File size: 15,931 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import numpy as np
from core.leras import nn
tf = nn.tf
from tensorflow.python.ops import array_ops, random_ops, math_ops, sparse_ops, gradients
from tensorflow.python.framework import sparse_tensor
def tf_get_value(tensor):
return nn.tf_sess.run (tensor)
nn.tf_get_value = tf_get_value
def batch_set_value(tuples):
if len(tuples) != 0:
with nn.tf.device('/CPU:0'):
assign_ops = []
feed_dict = {}
for x, value in tuples:
if isinstance(value, nn.tf.Operation) or \
isinstance(value, nn.tf.Variable):
assign_ops.append(value)
else:
value = np.asarray(value, dtype=x.dtype.as_numpy_dtype)
assign_placeholder = nn.tf.placeholder( x.dtype.base_dtype, shape=[None]*value.ndim )
assign_op = nn.tf.assign (x, assign_placeholder )
assign_ops.append(assign_op)
feed_dict[assign_placeholder] = value
nn.tf_sess.run(assign_ops, feed_dict=feed_dict)
nn.batch_set_value = batch_set_value
def init_weights(weights):
ops = []
ca_tuples_w = []
ca_tuples = []
for w in weights:
initializer = w.initializer
for input in initializer.inputs:
if "_cai_" in input.name:
ca_tuples_w.append (w)
ca_tuples.append ( (w.shape.as_list(), w.dtype.as_numpy_dtype) )
break
else:
ops.append (initializer)
if len(ops) != 0:
nn.tf_sess.run (ops)
if len(ca_tuples) != 0:
nn.batch_set_value( [*zip(ca_tuples_w, nn.initializers.ca.generate_batch (ca_tuples))] )
nn.init_weights = init_weights
def tf_gradients ( loss, vars ):
grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True )
gv = [*zip(grads,vars)]
for g,v in gv:
if g is None:
raise Exception(f"Variable {v.name} is declared as trainable, but no tensors flow through it.")
return gv
nn.gradients = tf_gradients
def average_gv_list(grad_var_list, tf_device_string=None):
if len(grad_var_list) == 1:
return grad_var_list[0]
e = tf.device(tf_device_string) if tf_device_string is not None else None
if e is not None: e.__enter__()
result = []
for i, (gv) in enumerate(grad_var_list):
for j,(g,v) in enumerate(gv):
g = tf.expand_dims(g, 0)
if i == 0:
result += [ [[g], v] ]
else:
result[j][0] += [g]
for i,(gs,v) in enumerate(result):
result[i] = ( tf.reduce_mean( tf.concat (gs, 0), 0 ), v )
if e is not None: e.__exit__(None,None,None)
return result
nn.average_gv_list = average_gv_list
def average_tensor_list(tensors_list, tf_device_string=None):
if len(tensors_list) == 1:
return tensors_list[0]
e = tf.device(tf_device_string) if tf_device_string is not None else None
if e is not None: e.__enter__()
result = tf.reduce_mean(tf.concat ([tf.expand_dims(t, 0) for t in tensors_list], 0), 0)
if e is not None: e.__exit__(None,None,None)
return result
nn.average_tensor_list = average_tensor_list
def concat (tensors_list, axis):
"""
Better version.
