File size: 10,325 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import multiprocessing
import pickle
import time
import traceback
from enum import IntEnum
import cv2
import numpy as np
from core import imagelib, mplib, pathex
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import SampleGeneratorBase
class MaskType(IntEnum):
none = 0,
cloth = 1,
ear_r = 2,
eye_g = 3,
hair = 4,
hat = 5,
l_brow = 6,
l_ear = 7,
l_eye = 8,
l_lip = 9,
mouth = 10,
neck = 11,
neck_l = 12,
nose = 13,
r_brow = 14,
r_ear = 15,
r_eye = 16,
skin = 17,
u_lip = 18
MaskType_to_name = {
int(MaskType.none ) : 'none',
int(MaskType.cloth ) : 'cloth',
int(MaskType.ear_r ) : 'ear_r',
int(MaskType.eye_g ) : 'eye_g',
int(MaskType.hair ) : 'hair',
int(MaskType.hat ) : 'hat',
int(MaskType.l_brow) : 'l_brow',
int(MaskType.l_ear ) : 'l_ear',
int(MaskType.l_eye ) : 'l_eye',
int(MaskType.l_lip ) : 'l_lip',
int(MaskType.mouth ) : 'mouth',
int(MaskType.neck ) : 'neck',
int(MaskType.neck_l) : 'neck_l',
int(MaskType.nose ) : 'nose',
int(MaskType.r_brow) : 'r_brow',
int(MaskType.r_ear ) : 'r_ear',
int(MaskType.r_eye ) : 'r_eye',
int(MaskType.skin ) : 'skin',
int(MaskType.u_lip ) : 'u_lip',
}
MaskType_from_name = { MaskType_to_name[k] : k for k in MaskType_to_name.keys() }
class SampleGeneratorFaceCelebAMaskHQ(SampleGeneratorBase):
def __init__ (self, root_path, debug=False, batch_size=1, resolution=256,
generators_count=4, data_format="NHWC",
**kwargs):
super().__init__(debug, batch_size)
self.initialized = False
dataset_path = root_path / 'CelebAMask-HQ'
if not dataset_path.exists():
raise ValueError(f'Unable to find {dataset_path}')
images_path = dataset_path /'CelebA-HQ-img'
if not images_path.exists():
raise ValueError(f'Unable to find {images_path}')
masks_path = dataset_path / 'CelebAMask-HQ-mask-anno'
if not masks_path.exists():
raise ValueError(f'Unable to find {masks_path}')
if self.debug:
self.generators_count = 1
else:
self.generators_count = max(1, generators_count)
source_images_paths = pathex.get_image_paths(images_path, return_Path_class=True)
source_images_paths_len = len(source_images_paths)
mask_images_paths = pathex.get_image_paths(masks_path, subdirs=True, return_Path_class=True)
if source_images_paths_len == 0 or len(mask_images_paths) == 0:
raise ValueError('No training data provided.')
