--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: first_try results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8973091707852828 --- # first_try This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5902 - Accuracy: 0.8973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.8032 | 1.0 | 3274 | 0.3192 | 0.8891 | OrderedDict([(, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) | | 0.8032 | 1.0 | 3274 | 0.2594 | 0.9059 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.5165 | 2.0 | 6548 | 0.3693 | 0.8925 | OrderedDict([(, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) | | 0.5165 | 2.0 | 6548 | 0.2860 | 0.9200 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.2972 | 3.0 | 9822 | 0.4699 | 0.8949 | OrderedDict([(, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) | | 0.2972 | 3.0 | 9822 | 0.3910 | 0.9162 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.1611 | 4.0 | 13096 | 0.5542 | 0.8964 | OrderedDict([(, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) | | 0.1611 | 4.0 | 13096 | 0.4473 | 0.9160 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.1155 | 5.0 | 16370 | 0.5926 | 0.8969 | OrderedDict([(, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) | | 0.1155 | 5.0 | 16370 | 0.4788 | 0.9180 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.0867 | 6.0 | 19644 | 0.6002 | 0.8958 | OrderedDict([(, {0: 512, 1: 320, 2: 320, 3: 576, 4: 576, 5: 512, 6: 448, 7: 448, 8: 448, 9: 320, 10: 384, 11: 448, 12: 1104, 13: 1066, 14: 1126, 15: 1102, 16: 1067, 17: 1023, 18: 1048, 19: 1061, 20: 984, 21: 772, 22: 609, 23: 205})]) | | 0.0867 | 6.0 | 19644 | 0.4831 | 0.9176 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | ### Framework versions - Transformers 4.29.1 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.13.3