Update README.md
Browse files
README.md
CHANGED
@@ -1,104 +1,104 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: google/vit-base-patch16-224-in21k
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- imagefolder
|
8 |
-
metrics:
|
9 |
-
- accuracy
|
10 |
-
- precision
|
11 |
-
- recall
|
12 |
-
- f1
|
13 |
-
model-index:
|
14 |
-
- name: emotion_classification_v1.2
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
name: Image Classification
|
18 |
-
type: image-classification
|
19 |
-
dataset:
|
20 |
-
name: imagefolder
|
21 |
-
type: imagefolder
|
22 |
-
config: default
|
23 |
-
split: train[:5000]
|
24 |
-
args: default
|
25 |
-
metrics:
|
26 |
-
- name: Accuracy
|
27 |
-
type: accuracy
|
28 |
-
value: 0.625
|
29 |
-
- name: Precision
|
30 |
-
type: precision
|
31 |
-
value: 0.620708259363687
|
32 |
-
- name: Recall
|
33 |
-
type: recall
|
34 |
-
value: 0.625
|
35 |
-
- name: F1
|
36 |
-
type: f1
|
37 |
-
value: 0.6034583857987293
|
38 |
-
---
|
39 |
-
|
40 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
-
should probably proofread and complete it, then remove this comment. -->
|
42 |
-
|
43 |
-
# emotion_classification_v1.2
|
44 |
-
|
45 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
46 |
-
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 1.2401
|
48 |
-
- Accuracy: 0.625
|
49 |
-
- Precision: 0.6207
|
50 |
-
- Recall: 0.625
|
51 |
-
- F1: 0.6035
|
52 |
-
|
53 |
-
## Model description
|
54 |
-
|
55 |
-
More information needed
|
56 |
-
|
57 |
-
## Intended uses & limitations
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
## Training and evaluation data
|
62 |
-
|
63 |
-
More information needed
|
64 |
-
|
65 |
-
## Training procedure
|
66 |
-
|
67 |
-
### Training hyperparameters
|
68 |
-
|
69 |
-
The following hyperparameters were used during training:
|
70 |
-
- learning_rate: 5e-05
|
71 |
-
- train_batch_size: 32
|
72 |
-
- eval_batch_size: 32
|
73 |
-
- seed: 42
|
74 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
-
- lr_scheduler_type: linear
|
76 |
-
- num_epochs: 15
|
77 |
-
|
78 |
-
### Training results
|
79 |
-
|
80 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
-
| No log | 1.0 | 20 | 1.9487 | 0.3312 | 0.3554 | 0.3312 | 0.2830 |
|
83 |
-
| No log | 2.0 | 40 | 1.6735 | 0.4437 | 0.4238 | 0.4437 | 0.4232 |
|
84 |
-
| No log | 3.0 | 60 | 1.5359 | 0.4813 | 0.3990 | 0.4813 | 0.4272 |
|
85 |
-
| No log | 4.0 | 80 | 1.4249 | 0.5 | 0.4178 | 0.5 | 0.4443 |
|
86 |
-
| No log | 5.0 | 100 | 1.3733 | 0.5062 | 0.4753 | 0.5062 | 0.4653 |
|
87 |
-
| No log | 6.0 | 120 | 1.3513 | 0.5188 | 0.5076 | 0.5188 | 0.4908 |
|
88 |
-
| No log | 7.0 | 140 | 1.2377 | 0.6125 | 0.6163 | 0.6125 | 0.5976 |
|
89 |
-
| No log | 8.0 | 160 | 1.2354 | 0.6062 | 0.6131 | 0.6062 | 0.5961 |
|
90 |
-
| No log | 9.0 | 180 | 1.2574 | 0.575 | 0.5847 | 0.575 | 0.5728 |
|
91 |
-
| No log | 10.0 | 200 | 1.2493 | 0.5813 | 0.5912 | 0.5813 | 0.5776 |
|
92 |
-