"""
if len(tensors_list) == 1:
return tensors_list[0]
return tf.concat(tensors_list, axis)
nn.concat = concat
def gelu(x):
cdf = 0.5 * (1.0 + tf.nn.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
nn.gelu = gelu
def upsample2d(x, size=2):
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,2,3,1))
x = tf.image.resize_nearest_neighbor(x, (x.shape[1]*size, x.shape[2]*size) )
x = tf.transpose(x, (0,3,1,2))
# b,c,h,w = x.shape.as_list()
# x = tf.reshape (x, (-1,c,h,1,w,1) )
# x = tf.tile(x, (1,1,1,size,1,size) )
# x = tf.reshape (x, (-1,c,h*size,w*size) )
return x
else:
return tf.image.resize_nearest_neighbor(x, (x.shape[1]*size, x.shape[2]*size) )
nn.upsample2d = upsample2d
def resize2d_bilinear(x, size=2):
h = x.shape[nn.conv2d_spatial_axes[0]].value
w = x.shape[nn.conv2d_spatial_axes[1]].value
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,2,3,1))
if size > 0:
new_size = (h*size,w*size)
else:
new_size = (h//-size,w//-size)
x = tf.image.resize(x, new_size, method=tf.image.ResizeMethod.BILINEAR)
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,3,1,2))
return x
nn.resize2d_bilinear = resize2d_bilinear
def resize2d_nearest(x, size=2):
if size in [-1,0,1]:
return x
if size > 0:
raise Exception("")
else:
if nn.data_format == "NCHW":
x = x[:,:,::-size,::-size]
else:
x = x[:,::-size,::-size,:]
return x
h = x.shape[nn.conv2d_spatial_axes[0]].value
w = x.shape[nn.conv2d_spatial_axes[1]].value
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,2,3,1))
if size > 0:
new_size = (h*size,w*size)
else:
new_size = (h//-size,w//-size)
x = tf.image.resize(x, new_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,3,1,2))
return x
nn.resize2d_nearest = resize2d_nearest
def flatten(x):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
x = tf.transpose(x, (0,3,1,2) )
return tf.reshape (x, (-1, np.prod(x.shape[1:])) )
nn.flatten = flatten
def max_pool(x, kernel_size=2, strides=2):
if nn.data_format == "NHWC":
return tf.nn.max_pool(x, [1,kernel_size,kernel_size,1], [1,strides,strides,1], 'SAME', data_format=nn.data_format)
else:
return tf.nn.max_pool(x, [1,1,kernel_size,kernel_size], [1,1,strides,strides], 'SAME', data_format=nn.data_format)
nn.max_pool = max_pool
def reshape_4D(x, w,h,c):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
x = tf.reshape (x, (-1,c,h,w))
x = tf.transpose(x, (0,2,3,1) )
return x
else:
return tf.reshape (x, (-1,c,h,w))
nn.reshape_4D = reshape_4D
def random_binomial(shape, p=0.0, dtype=None, seed=None):
if dtype is None:
dtype=tf.float32
if seed is None:
seed = np.random.randint(10e6)
return array_ops.where(
random_ops.random_uniform(shape, dtype=tf.float16, seed=seed) < p,
array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
nn.random_binomial = random_binomial
def gaussian_blur(input, radius=2.0):
def gaussian(x, mu, sigma):
return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2))
def make_kernel(sigma):
kernel_size = max(3, int(2 * 2 * sigma))
if kernel_size % 2 == 0:
kernel_size += 1
mean = np.floor(0.5 * kernel_size)
kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)])
np_kernel = np.outer(kernel_1d, kernel_1d).astype(np.float32)
kernel = np_kernel / np.sum(np_kernel)
return kernel, kernel_size
gauss_kernel, kernel_size = make_kernel(radius)
padding = kernel_size//2
if padding != 0:
if nn.data_format == "NHWC":
padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]
else:
padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ]
else:
padding = None
