File size: 9,416 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import sys
import ctypes
import os
import multiprocessing
import json
import time
from pathlib import Path
from core.interact import interact as io
class Device(object):
def __init__(self, index, tf_dev_type, name, total_mem, free_mem):
self.index = index
self.tf_dev_type = tf_dev_type
self.name = name
self.total_mem = total_mem
self.total_mem_gb = total_mem / 1024**3
self.free_mem = free_mem
self.free_mem_gb = free_mem / 1024**3
def __str__(self):
return f"[{self.index}]:[{self.name}][{self.free_mem_gb:.3}/{self.total_mem_gb :.3}]"
class Devices(object):
all_devices = None
def __init__(self, devices):
self.devices = devices
def __len__(self):
return len(self.devices)
def __getitem__(self, key):
result = self.devices[key]
if isinstance(key, slice):
return Devices(result)
return result
def __iter__(self):
for device in self.devices:
yield device
def get_best_device(self):
result = None
idx_mem = 0
for device in self.devices:
mem = device.total_mem
if mem > idx_mem:
result = device
idx_mem = mem
return result
def get_worst_device(self):
result = None
idx_mem = sys.maxsize
for device in self.devices:
mem = device.total_mem
if mem < idx_mem:
result = device
idx_mem = mem
return result
def get_device_by_index(self, idx):
for device in self.devices:
if device.index == idx:
return device
return None
def get_devices_from_index_list(self, idx_list):
result = []
for device in self.devices:
if device.index in idx_list:
result += [device]
return Devices(result)
def get_equal_devices(self, device):
device_name = device.name
result = []
for device in self.devices:
if device.name == device_name:
result.append (device)
return Devices(result)
def get_devices_at_least_mem(self, totalmemsize_gb):
result = []
for device in self.devices:
if device.total_mem >= totalmemsize_gb*(1024**3):
result.append (device)
return Devices(result)
@staticmethod
def _get_tf_devices_proc(q : multiprocessing.Queue):
if sys.platform[0:3] == 'win':
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache_ALL')
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
if not compute_cache_path.exists():
io.log_info("Caching GPU kernels...")
compute_cache_path.mkdir(parents=True, exist_ok=True)
import tensorflow
tf_version = tensorflow.version.VERSION
#if tf_version is None:
# tf_version = tensorflow.version.GIT_VERSION
if tf_version[0] == 'v':
tf_version = tf_version[1:]
if tf_version[0] == '2':
tf = tensorflow.compat.v1
else:
tf = tensorflow
import logging
# Disable tensorflow warnings
tf_logger = logging.getLogger('tensorflow')
tf_logger.setLevel(logging.ERROR)
from tensorflow.python.client import device_lib
devices = []
physical_devices = device_lib.list_local_devices()
physical_devices_f = {}
for dev in physical_devices:
dev_type = dev.device_type
dev_tf_name = dev.name
dev_tf_name = dev_tf_name[ dev_tf_name.index(dev_type) : ]
dev_idx = int(dev_tf_name.split(':')[-1])
if dev_type in ['GPU','DML']:
dev_name = dev_tf_name
dev_desc = dev.physical_device_desc
if len(dev_desc) != 0:
if dev_desc[0] == '{':
dev_desc_json = json.loads(dev_desc)
dev_desc_json_name = dev_desc_json.get('name',None)
if dev_desc_json_name is not None:
dev_name = dev_desc_json_name
else:
for param, value in ( v.split(':') for v in dev_desc.split(',') ):
param = param.strip()
value = value.strip()
if param == 'name':
dev_name = value
break
physical_devices_f[dev_idx] = (dev_type, dev_name, dev.memory_limit)
q.put(physical_devices_f)
time.sleep(0.1)
@staticmethod
def initialize_main_env():
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 0:
return
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
os.environ.pop('CUDA_VISIBLE_DEVICES')
os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647'
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
q = multiprocessing.Queue()
p = multiprocessing.Process(target=Devices._get_tf_devices_proc, args=(q,), daemon=True)
p.start()
p.join()
visible_devices = q.get()
os.environ['NN_DEVICES_INITIALIZED'] = '1'
os.environ['NN_DEVICES_COUNT'] = str(len(visible_devices))
for i in visible_devices:
dev_type, name, total_mem = visible_devices[i]
os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'] = dev_type
os.environ[f'NN_DEVICE_{i}_NAME'] = name
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(total_mem)
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(total_mem)
@staticmethod
def getDevices():
if Devices.all_devices is None:
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
devices = []
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
devices.append ( Device(index=i,
tf_dev_type=os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'],
name=os.environ[f'NN_DEVICE_{i}_NAME'],
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']), )
)
Devices.all_devices = Devices(devices)
return Devices.all_devices
"""
# {'name' : name.split(b'\0', 1)[0].decode(),
# 'total_mem' : totalMem.value
# }
return
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except:
continue
else:
break
else:
return Devices([])
nGpus = ctypes.c_int()
name = b' ' * 200
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
freeMem = ctypes.c_size_t()
totalMem = ctypes.c_size_t()
result = ctypes.c_int()
device = ctypes.c_int()
context = ctypes.c_void_p()
error_str = ctypes.c_char_p()
devices = []
if cuda.cuInit(0) == 0 and \
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
for i in range(nGpus.value):
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
continue
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
cc = cc_major.value * 10 + cc_minor.value
if cc >= min_cc:
devices.append ( {'name' : name.split(b'\0', 1)[0].decode(),
'total_mem' : totalMem.value,
'free_mem' : freeMem.value,
'cc' : cc
})
cuda.cuCtxDetach(context)
os.environ['NN_DEVICES_COUNT'] = str(len(devices))
for i, device in enumerate(devices):
os.environ[f'NN_DEVICE_{i}_NAME'] = device['name']
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
""" |