| No log | 11.0 | 220 | 1.1954 | 0.5813 | 0.5795 | 0.5813 | 0.5730 |
|
93 |
-
| No log | 12.0 | 240 | 1.2283 | 0.5625 | 0.5651 | 0.5625 | 0.5598 |
|
94 |
-
| No log | 13.0 | 260 | 1.1984 | 0.5625 | 0.5800 | 0.5625 | 0.5643 |
|
95 |
-
| No log | 14.0 | 280 | 1.2308 | 0.5437 | 0.5523 | 0.5437 | 0.5414 |
|
96 |
-
| No log | 15.0 | 300 | 1.1665 | 0.5938 | 0.6005 | 0.5938 | 0.5935 |
|
97 |
-
|
98 |
-
|
99 |
-
### Framework versions
|
100 |
-
|
101 |
-
- Transformers 4.41.2
|
102 |
-
- Pytorch 2.3.0
|
103 |
-
- Datasets 2.19.1
|
104 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: emotion_classification_v1.2
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train[:5000]
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.625
|
29 |
+
- name: Precision
|
30 |
+
type: precision
|
31 |
+
value: 0.620708259363687
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.625
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.6034583857987293
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# emotion_classification_v1.2
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 1.2401
|
48 |
+
- Accuracy: 0.625
|
49 |
+
- Precision: 0.6207
|
50 |
+
- Recall: 0.625
|
51 |
+
- F1: 0.6035
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
A slightly more accurate model compared to previous 1.1 version. More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
This model is fined tune solely for face emotion recognition.
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 32
|
72 |
+
- eval_batch_size: 32
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 15
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
+
| No log | 1.0 | 20 | 1.9487 | 0.3312 | 0.3554 | 0.3312 | 0.2830 |
|
83 |
+
| No log | 2.0 | 40 | 1.6735 | 0.4437 | 0.4238 | 0.4437 | 0.4232 |
|
84 |
+
| No log | 3.0 | 60 | 1.5359 | 0.4813 | 0.3990 | 0.4813 | 0.4272 |
|
85 |
+
| No log | 4.0 | 80 | 1.4249 | 0.5 | 0.4178 | 0.5 | 0.4443 |
|
86 |
+
| No log | 5.0 | 100 | 1.3733 | 0.5062 | 0.4753 | 0.5062 | 0.4653 |
|
87 |
+
| No log | 6.0 | 120 | 1.3513 | 0.5188 | 0.5076 | 0.5188 | 0.4908 |
|
88 |
+
| No log | 7.0 | 140 | 1.2377 | 0.6125 | 0.6163 | 0.6125 | 0.5976 |
|
89 |
+
| No log | 8.0 | 160 | 1.2354 | 0.6062 | 0.6131 | 0.6062 | 0.5961 |
|
90 |
+
| No log | 9.0 | 180 | 1.2574 | 0.575 | 0.5847 | 0.575 | 0.5728 |
|
91 |
+
| No log | 10.0 | 200 | 1.2493 | 0.5813 | 0.5912 | 0.5813 | 0.5776 |
|
92 |
+
| No log | 11.0 | 220 | 1.1954 | 0.5813 | 0.5795 | 0.5813 | 0.5730 |
|
93 |
+
| No log | 12.0 | 240 | 1.2283 | 0.5625 | 0.5651 | 0.5625 | 0.5598 |
|
94 |
+
| No log | 13.0 | 260 | 1.1984 | 0.5625 | 0.5800 | 0.5625 | 0.5643 |
|
95 |
+
| No log | 14.0 | 280 | 1.2308 | 0.5437 | 0.5523 | 0.5437 | 0.5414 |
|
96 |
+
| No log | 15.0 | 300 | 1.1665 | 0.5938 | 0.6005 | 0.5938 | 0.5935 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.41.2
|
102 |
+
- Pytorch 2.3.0
|
103 |
+
- Datasets 2.19.1
|
104 |
+
- Tokenizers 0.19.1
|