Subiendo modelo entrenado para FetchPickAndPlace-v4 con replay video
Browse files- README.md +37 -0
- config.json +1 -0
- results.json +1 -0
- sac-FetchPickAndPlace-v4.zip +3 -0
- sac-FetchPickAndPlace-v4/_stable_baselines3_version +1 -0
- sac-FetchPickAndPlace-v4/actor.optimizer.pth +3 -0
- sac-FetchPickAndPlace-v4/critic.optimizer.pth +3 -0
- sac-FetchPickAndPlace-v4/data +120 -0
- sac-FetchPickAndPlace-v4/ent_coef_optimizer.pth +3 -0
- sac-FetchPickAndPlace-v4/policy.pth +3 -0
- sac-FetchPickAndPlace-v4/pytorch_variables.pth +3 -0
- sac-FetchPickAndPlace-v4/system_info.txt +8 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FetchPickAndPlace-v4
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FetchPickAndPlace-v4
|
16 |
+
type: FetchPickAndPlace-v4
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -9.70 +/- 4.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **FetchPickAndPlace-v4**
|
25 |
+
This is a trained model of a **SAC** agent playing **FetchPickAndPlace-v4**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x000001BDEC6FF9C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001BDEC724340>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 250000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1755338302920359500, "learning_rate": 0.001, "tensorboard_log": "./logs_pnp_sac_her/tb", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV9AEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAP7uInMoXvQ/FTCBEMTh6T95VypIqy/bP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYYAAAAAAAAACfepuc4UPQ/I8S4gE7T6T+2AS3bRy7bP5RoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolsgAAAAAAAAAQmEn2Dyk+D9jE5q3C4LnP85Q73oRC+A//u4icyhe9D8VMIEQxOHpP3lXKkirL9s/EMkRlFEY0b+Q5TjHwv2yP4wo0bbembO/9fgPGxdwdj+OPGNUiC9+P27NK7iNUfA9axyNPKwN/70MoLTInuJFP2rHm5wgYo2/Na1t6S9pa7/FPcjbD8CCPwEkvQ8SyeG91UKmpiHs8D1BjwAlWQkMPETy0ZwgYo0/Vonf6S9paz8a+znbD8CCvzGLIcvGiWG/Db67B9M3Y7+UaA5LAUsZhpRoEnSUUpR1Lg==", "achieved_goal": "[[1.27298779 0.80880931 0.42478449]]", "desired_goal": "[[1.26958552 0.80704427 0.42469975]]", "observation": "[[ 1.54009709e+00 7.34624728e-01 5.01351109e-01 1.27298779e+00\n 8.08809311e-01 4.24784489e-01 -2.67109294e-01 7.41845833e-02\n -7.65666195e-02 5.47799135e-03 7.36954931e-03 2.37466429e-10\n -4.51886581e-10 6.67884380e-04 -1.43473194e-02 -3.34605558e-03\n 9.15539159e-03 -1.29406048e-10 2.46253163e-10 1.89982826e-19\n 1.43473194e-02 3.34605559e-03 -9.15539158e-03 -2.14089228e-03\n -2.34595506e-03]]"}, "_episode_num": 4999, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5000020000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBwAAAAAAACMAWyUSzKMAXSUR0DOJR2sV+I/dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOJpOluWKNdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOKASpBHCodX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOKXiYLLIQdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOKuQ7muDBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOLFo08/2TdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOLcQuf29MdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOLzUG3WnTdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOMKUAaNuMdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOMhT50r9VdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOM4zHAAQydX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DONQBjH4oJdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DONmtdE9dNdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DON9roGIKudX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOOUrhky1vdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOOrkR6F/QdX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DOPCsMqjJudX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DOPZf0wrUcdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOPwWn0kGBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOQH2hM8HOdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOQfWahHskdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DORj6hUR4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DOR6hGjKxLdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOSRXh86V/dX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOSoncrRShdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOTAwiJO32dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOTXsT37DVdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOTvENQTEjdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOUGcGorFwdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOUdoQWepXdX2UKGgGR8AxAAAAAAAAaAdLMmgIR0DOU1PAoG6gdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOVMbFbVz7dX2UKGgGR8A8AAAAAAAAaAdLMmgIR0DOVjgrjHXFdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOV6glByCGdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOWRoeeWfLdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOWooYBNmEdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOXAENc4YKdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOXW8CgbqAdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOXuj72tdSdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOYFj1VYITdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOYcTu6VdHdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOYzdWp6yCdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOZLEjFAE/dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOZh0cp9ZzdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOZ5S5TZQIdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOaQqyt3fRdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOaoHjfek6dX