File size: 13,818 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import collections
import math
from enum import IntEnum

import cv2
import numpy as np

from core import imagelib
from core.cv2ex import *
from core.imagelib import sd
from facelib import FaceType, LandmarksProcessor


class SampleProcessor(object):
    class SampleType(IntEnum):
        NONE = 0
        IMAGE = 1
        FACE_IMAGE = 2
        FACE_MASK  = 3
        LANDMARKS_ARRAY            = 4
        PITCH_YAW_ROLL             = 5
        PITCH_YAW_ROLL_SIGMOID     = 6

    class ChannelType(IntEnum):
        NONE = 0
        BGR                   = 1  #BGR
        G                     = 2  #Grayscale
        GGG                   = 3  #3xGrayscale

    class FaceMaskType(IntEnum):
        NONE          = 0
        FULL_FACE      = 1  # mask all hull as grayscale
        EYES           = 2  # mask eyes hull as grayscale
        EYES_MOUTH     = 3  # eyes and mouse

    class Options(object):
        def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
            self.random_flip = random_flip
            self.rotation_range = rotation_range
            self.scale_range = scale_range
            self.tx_range = tx_range
            self.ty_range = ty_range

    @staticmethod
    def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
        SPST = SampleProcessor.SampleType
        SPCT = SampleProcessor.ChannelType
        SPFMT = SampleProcessor.FaceMaskType

        
        outputs = []
        for sample in samples:
            sample_rnd_seed = np.random.randint(0x80000000)
            
            sample_face_type = sample.face_type
            sample_bgr = sample.load_bgr()
            sample_landmarks = sample.landmarks
            ct_sample_bgr = None
            h,w,c = sample_bgr.shape
            
            def get_full_face_mask():   
                xseg_mask = sample.get_xseg_mask()                                     
                if xseg_mask is not None:           
                    if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w:
                        xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)                    
                        xseg_mask = imagelib.normalize_channels(xseg_mask, 1)
                    return np.clip(xseg_mask, 0, 1)
                else:
                    full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
                    return np.clip(full_face_mask, 0, 1)
                
            def get_eyes_mask():
                eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
                return np.clip(eyes_mask, 0, 1)
            
            def get_eyes_mouth_mask():                
                eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
                mouth_mask = LandmarksProcessor.get_image_mouth_mask (sample_bgr.shape, sample_landmarks)
                mask = eyes_mask + mouth_mask
                return np.clip(mask, 0, 1)
                
            is_face_sample = sample_landmarks is not None

            if debug and is_face_sample:
                LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))

            outputs_sample = []
            for opts in output_sample_types:
                resolution     = opts.get('resolution', 0)
                sample_type    = opts.get('sample_type', SPST.NONE)
                channel_type   = opts.get('channel_type', SPCT.NONE)                
                nearest_resize_to = opts.get('nearest_resize_to', None)
                warp           = opts.get('warp', False)
                transform      = opts.get('transform', False)
                random_hsv_shift_amount = opts.get('random_hsv_shift_amount', 0)
                normalize_tanh = opts.get('normalize_tanh', False)
                ct_mode        = opts.get('ct_mode', None)
                data_format    = opts.get('data_format', 'NHWC')
                
                rnd_seed_shift      = opts.get('rnd_seed_shift', 0)
                warp_rnd_seed_shift = opts.get('warp_rnd_seed_shift', rnd_seed_shift)
                
                rnd_state      = np.random.RandomState (sample_rnd_seed+rnd_seed_shift)
                warp_rnd_state = np.random.RandomState (sample_rnd_seed+warp_rnd_seed_shift)
                
                warp_params = imagelib.gen_warp_params(resolution, 
                                                       sample_process_options.random_flip, 
                                                       rotation_range=sample_process_options.rotation_range, 
                                                       scale_range=sample_process_options.scale_range, 
                                                       tx_range=sample_process_options.tx_range, 
                                                       ty_range=sample_process_options.ty_range, 
                                                       rnd_state=rnd_state,
                                                       warp_rnd_state=warp_rnd_state,
                                                       )
                
                if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE: 
                    border_replicate = False
                elif sample_type == SPST.FACE_IMAGE:
                    border_replicate = True
                    
                    
                border_replicate = opts.get('border_replicate', border_replicate)
                borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
                
