File size: 1,620 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import cv2
import numpy as np

from core import imagelib
from facelib import FaceType, LandmarksProcessor
from core.cv2ex import *

def process_frame_info(frame_info, inp_sh):
    img_uint8 = cv2_imread (frame_info.filename)
    img_uint8 = imagelib.normalize_channels (img_uint8, 3)
    img = img_uint8.astype(np.float32) / 255.0

    img_mat = LandmarksProcessor.get_transform_mat (frame_info.landmarks_list[0], inp_sh[0], face_type=FaceType.FULL_NO_ALIGN)
    img = cv2.warpAffine( img, img_mat, inp_sh[0:2], borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
    return img

def MergeFaceAvatar (predictor_func, predictor_input_shape, cfg, prev_temporal_frame_infos, frame_info, next_temporal_frame_infos):
    inp_sh = predictor_input_shape

    prev_imgs=[]
    next_imgs=[]
    for i in range(cfg.temporal_face_count):
        prev_imgs.append( process_frame_info(prev_temporal_frame_infos[i], inp_sh) )
        next_imgs.append( process_frame_info(next_temporal_frame_infos[i], inp_sh) )
    img = process_frame_info(frame_info, inp_sh)

    prd_f = predictor_func ( prev_imgs, img, next_imgs )

    #if cfg.super_resolution_mode != 0:
    #    prd_f = cfg.superres_func(cfg.super_resolution_mode, prd_f)

    if cfg.sharpen_mode != 0 and cfg.sharpen_amount != 0:
        prd_f = cfg.sharpen_func ( prd_f, cfg.sharpen_mode, 3, cfg.sharpen_amount)

    out_img = np.clip(prd_f, 0.0, 1.0)

    if cfg.add_source_image:
        out_img = np.concatenate ( [cv2.resize ( img, (prd_f.shape[1], prd_f.shape[0])  ),
                                    out_img], axis=1 )

    return (out_img*255).astype(np.uint8)