Upload BulkRNABert
Browse files- README.md +199 -0
- bulkrnabert.py +327 -0
- config.json +24 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
bulkrnabert.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from dataclasses import dataclass, field
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F # noqa: N812
|
9 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
10 |
+
|
11 |
+
|
12 |
+
class MultiHeadAttention(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
num_heads: int,
|
16 |
+
key_size: int,
|
17 |
+
add_bias_kv: bool = False,
|
18 |
+
value_size: Optional[int] = None,
|
19 |
+
model_size: Optional[int] = None,
|
20 |
+
name: Optional[str] = None,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
if not model_size:
|
24 |
+
model_size = key_size
|
25 |
+
if not value_size:
|
26 |
+
value_size = key_size
|
27 |
+
self.model_size = model_size
|
28 |
+
self.key_size = key_size
|
29 |
+
self.value_size = value_size
|
30 |
+
self.add_bias_kv = add_bias_kv
|
31 |
+
self.name = name
|
32 |
+
self.num_heads = num_heads
|
33 |
+
|
34 |
+
self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
|
35 |
+
self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
|
36 |
+
self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
|
37 |
+
self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self,
|
41 |
+
query: torch.Tensor,
|
42 |
+
key: torch.Tensor,
|
43 |
+
value: torch.Tensor,
|
44 |
+
attention_mask: Optional[torch.Tensor] = None,
|
45 |
+
attention_weight_bias: Optional[torch.Tensor] = None,
|
46 |
+
) -> dict[str, torch.Tensor]:
|
47 |
+
"""
|
48 |
+
Returns:
|
49 |
+
dictionary containing attention weights
|
50 |
+
and outputs.
|
51 |
+
"""
|
52 |
+
key_heads = self.w_k(key).reshape(
|
53 |
+
(*key.shape[:-1], self.num_heads, self.key_size)
|
54 |
+
)
|
55 |
+
query_heads = self.w_q(query).reshape(
|
56 |
+
(*query.shape[:-1], self.num_heads, self.key_size)
|
57 |
+
)
|
58 |
+
value_heads = self.w_v(value).reshape(
|
59 |
+
(*value.shape[:-1], self.num_heads, self.value_size)
|
60 |
+
)
|
61 |
+
attention_weights = torch.einsum(
|
62 |
+
"...thd, ...Thd -> ...htT", query_heads, key_heads
|
63 |
+
)
|
64 |
+
sqrt_key_size = np.sqrt(self.key_size)
|
65 |
+
attention_weights = attention_weights / sqrt_key_size
|
66 |
+
if attention_mask is not None:
|
67 |
+
attention_weights = torch.where(attention_mask, attention_weights, -1e30)
|
68 |
+
if attention_weight_bias:
|
69 |
+
attention_weights = F.softmax(
|
70 |
+
attention_weights + attention_weight_bias, dim=-1
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
attention_weights = F.softmax(attention_weights, dim=-1)
|
74 |
+
value_out = torch.einsum(
|
75 |
+
"...htT, ...Thd->...thd", attention_weights, value_heads
|
76 |
+
)
|
77 |
+
value_out = value_out.reshape((*value_out.shape[:-2], -1))
|
78 |
+
embeddings = self.output(value_out)
|
79 |
+
|
80 |
+
return {"attention_weights": attention_weights, "embeddings": embeddings}
|
81 |
+
|
82 |
+
|
83 |
+
class SelfAttentionBlock(nn.Module):
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
num_heads: int,
|
87 |
+
embed_dim: int,
|
88 |
+
ffn_embed_dim: int,
|
89 |
+
key_size: Optional[int] = None,
|
90 |
+
add_bias_kv: bool = False,
|
91 |
+
add_bias_fnn: bool = True,
|
92 |
+
ffn_activation_name: str = "gelu-no-approx",
|
93 |
+
use_glu_in_ffn: bool = False,
|
94 |
+
layer_norm_eps: float = 1e-5, # this is the default haiku value
|
95 |
+
pre_layer_norm: bool = True,
|
96 |
+
name: Optional[str] = None,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
if key_size is None:
|
100 |
+
if embed_dim % num_heads != 0:
|
101 |
+
raise ValueError(
|
102 |
+
f"The embedding dimension should be divisible by the number of "
|
103 |
+
f"heads, however provided embedding dimension is {embed_dim} and "
|
104 |
+
f"the number of heads is {num_heads}."
