IsmaelMousa commited on
Commit
40b4c98
·
verified ·
1 Parent(s): ede737a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -22
README.md CHANGED
@@ -72,34 +72,22 @@ Below is an example of how to use the model with the Hugging Face Transformers l
72
  ```python
73
  from transformers import pipeline
74
 
75
- ner = pipeline("token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="simple")
76
 
77
- ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")
 
 
 
 
 
78
  ```
79
 
80
  Results:
81
 
82
  ```
83
- [{'entity_group': 'PER',
84
- 'score': 0.5670353,
85
- 'word': ' Is',
86
- 'start': 7,
87
- 'end': 10},
88
- {'entity_group': 'PER',
89
- 'score': 0.90173304,
90
- 'word': 'mael Mousa',
91
- 'start': 10,
92
- 'end': 20},
93
- {'entity_group': 'LOC',
94
- 'score': 0.992393,
95
- 'word': ' Palestine',
96
- 'start': 25,
97
- 'end': 35},
98
- {'entity_group': 'ORG',
99
- 'score': 0.75373423,
100
- 'word': ' NVIDIA inc',
101
- 'start': 47,
102
- 'end': 58}]
103
  ```
104
 
105
  ### Training hyperparameters
 
72
  ```python
73
  from transformers import pipeline
74
 
75
+ ner = pipeline(task="token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="max")
76
 
77
+ results = ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")
78
+
79
+ for entity in results:
80
+ for key, value in entity.items():
81
+ if key == "entity_group":
82
+ print(f"{entity['word']} => {entity[key]}")
83
  ```
84
 
85
  Results:
86
 
87
  ```
88
+ Ismael Mousa => PER
89
+ Palestine => LOC
90
+ NVIDIA => ORG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  ```
92
 
93
  ### Training hyperparameters