mask_file_id_hash = {}
for filepath in io.progress_bar_generator(mask_images_paths, "Loading"):
stem = filepath.stem
file_id, mask_type = stem.split('_', 1)
file_id = int(file_id)
if file_id not in mask_file_id_hash:
mask_file_id_hash[file_id] = {}
mask_file_id_hash[file_id][ MaskType_from_name[mask_type] ] = str(filepath.relative_to(masks_path))
source_file_id_set = set()
for filepath in source_images_paths:
stem = filepath.stem
file_id = int(stem)
source_file_id_set.update ( {file_id} )
for k in mask_file_id_hash.keys():
if k not in source_file_id_set:
io.log_err (f"Corrupted dataset: {k} not in {images_path}")
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (images_path, masks_path, mask_file_id_hash, data_format) )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (images_path, masks_path, mask_file_id_hash, data_format), start_now=False ) \
for i in range(self.generators_count) ]
SubprocessGenerator.start_in_parallel( self.generators )
self.generator_counter = -1
self.initialized = True
#overridable
def is_initialized(self):
return self.initialized
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
images_path, masks_path, mask_file_id_hash, data_format = param
file_ids = list(mask_file_id_hash.keys())
shuffle_file_ids = []
resolution = 256
random_flip = True
rotation_range=[-15,15]
scale_range=[-0.10, 0.95]
tx_range=[-0.3, 0.3]
ty_range=[-0.3, 0.3]
random_bilinear_resize = (25,75)
motion_blur = (25, 5)
gaussian_blur = (25, 5)
bs = self.batch_size
while True:
batches = None
n_batch = 0
while n_batch < bs:
try:
if len(shuffle_file_ids) == 0:
shuffle_file_ids = file_ids.copy()
np.random.shuffle(shuffle_file_ids)
file_id = shuffle_file_ids.pop()
masks = mask_file_id_hash[file_id]
image_path = images_path / f'{file_id}.jpg'
skin_path = masks.get(MaskType.skin, None)
hair_path = masks.get(MaskType.hair, None)
hat_path = masks.get(MaskType.hat, None)
#neck_path = masks.get(MaskType.neck, None)
img = cv2_imread(image_path).astype(np.float32) / 255.0
mask = cv2_imread(masks_path / skin_path)[...,0:1].astype(np.float32) / 255.0
if hair_path is not None:
hair_path = masks_path / hair_path
if hair_path.exists():
hair = cv2_imread(hair_path)[...,0:1].astype(np.float32) / 255.0
mask *= (1-hair)
if hat_path is not None:
hat_path = masks_path / hat_path
if hat_path.exists():
hat = cv2_imread(hat_path)[...,0:1].astype(np.float32) / 255.0
mask *= (1-hat)
#if neck_path is not None:
# neck_path = masks_path / neck_path
# if neck_path.exists():
# neck = cv2_imread(neck_path)[...,0:1].astype(np.float32) / 255.0
# mask = np.clip(mask+neck, 0, 1)
warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range )
img = cv2.resize( img, (resolution,resolution), cv2.INTER_LANCZOS4 )
h, s, v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
h = ( h + np.random.randint(360) ) % 360
s = np.clip ( s + np.random.random()-0.5, 0, 1 )
v = np.clip ( v + np.random.random()/2-0.25, 0, 1 )
img = np.clip( cv2.cvtColor(cv2.merge([h, s, v]), cv2.COLOR_HSV2BGR) , 0, 1 )
if motion_blur is not None:
chance, mb_max_size = motion_blur
chance = np.clip(chance, 0, 100)
mblur_rnd_chance = np.random.randint(100)
mblur_rnd_kernel = np.random.randint(mb_max_size)+1
mblur_rnd_deg = np.random.randint(360)
if mblur_rnd_chance < chance:
img = imagelib.LinearMotionBlur (img, mblur_rnd_kernel, mblur_rnd_deg )
img = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LANCZOS4)
if gaussian_blur is not None:
chance, kernel_max_size = gaussian_blur
chance = np.clip(chance, 0, 100)
gblur_rnd_chance = np.random.randint(100)
gblur_rnd_kernel = np.random.randint(kernel_max_size)*2+1
if gblur_rnd_chance < chance:
img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0)
if random_bilinear_resize is not None:
chance, max_size_per = random_bilinear_resize
chance = np.clip(chance, 0, 100)
pick_chance = np.random.randint(100)
resize_to = resolution - int( np.random.rand()* int(resolution*(max_size_per/100.0)) )
img = cv2.resize (img, (resize_to,resize_to), cv2.INTER_LINEAR )
img = cv2.resize (img, (resolution,resolution), cv2.INTER_LINEAR )
mask = cv2.resize( mask, (resolution,resolution), cv2.INTER_LANCZOS4 )[...,None]
mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LANCZOS4)
mask[mask < 0.5] = 0.0
mask[mask >= 0.5] = 1.0
mask = np.clip(mask, 0, 1)
if data_format == "NCHW":
img = np.transpose(img, (2,0,1) )
mask = np.transpose(mask, (2,0,1) )
if batches is None:
batches = [ [], [] ]
batches[0].append ( img )
batches[1].append ( mask )
n_batch += 1
except:
io.log_err ( traceback.format_exc() )
yield [ np.array(batch) for batch in batches]
|