File size: 12,944 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import numpy as np
import copy
from facelib import FaceType
from core.interact import interact as io
class MergerConfig(object):
TYPE_NONE = 0
TYPE_MASKED = 1
TYPE_FACE_AVATAR = 2
####
TYPE_IMAGE = 3
TYPE_IMAGE_WITH_LANDMARKS = 4
def __init__(self, type=0,
sharpen_mode=0,
blursharpen_amount=0,
**kwargs
):
self.type = type
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
#default changeable params
self.sharpen_mode = sharpen_mode
self.blursharpen_amount = blursharpen_amount
def copy(self):
return copy.copy(self)
#overridable
def ask_settings(self):
s = """Choose sharpen mode: \n"""
for key in self.sharpen_dict.keys():
s += f"""({key}) {self.sharpen_dict[key]}\n"""
io.log_info(s)
self.sharpen_mode = io.input_int ("", 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
if self.sharpen_mode != 0:
self.blursharpen_amount = np.clip ( io.input_int ("Choose blur/sharpen amount", 0, add_info="-100..100"), -100, 100 )
def toggle_sharpen_mode(self):
a = list( self.sharpen_dict.keys() )
self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ]
def add_blursharpen_amount(self, diff):
self.blursharpen_amount = np.clip ( self.blursharpen_amount+diff, -100, 100)
#overridable
def get_config(self):
d = self.__dict__.copy()
d.pop('type')
return d
#overridable
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfig):
return self.sharpen_mode == other.sharpen_mode and \
self.blursharpen_amount == other.blursharpen_amount
return False
#overridable
def to_string(self, filename):
r = ""
r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n"
r += f"blursharpen_amount : {self.blursharpen_amount}\n"
return r
mode_dict = {0:'original',
1:'overlay',
2:'hist-match',
3:'seamless',
4:'seamless-hist-match',
5:'raw-rgb',
6:'raw-predict'}
mode_str_dict = { mode_dict[key] : key for key in mode_dict.keys() }
mask_mode_dict = {0:'full',
1:'dst',
2:'learned-prd',
3:'learned-dst',
4:'learned-prd*learned-dst',
5:'learned-prd+learned-dst',
6:'XSeg-prd',
7:'XSeg-dst',
8:'XSeg-prd*XSeg-dst',
9:'learned-prd*learned-dst*XSeg-prd*XSeg-dst'
}
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
class MergerConfigMasked(MergerConfig):
def __init__(self, face_type=FaceType.FULL,
default_mode = 'overlay',
mode='overlay',
masked_hist_match=True,
hist_match_threshold = 238,
mask_mode = 4,
erode_mask_modifier = 0,
blur_mask_modifier = 0,
motion_blur_power = 0,
output_face_scale = 0,
super_resolution_power = 0,
color_transfer_mode = ctm_str_dict['rct'],
image_denoise_power = 0,
bicubic_degrade_power = 0,
color_degrade_power = 0,
**kwargs
):
super().__init__(type=MergerConfig.TYPE_MASKED, **kwargs)
self.face_type = face_type
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE, FaceType.HEAD ]:
raise ValueError("MergerConfigMasked does not support this type of face.")
self.default_mode = default_mode
#default changeable params
if mode not in mode_str_dict:
mode = mode_dict[1]
self.mode = mode
self.masked_hist_match = masked_hist_match
self.hist_match_threshold = hist_match_threshold
self.mask_mode = mask_mode
self.erode_mask_modifier = erode_mask_modifier
self.blur_mask_modifier = blur_mask_modifier
self.motion_blur_power = motion_blur_power
self.output_face_scale = output_face_scale
self.super_resolution_power = super_resolution_power
self.color_transfer_mode = color_transfer_mode
self.image_denoise_power = image_denoise_power
self.bicubic_degrade_power = bicubic_degrade_power
self.color_degrade_power = color_degrade_power
def copy(self):
return copy.copy(self)
def set_mode (self, mode):
self.mode = mode_dict.get (mode, self.default_mode)
def toggle_masked_hist_match(self):
if self.mode == 'hist-match':
self.masked_hist_match = not self.masked_hist_match
def add_hist_match_threshold(self, diff):
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
def toggle_mask_mode(self):
a = list( mask_mode_dict.keys() )
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
def add_erode_mask_modifier(self, diff):
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -400, 400)
def add_blur_mask_modifier(self, diff):
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , 0, 400)
def add_motion_blur_power(self, diff):
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
def add_output_face_scale(self, diff):
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
def toggle_color_transfer_mode(self):
self.color_transfer_mode = (self.color_transfer_mode+1) % ( max(ctm_dict.keys())+1 )
def add_super_resolution_power(self, diff):
self.super_resolution_power = np.clip ( self.super_resolution_power+diff , 0, 100)
def add_color_degrade_power(self, diff):