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOa/Hc+JP7dX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DObWPWattAdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DObtfP3SKFdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOcFCLCN0edX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOcc2N5t3wdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOcz+HWSU1dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOdLcghbGFdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOdi8Z1mrbdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOd6dHc1wYdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOeSJuGbkPdX2UKGgGR8A0AAAAAAAAaAdLMmgIR0DOepf05EMLdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOfA3uTibVdX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DOfY3ndO6/dX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOfv/g75mAdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOg0/8jzI4dX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DOhMGvMbFTdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOhjmokzGhdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOh6miBXjmdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOiSSWX1J2dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOip6Pp6hQdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOjBiJAMUidX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOjYuHYYixdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOjwU9wFTvdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOkHI/7iyZdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOkev1lGwzdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOk2Xu3MINdX2UKGgGR8AzAAAAAAAAaAdLMmgIR0DOlNnoTwlTdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOlk3hwVCYdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOl8rULDyfdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOmTyD5CWvdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOmrR9PUKBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOnCp2ll9SdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOnaRv5xiodX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOnxVu1ndwdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOoImclPaddX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOoflJlJ6IdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOo2zg88s+dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOpOLaVUuMdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOplnO0LMLdX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DOp8nIU8FIdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOqT3DBMzudX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOqrO7HyVfdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOrCFe6ZpjdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOrZL1bqyGdX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DOrv/4qPOqdX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOsH2HFglXdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOsfOAd4mkdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOs2WvhZQpdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOtNmo73fydX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOtkoEdNnHdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOt73/HYHxdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOuSv4qPOqdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOupnzSThYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVAYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwWbnVtcHkuX2NvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAAAAAJSGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUZS4="}, "_n_updates": 749799, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVQgUAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAAAAACUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAAAAlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoCimBlH2UKGgNaBNoFksDhZRoGGgbKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoE0sDhZRoHnSUUpRoIWgbKJYDAAAAAAAAAAAAAJRoJUsDhZRoHnSUUpRoK2gbKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoE0sDhZRoHnSUUpRoMGgbKJYDAAAAAAAAAAAAAJRoJUsDhZRoHnSUUpRoNYwELWluZpRoN4wDaW5mlGg5TnVijAtvYnNlcnZhdGlvbpRoCimBlH2UKGgNaBNoFksZhZRoGGgbKJbIAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgTSxmFlGgedJRSlGghaBsolhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoJUsZhZRoHnSUUpRoK2gbKJbIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgTSxmFlGgedJRSlGgwaBsolhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoJUsZhZRoHnSUUpRoNYwELWluZpRoN4wDaW5mlGg5TnVidWgWTmgNTmg5TnViLg==", "spaces": "{'achieved_goal': Box(-inf, inf, (3,), float64), 'desired_goal': Box(-inf, inf, (3,), float64), 'observation': Box(-inf, inf, (25,), float64)}", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAAACAvwAAgL8AAIC/AACAv5RoC0sEhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlGgWdJRSlIwEaGlnaJRoEyiWEAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/lGgLSwSFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBAAAAAAAAAABAQEBlGgdSwSFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEcgKhmidfLysKo95mGdPpM4AjANpbmOUihH/qyWN4vLKZm5BqMk2VFD6AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdYwabnVtcHkucmFuZG9tLmJpdF9nZW5lcmF0b3KUjBtfX3B5eF91bnBpY2tsZV9TZWVkU2VxdWVuY2WUk5RoRIwMU2VlZFNlcXVlbmNllJOUSiKi6gNOh5RSlChLKksAaBMolhAAAAAAAAAABjYdY66QrgcovsRvdVztLJRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUSwQpdJRihpRihZRSlHViLg==", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "bounded_below": "[ True True True True]", "high": "[1. 1. 1. 