Upload inference_example.ipynb
Browse files- inference_example.ipynb +140 -0
inference_example.ipynb
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from typing import List, Union\n",
|
10 |
+
"\n",
|
11 |
+
"import torch\n",
|
12 |
+
"from transformers import AutoModel"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"metadata": {},
|
18 |
+
"source": [
|
19 |
+
"# Load model"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": null,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"model = AutoModel.from_pretrained(\"InstaDeepAI/segment_enformer\", trust_remote_code=True)"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "markdown",
|
33 |
+
"metadata": {},
|
34 |
+
"source": [
|
35 |
+
"# Define useful functions"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"def encode_sequences(sequences: Union[str, List[str]]) -> torch.Tensor:\n",
|
45 |
+
" \"\"\"\n",
|
46 |
+
" One-hot encode a DNA sequence or a batch of DNA sequences.\n",
|
47 |
+
"\n",
|
48 |
+
" Args:\n",
|
49 |
+
" sequences (Union[str, List[str]]): Either a DNA sequence or a list of DNA sequences\n",
|
50 |
+
"\n",
|
51 |
+
" Returns:\n",
|
52 |
+
" torch.Tensor: One-hot encoded\n",
|
53 |
+
" - If `sequences` is just one sequence (str), output shape is (196608, 4)\n",
|
54 |
+
" - If `sequences` is a list of sequences, output shape is (num_sequences, 196608, 4)\n",
|
55 |
+
" \n",
|
56 |
+
" \"\"\"\n",
|
57 |
+
" one_hot_map = {\n",
|
58 |
+
" 'a': torch.tensor([1., 0., 0., 0.]),\n",
|
59 |
+
" 'c': torch.tensor([0., 1., 0., 0.]),\n",
|
60 |
+
" 'g': torch.tensor([0., 0., 1., 0.]),\n",
|
61 |
+
" 't': torch.tensor([0., 0., 0., 1.]),\n",
|
62 |
+
" 'n': torch.tensor([0., 0., 0., 0.]),\n",
|
63 |
+
" 'A': torch.tensor([1., 0., 0., 0.]),\n",
|
64 |
+
" 'C': torch.tensor([0., 1., 0., 0.]),\n",
|
65 |
+
" 'G': torch.tensor([0., 0., 1., 0.]),\n",
|
66 |
+
" 'T': torch.tensor([0., 0., 0., 1.]),\n",
|
67 |
+
" 'N': torch.tensor([0., 0., 0., 0.])\n",
|
68 |
+
" }\n",
|
69 |
+
"\n",
|
70 |
+
" def encode_sequence(seq_str):\n",
|
71 |
+
" one_hot_list = []\n",
|
72 |
+
" for char in seq_str:\n",
|
73 |
+
" one_hot_vector = one_hot_map.get(char, torch.tensor([0.25, 0.25, 0.25, 0.25]))\n",
|
74 |
+
" one_hot_list.append(one_hot_vector)\n",
|
75 |
+
" return torch.stack(one_hot_list)\n",
|
76 |
+
"\n",
|
77 |
+
" if isinstance(sequences, list):\n",
|
78 |
+
" return torch.stack([encode_sequence(seq) for seq in sequences])\n",
|
79 |
+
" else:\n",
|
80 |
+
" return encode_sequence(sequences)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"metadata": {},
|
86 |
+
"source": [
|
87 |
+
"# Inference example"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"sequences = [\"A\"*196608, \"G\"*196608]\n",
|
97 |
+
"one_hot_encoding = encode_sequences(sequences)"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"preds = model(one_hot_encoding)"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": null,
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"print(preds['logits'])"
|
116 |
+
]
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"metadata": {
|
120 |
+
"kernelspec": {
|
121 |
+
"display_name": "genomics-research-env",
|
122 |
+
"language": "python",
|
123 |
+
"name": "python3"
|
124 |
+
},
|
125 |
+
"language_info": {
|
126 |
+
"codemirror_mode": {
|
127 |
+
"name": "ipython",
|
128 |
+
"version": 3
|
129 |
+
},
|
130 |
+
"file_extension": ".py",
|
131 |
+
"mimetype": "text/x-python",
|
132 |
+
"name": "python",
|
133 |
+
"nbconvert_exporter": "python",
|
134 |
+
"pygments_lexer": "ipython3",
|
135 |
+
"version": "3.11.10"
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"nbformat": 4,
|
139 |
+
"nbformat_minor": 2
|
140 |
+
}
|