gauss_kernel = gauss_kernel[:,:,None,None]
x = input
k = tf.tile (gauss_kernel, (1,1,x.shape[nn.conv2d_ch_axis],1) )
x = tf.pad(x, padding )
x = tf.nn.depthwise_conv2d(x, k, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format)
return x
nn.gaussian_blur = gaussian_blur
def style_loss(target, style, gaussian_blur_radius=0.0, loss_weight=1.0, step_size=1):
def sd(content, style, loss_weight):
content_nc = content.shape[ nn.conv2d_ch_axis ]
style_nc = style.shape[nn.conv2d_ch_axis]
if content_nc != style_nc:
raise Exception("style_loss() content_nc != style_nc")
c_mean, c_var = tf.nn.moments(content, axes=nn.conv2d_spatial_axes, keep_dims=True)
s_mean, s_var = tf.nn.moments(style, axes=nn.conv2d_spatial_axes, keep_dims=True)
c_std, s_std = tf.sqrt(c_var + 1e-5), tf.sqrt(s_var + 1e-5)
mean_loss = tf.reduce_sum(tf.square(c_mean-s_mean), axis=[1,2,3])
std_loss = tf.reduce_sum(tf.square(c_std-s_std), axis=[1,2,3])
return (mean_loss + std_loss) * ( loss_weight / content_nc.value )
if gaussian_blur_radius > 0.0:
target = gaussian_blur(target, gaussian_blur_radius)
style = gaussian_blur(style, gaussian_blur_radius)
return sd( target, style, loss_weight=loss_weight )
nn.style_loss = style_loss
def dssim(img1,img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
if img1.dtype != img2.dtype:
raise ValueError("img1.dtype != img2.dtype")
not_float32 = img1.dtype != tf.float32
if not_float32:
img_dtype = img1.dtype
img1 = tf.cast(img1, tf.float32)
img2 = tf.cast(img2, tf.float32)
filter_size = max(1, filter_size)
kernel = np.arange(0, filter_size, dtype=np.float32)
kernel -= (filter_size - 1 ) / 2.0
kernel = kernel**2
kernel *= ( -0.5 / (filter_sigma**2) )
kernel = np.reshape (kernel, (1,-1)) + np.reshape(kernel, (-1,1) )
kernel = tf.constant ( np.reshape (kernel, (1,-1)), dtype=tf.float32 )
kernel = tf.nn.softmax(kernel)
kernel = tf.reshape (kernel, (filter_size, filter_size, 1, 1))
kernel = tf.tile (kernel, (1,1, img1.shape[ nn.conv2d_ch_axis ] ,1))
def reducer(x):
return tf.nn.depthwise_conv2d(x, kernel, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format)
c1 = (k1 * max_val) ** 2
c2 = (k2 * max_val) ** 2
mean0 = reducer(img1)
mean1 = reducer(img2)
num0 = mean0 * mean1 * 2.0
den0 = tf.square(mean0) + tf.square(mean1)
luminance = (num0 + c1) / (den0 + c1)
num1 = reducer(img1 * img2) * 2.0
den1 = reducer(tf.square(img1) + tf.square(img2))
c2 *= 1.0 #compensation factor
cs = (num1 - num0 + c2) / (den1 - den0 + c2)
ssim_val = tf.reduce_mean(luminance * cs, axis=nn.conv2d_spatial_axes )
dssim = (1.0 - ssim_val ) / 2.0
if not_float32:
dssim = tf.cast(dssim, img_dtype)
return dssim
nn.dssim = dssim
def space_to_depth(x, size):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
b,h,w,c = x.shape.as_list()
oh, ow = h // size, w // size
x = tf.reshape(x, (-1, size, oh, size, ow, c))
x = tf.transpose(x, (0, 2, 4, 1, 3, 5))
x = tf.reshape(x, (-1, oh, ow, size* size* c ))
return x
else:
return tf.space_to_depth(x, size, data_format=nn.data_format)
nn.space_to_depth = space_to_depth
def depth_to_space(x, size):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
b,h,w,c = x.shape.as_list()
oh, ow = h * size, w * size
oc = c // (size * size)
x = tf.reshape(x, (-1, h, w, size, size, oc, ) )
x = tf.transpose(x, (0, 1, 3, 2, 4, 5))
x = tf.reshape(x, (-1, oh, ow, oc, ))
return x
else:
cfg = nn.getCurrentDeviceConfig()
if not cfg.cpu_only:
return tf.depth_to_space(x, size, data_format=nn.data_format)
b,c,h,w = x.shape.as_list()
oh, ow = h * size, w * size
