File size: 7,554 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
from core.leras import nn
tf = nn.tf

patch_discriminator_kernels = \
    { 1  : (512, [ [1,1] ]),
      2  : (512, [ [2,1] ]),
      3  : (512, [ [2,1], [2,1] ]),
      4  : (512, [ [2,2], [2,2] ]),
      5  : (512, [ [3,2], [2,2] ]),
      6  : (512, [ [4,2], [2,2] ]),
      7  : (512, [ [3,2], [3,2] ]),
      8  : (512, [ [4,2], [3,2] ]),
      9  : (512, [ [3,2], [4,2] ]),
      10 : (512, [ [4,2], [4,2] ]),
      11 : (512, [ [3,2], [3,2], [2,1] ]),
      12 : (512, [ [4,2], [3,2], [2,1] ]),
      13 : (512, [ [3,2], [4,2], [2,1] ]),
      14 : (512, [ [4,2], [4,2], [2,1] ]),
      15 : (512, [ [3,2], [3,2], [3,1] ]),
      16 : (512, [ [4,2], [3,2], [3,1] ]),
      17 : (512, [ [3,2], [4,2], [3,1] ]),
      18 : (512, [ [4,2], [4,2], [3,1] ]),
      19 : (512, [ [3,2], [3,2], [4,1] ]),
      20 : (512, [ [4,2], [3,2], [4,1] ]),
      21 : (512, [ [3,2], [4,2], [4,1] ]),
      22 : (512, [ [4,2], [4,2], [4,1] ]),
      23 : (256, [ [3,2], [3,2], [3,2], [2,1] ]),
      24 : (256, [ [4,2], [3,2], [3,2], [2,1] ]),
      25 : (256, [ [3,2], [4,2], [3,2], [2,1] ]),
      26 : (256, [ [4,2], [4,2], [3,2], [2,1] ]),
      27 : (256, [ [3,2], [4,2], [4,2], [2,1] ]),
      28 : (256, [ [4,2], [3,2], [4,2], [2,1] ]),
      29 : (256, [ [3,2], [4,2], [4,2], [2,1] ]),
      30 : (256, [ [4,2], [4,2], [4,2], [2,1] ]),
      31 : (256, [ [3,2], [3,2], [3,2], [3,1] ]),
      32 : (256, [ [4,2], [3,2], [3,2], [3,1] ]),
      33 : (256, [ [3,2], [4,2], [3,2], [3,1] ]),
      34 : (256, [ [4,2], [4,2], [3,2], [3,1] ]),
      35 : (256, [ [3,2], [4,2], [4,2], [3,1] ]),
      36 : (256, [ [4,2], [3,2], [4,2], [3,1] ]),
      37 : (256, [ [3,2], [4,2], [4,2], [3,1] ]),
      38 : (256, [ [4,2], [4,2], [4,2], [3,1] ]),
      39 : (256, [ [3,2], [3,2], [3,2], [4,1] ]),
      40 : (256, [ [4,2], [3,2], [3,2], [4,1] ]),
      41 : (256, [ [3,2], [4,2], [3,2], [4,1] ]),
      42 : (256, [ [4,2], [4,2], [3,2], [4,1] ]),
      43 : (256, [ [3,2], [4,2], [4,2], [4,1] ]),
      44 : (256, [ [4,2], [3,2], [4,2], [4,1] ]),
      45 : (256, [ [3,2], [4,2], [4,2], [4,1] ]),
      46 : (256, [ [4,2], [4,2], [4,2], [4,1] ]),
    }


class PatchDiscriminator(nn.ModelBase):
    def on_build(self, patch_size, in_ch, base_ch=None, conv_kernel_initializer=None):
        suggested_base_ch, kernels_strides = patch_discriminator_kernels[patch_size]

        if base_ch is None:
            base_ch = suggested_base_ch

        prev_ch = in_ch
        self.convs = []
        for i, (kernel_size, strides) in enumerate(kernels_strides):
            cur_ch = base_ch * min( (2**i), 8 )

            self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
            prev_ch = cur_ch

        self.out_conv =  nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=conv_kernel_initializer)

    def forward(self, x):
        for conv in self.convs:
            x = tf.nn.leaky_relu( conv(x), 0.1 )
        return self.out_conv(x)

nn.PatchDiscriminator = PatchDiscriminator

class UNetPatchDiscriminator(nn.ModelBase):
    """
    Inspired by https://arxiv.org/abs/2002.12655 "A U-Net Based Discriminator for Generative Adversarial Networks"
    """
    def calc_receptive_field_size(self, layers):
        """
        result the same as https://fomoro.com/research/article/receptive-field-calculatorindex.html
        """
        rf = 0
        ts = 1
        for i, (k, s) in enumerate(layers):
            if i == 0:
                rf = k
            else:
                rf += (k-1)*ts
            ts *= s
        return rf

    def find_archi(self, target_patch_size, max_layers=9):
        """
        Find the best configuration of layers using only 3x3 convs for target patch size
        """
        s = {}
        for layers_count in range(1,max_layers+1):
            val = 1 << (layers_count-1)
            while True:
                val -= 1

                layers = []
                sum_st = 0
                layers.append ( [3, 2])
                sum_st += 2
                for i in range(layers_count-1):
                    st = 1 + (1 if val & (1 << i) !=0 else 0 )
                    layers.append ( [3, st ])
                    sum_st += st                

                rf = self.calc_receptive_field_size(layers)

                s_rf = s.get(rf, None)
                if s_rf is None:
                    s[rf] = (layers_count, sum_st, layers)
                else:
                    if layers_count < s_rf[0] or \
                    ( layers_count == s_rf[0] and sum_st > s_rf[1] ):
                        s[rf] = (layers_count, sum_st, layers)

                if val == 0:
                    break

        x = sorted(list(s.keys()))
        q=x[np.abs(np.array(x)-target_patch_size).argmin()]
        return s[q][2]

    def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False):
        self.use_fp16 = use_fp16
        conv_dtype = tf.float16 if use_fp16 else tf.float32 
        
        class ResidualBlock(nn.ModelBase):
            def on_build(self, ch, kernel_size=3 ):
                self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
                self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)

            def forward(self, inp):
                x = self.conv1(inp)
                x = tf.nn.leaky_relu(x, 0.2)
                x = self.conv2(x)
                x = tf.nn.leaky_relu(inp + x, 0.2)
                return x

        prev_ch = in_ch
        self.convs = []
        self.upconvs = []
        layers = self.find_archi(patch_size)
        
        level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) }

        self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype)

        for i, (kernel_size, strides) in enumerate(layers):
            self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )

            self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )

        self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype)

        self.center_out  =  nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
        self.center_conv =  nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype)


    def forward(self, x):
        if self.use_fp16:
            x = tf.cast(x, tf.float16)
            
        x = tf.nn.leaky_relu( self.in_conv(x), 0.2 )

        encs = []
        for conv in self.convs:
            encs.insert(0, x)
            x = tf.nn.leaky_relu( conv(x), 0.2 )
            
        center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 )

        for i, (upconv, enc) in enumerate(zip(self.upconvs, encs)):
            x = tf.nn.leaky_relu( upconv(x), 0.2 )
            x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)

        x = self.out_conv(x)
        
        if self.use_fp16:
            center_out = tf.cast(center_out, tf.float32)
            x = tf.cast(x, tf.float32)

        return center_out, x

nn.UNetPatchDiscriminator = UNetPatchDiscriminator