File size: 1,412 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from core.leras import nn
tf = nn.tf
class FRNorm2D(nn.LayerBase):
"""
Tensorflow implementation of
Filter Response Normalization Layer: Eliminating Batch Dependence in theTraining of Deep Neural Networks
https://arxiv.org/pdf/1911.09737.pdf
"""
def __init__(self, in_ch, dtype=None, **kwargs):
self.in_ch = in_ch
if dtype is None:
dtype = nn.floatx
self.dtype = dtype
super().__init__(**kwargs)
def build_weights(self):
self.weight = tf.get_variable("weight", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.ones() )
self.bias = tf.get_variable("bias", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros() )
self.eps = tf.get_variable("eps", (1,), dtype=self.dtype, initializer=tf.initializers.constant(1e-6) )
def get_weights(self):
return [self.weight, self.bias, self.eps]
def forward(self, x):
if nn.data_format == "NHWC":
shape = (1,1,1,self.in_ch)
else:
shape = (1,self.in_ch,1,1)
weight = tf.reshape ( self.weight, shape )
bias = tf.reshape ( self.bias , shape )
nu2 = tf.reduce_mean(tf.square(x), axis=nn.conv2d_spatial_axes, keepdims=True)
x = x * ( 1.0/tf.sqrt(nu2 + tf.abs(self.eps) ) )
return x*weight + bias
nn.FRNorm2D = FRNorm2D |