1.]", "bounded_above": "[ True True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 512, "learning_starts": 100, "tau": 0.05, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "<function HerReplayBuffer.__init__ at 0x000001BDEC6FC720>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x000001BDEC6FC7C0>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x000001BDEC6FC860>", "set_env": "<function HerReplayBuffer.set_env at 0x000001BDEC6FC900>", "add": "<function HerReplayBuffer.add at 0x000001BDEC6FCA40>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x000001BDEC6FCAE0>", "sample": "<function HerReplayBuffer.sample at 0x000001BDEC6FCB80>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x000001BDEC6FCC20>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x000001BDEC6FCCC0>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x000001BDEC6FCD60>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x000001BDEC6FCE00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001BDEC7085C0>"}, "replay_buffer_kwargs": {"n_sampled_goal": 4, "goal_selection_strategy": "future"}, "n_steps": 1, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>", ":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/UGJN0vGp/HNic2Iu", "value_schedule": "ConstantSchedule(val=0.001)"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Windows-11-10.0.22000-SP0 10.0.22000", "Python": "3.12.3", "Stable-Baselines3": "2.7.0", "PyTorch": "2.7.1+cu118", "GPU Enabled": "True", "Numpy": "2.2.6", "Cloudpickle": "3.1.1", "Gymnasium": "1.2.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -9.7, "std_reward": 4.172529209005013, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-08-16T17:27:00.041297"}
|
sac-FetchPickAndPlace-v4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b1b30dd5e778a1f04868891eaa447ad7387f79d1f4db3514e01b9b189be1481
|
3 |
+
size 3374885
|
sac-FetchPickAndPlace-v4/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.7.0
|
sac-FetchPickAndPlace-v4/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f054b0f9cd5a949115c92d05ae2ee2bea777ce4a5cbac9d87fc05a9a0d64cc57
|
3 |
+
size 615643
|
sac-FetchPickAndPlace-v4/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:261e3d97156666152e980ecb0be1fbf5a2cddd9cfc402dcc789f0922b36bf3d8
|
3 |
+
size 1214839
|
sac-FetchPickAndPlace-v4/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x000001BDEC6FF9C0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001BDEC724340>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"use_sde": false
|
14 |
+
},
|
15 |
+
"num_timesteps": 250000,
|
16 |
+
"_total_timesteps": 500000,
|
17 |
+
"_num_timesteps_at_start": 0,
|
18 |
+
"seed": 42,
|
19 |
+
"action_noise": null,
|
20 |
+
"start_time": 1755338302920359500,
|
21 |
+
"learning_rate": 0.001,
|
22 |
+
"tensorboard_log": "./logs_pnp_sac_her/tb",
|
23 |
+
"_last_obs": null,
|
24 |
+
"_last_episode_starts": {
|
25 |
+
":type:": "<class 'numpy.ndarray'>",
|
26 |
+
":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
|
27 |
+
},
|
28 |
+
"_last_original_obs": {
|
29 |
+
":type:": "<class 'collections.OrderedDict'>",
|
30 |
+
":serialized:": "gAWV9AEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAP7uInMoXvQ/FTCBEMTh6T95VypIqy/bP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYYAAAAAAAAACfepuc4UPQ/I8S4gE7T6T+2AS3bRy7bP5RoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolsgAAAAAAAAAQmEn2Dyk+D9jE5q3C4LnP85Q73oRC+A//u4icyhe9D8VMIEQxOHpP3lXKkirL9s/EMkRlFEY0b+Q5TjHwv2yP4wo0bbembO/9fgPGxdwdj+OPGNUiC9+P27NK7iNUfA9axyNPKwN/70MoLTInuJFP2rHm5wgYo2/Na1t6S9pa7/FPcjbD8CCPwEkvQ8SyeG91UKmpiHs8D1BjwAlWQkMPETy0ZwgYo0/Vonf6S9paz8a+znbD8CCvzGLIcvGiWG/Db67B9M3Y7+UaA5LAUsZhpRoEnSUUpR1Lg==",
|
31 |
+
"achieved_goal": "[[1.27298779 0.80880931 0.42478449]]",
|
32 |
+
"desired_goal": "[[1.26958552 0.80704427 0.42469975]]",
|
33 |
+
"observation": "[[ 1.54009709e+00 7.34624728e-01 5.01351109e-01 1.27298779e+00\n 8.08809311e-01 4.24784489e-01 -2.67109294e-01 7.41845833e-02\n -7.65666195e-02 5.47799135e-03 7.36954931e-03 2.37466429e-10\n -4.51886581e-10 6.67884380e-04 -1.43473194e-02 -3.34605558e-03\n 9.15539159e-03 -1.29406048e-10 2.46253163e-10 1.89982826e-19\n 1.43473194e-02 3.34605559e-03 -9.15539158e-03 -2.14089228e-03\n -2.34595506e-03]]"
|
34 |
+
},
|
35 |
+
"_episode_num": 4999,
|
36 |
+
"use_sde": false,
|
37 |
+
"sde_sample_freq": -1,
|
38 |
+
"_current_progress_remaining": 0.5000020000000001,
|
39 |
+
"_stats_window_size": 100,
|
40 |
+
"ep_info_buffer": {
|
41 |
+
":type:": "<class 'collections.deque'>",
|
42 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBwAAAAAAACMAWyUSzKMAXSUR0DOJR2sV+I/dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOJpOluWKNdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOKASpBHCodX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOKXiYLLIQdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOKuQ7muDBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOLFo08/2TdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOLcQuf29MdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOLzUG3WnTdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOMKUAaNuMdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOMhT50r9VdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOM4zHAAQydX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DONQBjH4oJdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DONmtdE9dNdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DON9roGIKudX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOOUrhky1vdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOOrkR6F/QdX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