oc = c // (size * size)
x = tf.reshape(x, (-1, size, size, oc, h, w, ) )
x = tf.transpose(x, (0, 3, 4, 1, 5, 2))
x = tf.reshape(x, (-1, oc, oh, ow))
return x
nn.depth_to_space = depth_to_space
def rgb_to_lab(srgb):
srgb_pixels = tf.reshape(srgb, [-1, 3])
linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32)
exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32)
rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask
rgb_to_xyz = tf.constant([
# X Y Z
[0.412453, 0.212671, 0.019334], # R
[0.357580, 0.715160, 0.119193], # G
[0.180423, 0.072169, 0.950227], # B
])
xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz)
xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754])
epsilon = 6/29
linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32)
exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32)
fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask
fxfyfz_to_lab = tf.constant([
# l a b
[ 0.0, 500.0, 0.0], # fx
[116.0, -500.0, 200.0], # fy
[ 0.0, 0.0, -200.0], # fz
])
lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0])
return tf.reshape(lab_pixels, tf.shape(srgb))
nn.rgb_to_lab = rgb_to_lab
def total_variation_mse(images):
"""
Same as generic total_variation, but MSE diff instead of MAE
"""
pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :]
pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :]
tot_var = ( tf.reduce_sum(tf.square(pixel_dif1), axis=[1,2,3]) +
tf.reduce_sum(tf.square(pixel_dif2), axis=[1,2,3]) )
return tot_var
nn.total_variation_mse = total_variation_mse
def pixel_norm(x, axes):
return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=axes, keepdims=True) + 1e-06)
nn.pixel_norm = pixel_norm
"""
def tf_suppress_lower_mean(t, eps=0.00001):
if t.shape.ndims != 1:
raise ValueError("tf_suppress_lower_mean: t rank must be 1")
t_mean_eps = tf.reduce_mean(t) - eps
q = tf.clip_by_value(t, t_mean_eps, tf.reduce_max(t) )
q = tf.clip_by_value(q-t_mean_eps, 0, eps)
q = q * (t/eps)
return q
"""
def _get_pixel_value(img, x, y):
shape = tf.shape(x)
batch_size = shape[0]
height = shape[1]
width = shape[2]
batch_idx = tf.range(0, batch_size)
batch_idx = tf.reshape(batch_idx, (batch_size, 1, 1))
b = tf.tile(batch_idx, (1, height, width))
indices = tf.stack([b, y, x], 3)
return tf.gather_nd(img, indices)
def bilinear_sampler(img, x, y):
H = tf.shape(img)[1]
W = tf.shape(img)[2]
H_MAX = tf.cast(H - 1, tf.int32)
W_MAX = tf.cast(W - 1, tf.int32)
# grab 4 nearest corner points for each (x_i, y_i)
x0 = tf.cast(tf.floor(x), tf.int32)
x1 = x0 + 1
y0 = tf.cast(tf.floor(y), tf.int32)
y1 = y0 + 1
# clip to range [0, H-1/W-1] to not violate img boundaries
x0 = tf.clip_by_value(x0, 0, W_MAX)
x1 = tf.clip_by_value(x1, 0, W_MAX)
y0 = tf.clip_by_value(y0, 0, H_MAX)
y1 = tf.clip_by_value(y1, 0, H_MAX)
# get pixel value at corner coords
Ia = _get_pixel_value(img, x0, y0)
Ib = _get_pixel_value(img, x0, y1)
Ic = _get_pixel_value(img, x1, y0)
Id = _get_pixel_value(img, x1, y1)
# recast as float for delta calculation
x0 = tf.cast(x0, tf.float32)
x1 = tf.cast(x1, tf.float32)
y0 = tf.cast(y0, tf.float32)
y1 = tf.cast(y1, tf.float32)
# calculate deltas
wa = (x1-x) * (y1-y)
wb = (x1-x) * (y-y0)
wc = (x-x0) * (y1-y)
wd = (x-x0) * (y-y0)
# add dimension for addition
wa = tf.expand_dims(wa, axis=3)
wb = tf.expand_dims(wb, axis=3)
wc = tf.expand_dims(wc, axis=3)
wd = tf.expand_dims(wd, axis=3)
# compute output
out = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
return out
nn.bilinear_sampler = bilinear_sampler
|