English
lvkaokao commited on
Commit
7cedc20
·
verified ·
1 Parent(s): c101ee6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -3
README.md CHANGED
@@ -1,3 +1,97 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - NeelNanda/pile-10k
5
+ language:
6
+ - en
7
+ ---
8
+
9
+
10
+ ## Model Details
11
+
12
+ This model is an int4 model with group_size 128 of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) generated by [intel/auto-round](https://github.com/intel/auto-round).
13
+ Inference of this model is compatible with AutoGPTQ's Kernel.
14
+
15
+
16
+
17
+
18
+
19
+
20
+ ### Reproduce the model
21
+
22
+ Here is the sample command to reproduce the model
23
+
24
+ ```bash
25
+ git clone https://github.com/intel/auto-round
26
+ cd auto-round/examples/language-modeling
27
+ pip install -r requirements.txt
28
+ python3 main.py \
29
+ --model_name upstage/SOLAR-10.7B-Instruct-v1.0 \
30
+ --device 0 \
31
+ --group_size 128 \
32
+ --bits 4 \
33
+ --iters 1000 \
34
+ --n_samples 1024 \
35
+ --train_bs 16 \
36
+ --minmax_lr 0.01 \
37
+ --deployment_device 'gpu' \
38
+ --output_dir "./tmp_autoround" \
39
+
40
+ ```
41
+
42
+
43
+
44
+
45
+
46
+
47
+ ### Evaluate the model
48
+
49
+ Install [lm-eval-harness 0.4.2](https://github.com/EleutherAI/lm-evaluation-harness.git) from source,
50
+
51
+ ```bash
52
+ lm_eval --model hf --model_args pretrained="Intel/SOLAR-10.7B-Instruct-v1.0-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32
53
+ ```
54
+
55
+
56
+
57
+ | Metric | FP16 | INT4 |
58
+ | -------------- | ------ | ------ |
59
+ | Avg. | 0.6891 | 0.6895 |
60
+ | mmlu | 0.6358 | 0.6271 |
61
+ | lambada_openai | 0.7277 | 0.7351 |
62
+ | hellaswag | 0.6868 | 0.6845 |
63
+ | winogrande | 0.7672 | 0.7585 |
64
+ | piqa | 0.8069 | 0.8128 |
65
+ | truthfulqa_mc1 | 0.5777 | 0.5692 |
66
+ | openbookqa | 0.3640 | 0.382 |
67
+ | boolq | 0.8853 | 0.8862 |
68
+ | arc_easy | 0.8321 | 0.8354 |
69
+ | arc_challenge | 0.6075 | 0.6041 |
70
+
71
+
72
+
73
+
74
+
75
+
76
+ ## Caveats and Recommendations
77
+
78
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
79
+
80
+ Here are a couple of useful links to learn more about Intel's AI software:
81
+
82
+ * Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
83
+ * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
84
+
85
+
86
+
87
+ ## Disclaimer
88
+
89
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
90
+
91
+
92
+
93
+ ## Cite
94
+
95
+ @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
96
+
97
+ [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)