DOPCsMqjJudX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DOPZf0wrUcdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOPwWn0kGBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOQH2hM8HOdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOQfWahHskdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DORj6hUR4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DOR6hGjKxLdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOSRXh86V/dX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOSoncrRShdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOTAwiJO32dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOTXsT37DVdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOTvENQTEjdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOUGcGorFwdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOUdoQWepXdX2UKGgGR8AxAAAAAAAAaAdLMmgIR0DOU1PAoG6gdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOVMbFbVz7dX2UKGgGR8A8AAAAAAAAaAdLMmgIR0DOVjgrjHXFdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOV6glByCGdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOWRoeeWfLdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOWooYBNmEdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOXAENc4YKdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOXW8CgbqAdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOXuj72tdSdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOYFj1VYITdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOYcTu6VdHdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOYzdWp6yCdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOZLEjFAE/dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOZh0cp9ZzdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOZ5S5TZQIdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOaQqyt3fRdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOaoHjfek6dX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOa/Hc+JP7dX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DObWPWattAdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DObtfP3SKFdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOcFCLCN0edX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOcc2N5t3wdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOcz+HWSU1dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOdLcghbGFdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOdi8Z1mrbdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOd6dHc1wYdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOeSJuGbkPdX2UKGgGR8A0AAAAAAAAaAdLMmgIR0DOepf05EMLdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOfA3uTibVdX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DOfY3ndO6/dX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOfv/g75mAdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOg0/8jzI4dX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DOhMGvMbFTdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOhjmokzGhdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOh6miBXjmdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOiSSWX1J2dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOip6Pp6hQdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOjBiJAMUidX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOjYuHYYixdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOjwU9wFTvdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOkHI/7iyZdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOkev1lGwzdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOk2Xu3MINdX2UKGgGR8AzAAAAAAAAaAdLMmgIR0DOlNnoTwlTdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOlk3hwVCYdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOl8rULDyfdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOmTyD5CWvdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOmrR9PUKBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOnCp2ll9SdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOnaRv5xiodX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOnxVu1ndwdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOoImclPaddX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOoflJlJ6IdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOo2zg88s+dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOpOLaVUuMdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOplnO0LMLdX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DOp8nIU8FIdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOqT3DBMzudX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOqrO7HyVfdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOrCFe6ZpjdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOrZL1bqyGdX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DOrv/4qPOqdX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOsH2HFglXdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOsfOAd4mkdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOs2WvhZQpdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOtNmo73fydX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOtkoEdNnHdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOt73/HYHxdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOuSv4qPOqdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOupnzSThYdWUu"
|
43 |
+
},
|
44 |
+
"ep_success_buffer": {
|
45 |
+
":type:": "<class 'collections.deque'>",
|
46 |
+
":serialized:": "gAWVVAYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwWbnVtcHkuX2NvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAAAAAJSGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUZS4="
|
47 |
+
},
|
48 |
+
"_n_updates": 749799,