                
                if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
                    if not is_face_sample:    
                        raise ValueError("face_samples should be provided for sample_type FACE_*")

                if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
                    face_type      = opts.get('face_type', None)
                    face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
                
                    if face_type is None:
                        raise ValueError("face_type must be defined for face samples")

                    if sample_type == SPST.FACE_MASK: 
                        if face_mask_type == SPFMT.FULL_FACE:
                            img = get_full_face_mask()
                        elif face_mask_type == SPFMT.EYES:
                            img = get_eyes_mask()
                        elif face_mask_type == SPFMT.EYES_MOUTH:
                            mask = get_full_face_mask().copy()
                            mask[mask != 0.0] = 1.0                            
                            img = get_eyes_mouth_mask()*mask
                        else:
                            img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)

                        if sample_face_type == FaceType.MARK_ONLY:
                            raise NotImplementedError()
                            mat  = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
                            img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
                            
                            img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
                            img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR )
                        else:
                            if face_type != sample_face_type:
                                mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)                            
                                img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
                            else:
                                if w != resolution:
                                    img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR )
                                
                            img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)

                        if face_mask_type == SPFMT.EYES_MOUTH:
                            div = img.max()
                            if div != 0.0:
                                img = img / div # normalize to 1.0 after warp
                            
                        if len(img.shape) == 2:
                            img = img[...,None]
                            
                        if channel_type == SPCT.G:
                            out_sample = img.astype(np.float32)
                        else:
                            raise ValueError("only channel_type.G supported for the mask")

                    elif sample_type == SPST.FACE_IMAGE:
                        img = sample_bgr                      
                            
                        if face_type != sample_face_type:
                            mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
                            img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
                        else:
                            if w != resolution:
                                img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
                                
                        # Apply random color transfer                        
                        if ct_mode is not None and ct_sample is not None:
                            if ct_sample_bgr is None:
                               ct_sample_bgr = ct_sample.load_bgr()
                            img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
                        
                        if random_hsv_shift_amount != 0:
                            a = random_hsv_shift_amount
                            h_amount = max(1, int(360*a*0.5))
                            img_h, img_s, img_v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
                            img_h = (img_h + rnd_state.randint(-h_amount, h_amount+1) ) % 360
                            img_s = np.clip (img_s + (rnd_state.random()-0.5)*a, 0, 1 )
                            img_v = np.clip (img_v + (rnd_state.random()-0.5)*a, 0, 1 )
                            img = np.clip( cv2.cvtColor(cv2.merge([img_h, img_s, img_v]), cv2.COLOR_HSV2BGR) , 0, 1 )

                        img  = imagelib.warp_by_params (warp_params, img,  warp, transform, can_flip=True, border_replicate=border_replicate)
  
                        img = np.clip(img.astype(np.float32), 0, 1)

                        # Transform from BGR to desired channel_type
                        if channel_type == SPCT.BGR:
                            out_sample = img
                        elif channel_type == SPCT.G:
                            out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
                        elif channel_type == SPCT.GGG:
                            out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1)

                    # Final transformations
                    if nearest_resize_to is not None:
                        out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST)
                        
                    if not debug:
                        if normalize_tanh:
                            out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
                    if data_format == "NCHW":
                        out_sample = np.transpose(out_sample, (2,0,1) )
                elif sample_type == SPST.IMAGE:
                    img = sample_bgr      
                    img  = imagelib.warp_by_params (warp_params, img,  warp, transform, can_flip=True, border_replicate=True)
                    img  = cv2.resize( img,  (resolution, resolution), interpolation=cv2.INTER_CUBIC )
                    out_sample = img
                    
                    if data_format == "NCHW":
                        out_sample = np.transpose(out_sample, (2,0,1) )
                    
                    
                elif sample_type == SPST.LANDMARKS_ARRAY:
                    l = sample_landmarks
                    l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
                    l = np.clip(l, 0.0, 1.0)
                    out_sample = l
                elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
                    pitch,yaw,roll = sample.get_pitch_yaw_roll()
                    if warp_params['flip']:
                        yaw = -yaw

                    if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
                        pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1)
                        yaw   = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1)
                        roll  = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1)

                    out_sample = (pitch, yaw)
                else:
                    raise ValueError ('expected sample_type')

                outputs_sample.append ( out_sample )
            outputs += [outputs_sample]

        return outputs