File size: 2,102 Bytes
1e1e467 e55e3fb 1e1e467 e86d1ef 1e1e467 e86d1ef 1e1e467 e86d1ef ab0d2fe e86d1ef ab0d2fe e86d1ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language: en
license: apache-2.0
datasets:
- openai/gsm8k
base_model:
- IntelLabs/sqft-mistral-7b-v0.3-50-base-gptq
library_name: peft
---
# SQFT Fine-tuned Model: sqft-mistral-7b-v0.3-50-gptq-gsm8k-heu-adapter
- Base Model: [IntelLabs/sqft-mistral-7b-v0.3-50-base-gptq](https://huggingface.co/IntelLabs/sqft-mistral-7b-v0.3-50-base-gptq)
- Sparsity: 50%
- Quantization: INT4 (GPTQ)
- Finetune Method: SQFT
- Finetune data: [GSM8K](https://huggingface.co/datasets/openai/gsm8k)
- Sub-Adapter: Heuristic
### Evaluation
```bash
BASE_MODEL_NAME=IntelLabs/sqft-mistral-7b-v0.3-50-base-gptq
ADAPTER_MODEL_NAME=IntelLabs/sqft-mistral-7b-v0.3-50-gptq-gsm8k-heu-adapter
lm_eval --model hf --model_args pretrained=${BASE_MODEL_NAME},peft=${ADAPTER_MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks gsm8k --batch_size auto:4
```
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command.
## Model Sources
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
**Paper:**
- [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)
## Citation
```bash
@inproceedings{munoz-etal-2024-sqft,
title = "{SQFT}: Low-cost Model Adaptation in Low-precision Sparse Foundation Models",
author = "Munoz, Juan Pablo and
Yuan, Jinjie and
Jain, Nilesh",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.749",
pages = "12817--12832",
}
```
## License
Apache-2.0
|