|
49 |
+
"observation_space": {
|
50 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
51 |
+
":serialized:": "gAWVQgUAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAAAAACUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAAAAlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoCimBlH2UKGgNaBNoFksDhZRoGGgbKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoE0sDhZRoHnSUUpRoIWgbKJYDAAAAAAAAAAAAAJRoJUsDhZRoHnSUUpRoK2gbKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoE0sDhZRoHnSUUpRoMGgbKJYDAAAAAAAAAAAAAJRoJUsDhZRoHnSUUpRoNYwELWluZpRoN4wDaW5mlGg5TnVijAtvYnNlcnZhdGlvbpRoCimBlH2UKGgNaBNoFksZhZRoGGgbKJbIAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgTSxmFlGgedJRSlGghaBsolhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoJUsZhZRoHnSUUpRoK2gbKJbIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgTSxmFlGgedJRSlGgwaBsolhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoJUsZhZRoHnSUUpRoNYwELWluZpRoN4wDaW5mlGg5TnVidWgWTmgNTmg5TnViLg==",
|
52 |
+
"spaces": "{'achieved_goal': Box(-inf, inf, (3,), float64), 'desired_goal': Box(-inf, inf, (3,), float64), 'observation': Box(-inf, inf, (25,), float64)}",
|
53 |
+
"_shape": null,
|
54 |
+
"dtype": null,
|
55 |
+
"_np_random": null
|
56 |
+
},
|
57 |
+
"action_space": {
|
58 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
59 |
+
":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAAACAvwAAgL8AAIC/AACAv5RoC0sEhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlGgWdJRSlIwEaGlnaJRoEyiWEAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/lGgLSwSFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBAAAAAAAAAABAQEBlGgdSwSFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEcgKhmidfLysKo95mGdPpM4AjANpbmOUihH/qyWN4vLKZm5BqMk2VFD6AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdYwabnVtcHkucmFuZG9tLmJpdF9nZW5lcmF0b3KUjBtfX3B5eF91bnBpY2tsZV9TZWVkU2VxdWVuY2WUk5RoRIwMU2VlZFNlcXVlbmNllJOUSiKi6gNOh5RSlChLKksAaBMolhAAAAAAAAAABjYdY66QrgcovsRvdVztLJRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUSwQpdJRihpRihZRSlHViLg==",
|
60 |
+
"dtype": "float32",
|
61 |
+
"_shape": [
|
62 |
+
4
|
63 |
+
],
|
64 |
+
"low": "[-1. -1. -1. -1.]",
|
65 |
+
"bounded_below": "[ True True True True]",
|
66 |
+
"high": "[1. 1. 1. 1.]",
|
67 |
+
"bounded_above": "[ True True True True]",
|
68 |
+
"low_repr": "-1.0",
|
69 |
+
"high_repr": "1.0",
|
70 |
+
"_np_random": "Generator(PCG64)"
|
71 |
+
},
|
72 |
+
"n_envs": 1,
|
73 |
+
"buffer_size": 1000000,
|
74 |
+
"batch_size": 512,
|
75 |
+
"learning_starts": 100,
|
76 |
+
"tau": 0.05,
|
77 |
+
"gamma": 0.95,
|
78 |
+
"gradient_steps": 1,
|
79 |
+
"optimize_memory_usage": false,
|
80 |
+
"replay_buffer_class": {
|
81 |
+
":type:": "<class 'abc.ABCMeta'>",
|
82 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
83 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
84 |
+
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
85 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
86 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x000001BDEC6FC720>",
|
87 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x000001BDEC6FC7C0>",
|
88 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x000001BDEC6FC860>",
|
89 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x000001BDEC6FC900>",
|
90 |
+
"add": "<function HerReplayBuffer.add at 0x000001BDEC6FCA40>",
|
91 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x000001BDEC6FCAE0>",
|
92 |
+
"sample": "<function HerReplayBuffer.sample at 0x000001BDEC6FCB80>",
|
93 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x000001BDEC6FCC20>",
|
94 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x000001BDEC6FCCC0>",
|
95 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x000001BDEC6FCD60>",
|
96 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x000001BDEC6FCE00>",
|
97 |
+
"__abstractmethods__": "frozenset()",
|
98 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001BDEC7085C0>"
|
99 |
+
},
|
100 |
+
"replay_buffer_kwargs": {
|
101 |
+
"n_sampled_goal": 4,
|
102 |
+
"goal_selection_strategy": "future"
|
103 |
+
},
|
104 |
+
"n_steps": 1,
|
105 |
+
"train_freq": {
|
106 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
107 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
108 |
+
},
|
109 |
+
"use_sde_at_warmup": false,
|
110 |
+
"target_entropy": -4.0,
|
111 |
+
"ent_coef": "auto",
|
112 |
+
"target_update_interval": 1,
|
113 |
+
"lr_schedule": {
|
114 |
+
":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>",
|
115 |
+
":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/UGJN0vGp/HNic2Iu",
|
116 |
+
"value_schedule": "ConstantSchedule(val=0.001)"
|
117 |
+
},
|
118 |
+
"batch_norm_stats": [],
|
119 |
+
"batch_norm_stats_target": []
|
120 |
+
}
|
sac-FetchPickAndPlace-v4/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd06ce8ad3d452298ef897fa639470eb9174d4c30756d9dba340997264f9f7ab
|
3 |
+
size 2401
|
sac-FetchPickAndPlace-v4/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:792506461c719beb3926cb4230b258bdcf47ed8efbbc3eca8b31539e4fd710ea
|
3 |
+
size 1520771
|
sac-FetchPickAndPlace-v4/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b1915b3cceb2358bcb4ffa2506113cfbf4d29e5050cec486fb024a3b95608ae
|
3 |
+
size 1577
|
sac-FetchPickAndPlace-v4/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-11-10.0.22000-SP0 10.0.22000
|
2 |
+
- Python: 3.12.3
|
3 |
+
- Stable-Baselines3: 2.7.0
|
4 |
+
- PyTorch: 2.7.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.2.6
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 1.2.0
|