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
def add_image_denoise_power(self, diff):
self.image_denoise_power = np.clip ( self.image_denoise_power+diff, 0, 500)
def add_bicubic_degrade_power(self, diff):
self.bicubic_degrade_power = np.clip ( self.bicubic_degrade_power+diff, 0, 100)
def ask_settings(self):
s = """Choose mode: \n"""
for key in mode_dict.keys():
s += f"""({key}) {mode_dict[key]}\n"""
io.log_info(s)
mode = io.input_int ("", mode_str_dict.get(self.default_mode, 1) )
self.mode = mode_dict.get (mode, self.default_mode )
if 'raw' not in self.mode:
if self.mode == 'hist-match':
self.masked_hist_match = io.input_bool("Masked hist match?", True)
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold", 255, add_info="0..255"), 0, 255)
s = """Choose mask mode: \n"""
for key in mask_mode_dict.keys():
s += f"""({key}) {mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=mask_mode_dict.keys() )
if 'raw' not in self.mode:
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier", 0, add_info="0..400"), 0, 400)
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power", 0, add_info="0..100"), 0, 100)
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier", 0, add_info="-50..50" ), -50, 50)
if 'raw' not in self.mode:
self.color_transfer_mode = io.input_str ( "Color transfer to predicted face", None, valid_list=list(ctm_str_dict.keys())[1:] )
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
super().ask_settings()
self.super_resolution_power = np.clip ( io.input_int ("Choose super resolution power", 0, add_info="0..100", help_message="Enhance details by applying superresolution network."), 0, 100)
if 'raw' not in self.mode:
self.image_denoise_power = np.clip ( io.input_int ("Choose image degrade by denoise power", 0, add_info="0..500"), 0, 500)
self.bicubic_degrade_power = np.clip ( io.input_int ("Choose image degrade by bicubic rescale power", 0, add_info="0..100"), 0, 100)
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image", 0, add_info="0..100"), 0, 100)
io.log_info ("")
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigMasked):
return super().__eq__(other) and \
self.mode == other.mode and \
self.masked_hist_match == other.masked_hist_match and \
self.hist_match_threshold == other.hist_match_threshold and \
self.mask_mode == other.mask_mode and \
self.erode_mask_modifier == other.erode_mask_modifier and \
self.blur_mask_modifier == other.blur_mask_modifier and \
self.motion_blur_power == other.motion_blur_power and \
self.output_face_scale == other.output_face_scale and \
self.color_transfer_mode == other.color_transfer_mode and \
self.super_resolution_power == other.super_resolution_power and \
self.image_denoise_power == other.image_denoise_power and \
self.bicubic_degrade_power == other.bicubic_degrade_power and \
self.color_degrade_power == other.color_degrade_power
return False
def to_string(self, filename):
r = (
f"""MergerConfig {filename}:\n"""
f"""Mode: {self.mode}\n"""
)
if self.mode == 'hist-match':
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
r += f"""mask_mode: { mask_mode_dict[self.mask_mode] }\n"""
if 'raw' not in self.mode:
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
f"""motion_blur_power: {self.motion_blur_power}\n""")
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
r += f"""color_transfer_mode: {ctm_dict[self.color_transfer_mode]}\n"""
r += super().to_string(filename)
r += f"""super_resolution_power: {self.super_resolution_power}\n"""
if 'raw' not in self.mode:
r += (f"""image_denoise_power: {self.image_denoise_power}\n"""
f"""bicubic_degrade_power: {self.bicubic_degrade_power}\n"""
f"""color_degrade_power: {self.color_degrade_power}\n""")
r += "================"
return r
class MergerConfigFaceAvatar(MergerConfig):
def __init__(self, temporal_face_count=0,
add_source_image=False):
super().__init__(type=MergerConfig.TYPE_FACE_AVATAR)
self.temporal_face_count = temporal_face_count
#changeable params
self.add_source_image = add_source_image
def copy(self):
return copy.copy(self)
#override
def ask_settings(self):
self.add_source_image = io.input_bool("Add source image?", False, help_message="Add source image for comparison.")
super().ask_settings()
def toggle_add_source_image(self):
self.add_source_image = not self.add_source_image
#override
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigFaceAvatar):
return super().__eq__(other) and \
self.add_source_image == other.add_source_image
return False
#override
def to_string(self, filename):
return (f"MergerConfig {filename}:\n"
f"add_source_image : {self.add_source_image}\n") + \
super().to_string(filename) + "================"
|