generators_count=src_generators_count,
                                                    raise_on_no_data=False )
                dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
                                                    sample_process_options=SampleProcessor.Options(random_flip=False),
                                                    output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,  'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                                        ],
                                                    generators_count=dst_generators_count,
                                                    raise_on_no_data=False )

                self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])

    #override
    def get_model_filename_list(self):
        return self.model.model_filename_list

    #override
    def onSave(self):
        self.model.save_weights()

    #override
    def onTrainOneIter(self):
        image_np, target_np = self.generate_next_samples()[0]
        loss = self.train (image_np, target_np)
        
        return ( ('loss', np.mean(loss) ), )

    #override
    def onGetPreview(self, samples, for_history=False):
        n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
        
        if self.pretrain:
            srcdst_samples, = samples       
            image_np, mask_np = srcdst_samples     
        else:
            srcdst_samples, src_samples, dst_samples = samples
            image_np, mask_np = srcdst_samples

        I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
        M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]

        green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )

        result = []
        st = []
        for i in range(n_samples):
            if self.pretrain:
                ar = I[i], IM[i]
            else:
                ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
            st.append ( np.concatenate ( ar, axis=1) )
        result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]

        if not self.pretrain and len(src_samples) != 0:
            src_np, = src_samples


            D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view (src_np) ) ]
            DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]

            st = []
            for i in range(n_samples):
                ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
                st.append ( np.concatenate ( ar, axis=1) )

            result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]

        if not self.pretrain and len(dst_samples) != 0:
            dst_np, = dst_samples


            D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
            DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]

            st = []
            for i in range(n_samples):
                ar = D[i], DM[i], D[i]*DM[i]  + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
                st.append ( np.concatenate ( ar, axis=1) )

            result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ]

        return result
        
    def export_dfm (self):
        output_path = self.get_strpath_storage_for_file(f'model.onnx')
        io.log_info(f'Dumping .onnx to {output_path}')
        tf = nn.tf
        
        with tf.device (nn.tf_default_device_name):
            input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
            input_t = tf.transpose(input_t, (0,3,1,2))
            _, pred_t = self.model.flow(input_t)
            pred_t = tf.transpose(pred_t, (0,2,3,1))
            
        tf.identity(pred_t, name='out_mask')
        
        output_graph_def = tf.graph_util.convert_variables_to_constants(
            nn.tf_sess, 
            tf.get_default_graph().as_graph_def(), 
            ['out_mask']
        ) 
        
        import tf2onnx
        with tf.device("/CPU:0"):
            model_proto, _ = tf2onnx.convert._convert_common(
                output_graph_def,
                name='XSeg',
                input_names=['in_face:0'],
                output_names=['out_mask:0'],
                opset=13,
                output_path=output_path)
                
Model = XSegModel