File size: 14,335 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import multiprocessing
import operator
from functools import partial
import numpy as np
from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType, XSegNet
from models import ModelBase
from samplelib import *
class XSegModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, force_model_class_name='XSeg', **kwargs)
#override
def on_initialize_options(self):
ask_override = self.ask_override()
if not self.is_first_run() and ask_override:
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
self.set_iter(0)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
if self.is_first_run():
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
if self.is_first_run() or ask_override:
self.ask_batch_size(4, range=[2,16])
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
raise Exception("pretraining_data_path is not defined")
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
#override
def on_initialize(self):
device_config = nn.getCurrentDeviceConfig()
self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC"
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
device_config = nn.getCurrentDeviceConfig()
devices = device_config.devices
self.resolution = resolution = 256
self.face_type = {'h' : FaceType.HALF,
'mf' : FaceType.MID_FULL,
'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
bgr_shape = nn.get4Dshape(resolution,resolution,3)
mask_shape = nn.get4Dshape(resolution,resolution,1)
# Initializing model classes
self.model = XSegNet(name='XSeg',
resolution=resolution,
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True,
place_model_on_cpu=place_model_on_cpu,
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
data_format=nn.data_format)
self.pretrain = self.options['pretrain']
if self.pretrain_just_disabled:
self.set_iter(0)
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU
gpu_pred_list = []
gpu_losses = []
gpu_loss_gvs = []
for gpu_id in range(gpu_count):
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
# process model tensors
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
gpu_pred_list.append(gpu_pred_t)
if self.pretrain:
# Structural loss
gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
# Pixel loss
gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3])
else:
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
gpu_losses += [gpu_loss]
gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.get_weights() ) ]
# Average losses and gradients, and create optimizer update ops
#with tf.device(f'/CPU:0'): # Temporary fix. Unknown bug with training freeze starts from 2.4.0, but 2.3.1 was ok
with tf.device (models_opt_device):
pred = tf.concat(gpu_pred_list, 0)
loss = tf.concat(gpu_losses, 0)
loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs))
# Initializing training and view functions
if self.pretrain:
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np})
return l
else:
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
return l
self.train = train
def view(input_np):
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
self.view = view
# initializing sample generators
cpu_count = min(multiprocessing.cpu_count(), 8)
src_dst_generators_count = cpu_count // 2
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
if self.pretrain:
pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=False,
generators_count=cpu_count )
self.set_training_data_generators ([pretrain_gen])
else:
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
debug=self.is_debug(),
batch_size=self.get_batch_size(),
resolution=resolution,
face_type=self.face_type,
generators_count=src_dst_generators_count,
data_format=nn.data_format)
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=src_generators_count,
raise_on_no_data=False )
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count,
raise_on_no_data=False )
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
#override
def get_model_filename_list(self):
return self.model.model_filename_list
#override
def onSave(self):
self.model.save_weights()
#override
def onTrainOneIter(self):
image_np, target_np = self.generate_next_samples()[0]
loss = self.train (image_np, target_np)
return ( ('loss', np.mean(loss) ), )
#override
def onGetPreview(self, samples, for_history=False):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
if self.pretrain:
srcdst_samples, = samples
image_np, mask_np = srcdst_samples
else:
srcdst_samples, src_samples, dst_samples = samples
image_np, mask_np = srcdst_samples
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )
result = []
st = []
for i in range(n_samples):
if self.pretrain:
ar = I[i], IM[i]
else:
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
if not self.pretrain and len(src_samples) != 0:
src_np, = src_samples
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view (src_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
if not self.pretrain and len(dst_samples) != 0:
dst_np, = dst_samples
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ]
return result
def export_dfm (self):
output_path = self.get_strpath_storage_for_file(f'model.onnx')
io.log_info(f'Dumping .onnx to {output_path}')
tf = nn.tf
with tf.device (nn.tf_default_device_name):
input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
input_t = tf.transpose(input_t, (0,3,1,2))
_, pred_t = self.model.flow(input_t)
pred_t = tf.transpose(pred_t, (0,2,3,1))
tf.identity(pred_t, name='out_mask')
output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='XSeg',
input_names=['in_face:0'],
output_names=['out_mask:0'],
opset=13,
output_path=output_path)
Model = XSegModel |