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
key_size = embed_dim // num_heads
|
108 |
+
|
109 |
+
# Get ffn activation function
|
110 |
+
self._pre_layer_norm = pre_layer_norm
|
111 |
+
self._use_glu_in_fnn = use_glu_in_ffn
|
112 |
+
# Define layers
|
113 |
+
if use_glu_in_ffn:
|
114 |
+
# user should multiply ffn_embed_dim by 2/3 when using GLU
|
115 |
+
# to keep total number of parameters equal
|
116 |
+
# see https://arxiv.org/pdf/2002.05202.pdf. for more details
|
117 |
+
# we multiply by 2 here as the output will be split in 2 for GLU
|
118 |
+
self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
|
119 |
+
else:
|
120 |
+
self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)
|
121 |
+
|
122 |
+
self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)
|
123 |
+
|
124 |
+
self.layer_norm_self_attention = nn.LayerNorm(
|
125 |
+
embed_dim,
|
126 |
+
)
|
127 |
+
self.layer_norm_mlp = nn.LayerNorm(embed_dim)
|
128 |
+
if ffn_activation_name == "swish":
|
129 |
+
self._ffn_activation_fn = nn.SiLU()
|
130 |
+
elif ffn_activation_name == "gelu-no-approx":
|
131 |
+
self._ffn_activation_fn = lambda x: F.gelu(x, approximate="none")
|
132 |
+
else:
|
133 |
+
self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)
|
134 |
+
|
135 |
+
self.mha = MultiHeadAttention(
|
136 |
+
num_heads=num_heads,
|
137 |
+
key_size=key_size,
|
138 |
+
add_bias_kv=add_bias_kv,
|
139 |
+
model_size=embed_dim,
|
140 |
+
name="self_attention",
|
141 |
+
)
|
142 |
+
|
143 |
+
def mlp(self, embed: torch.Tensor) -> torch.Tensor:
|
144 |
+
|
145 |
+
if self._pre_layer_norm:
|
146 |
+
x = self.layer_norm_mlp(embed)
|
147 |
+
else:
|
148 |
+
x = embed
|
149 |
+
|
150 |
+
if self._use_glu_in_fnn:
|
151 |
+
x = self.fc1(x)
|
152 |
+
x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
|
153 |
+
x = self._ffn_activation_fn(x1) * x2
|
154 |
+
else:
|
155 |
+
x = self._ffn_activation_fn(self.fc1(x))
|
156 |
+
x = self.fc2(x)
|
157 |
+
|
158 |
+
if not self._pre_layer_norm:
|
159 |
+
x = self.layer_norm_mlp(x + embed)
|
160 |
+
return x
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
x: torch.Tensor,
|
165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
166 |
+
attention_weight_bias: Optional[torch.Tensor] = None,
|
167 |
+
) -> torch.Tensor:
|
168 |
+
|
169 |
+
res = x
|
170 |
+
if self._pre_layer_norm:
|
171 |
+
x = self.layer_norm_self_attention(x)
|
172 |
+
|
173 |
+
output = self.mha(
|
174 |
+
x,
|
175 |
+
x,
|
176 |
+
x,
|
177 |
+
attention_mask=attention_mask,
|
178 |
+
attention_weight_bias=attention_weight_bias,
|
179 |
+
)
|
180 |
+
|
181 |
+
if not self._pre_layer_norm:
|
182 |
+
output["embeddings"] = self.layer_norm_self_attention(
|
183 |
+
output["embeddings"] + res
|
184 |
+
)
|
185 |
+
|
186 |
+
x = output["embeddings"]
|
187 |
+
else:
|
188 |
+
x = output["embeddings"]
|
189 |
+
x = res + x
|
190 |
+
|
191 |
+
# MLP
|
192 |
+
if not self._pre_layer_norm:
|
193 |
+
x = self.mlp(x)
|
194 |
+
else:
|
195 |
+
x = x + self.mlp(x)
|
196 |
+
|
197 |
+
output["embeddings"] = x
|
198 |
+
return output
|
199 |
+
|
200 |
+
|
201 |
+
@dataclass
|
202 |
+
class BulkRNABertConfig(PretrainedConfig):
|
203 |
+
model_type = "BulkRNABert"
|
204 |
+
n_genes: int = 19_062
|
205 |
+
n_expressions_bins: int = 64
|
206 |
+
embed_dim: int = 256
|
207 |
+
init_gene_embed_dim: int = 200
|
208 |
+
use_gene_embedding: bool = True
|
209 |
+
project_gene_embedding: bool = True
|
210 |
+
num_attention_heads: int = 8
|
211 |
+
key_size: Optional[int] = None
|
212 |
+
ffn_embed_dim: int = 512
|
213 |
+
num_layers: int = 4
|
214 |
+
|
215 |
+
# return
|
216 |
+
embeddings_layers_to_save: tuple[int, ...] = field(default_factory=tuple)
|
217 |
+
attention_maps_to_save: list[tuple[int, int]] = field(default_factory=list)
|
218 |
+
|
219 |
+
def __post_init__(self):
|
220 |
+
# Validate attention key size
|
221 |
+
key_size = self.key_size
|
222 |
+
if key_size is None:
|
223 |
+
embed_dim = self.embed_dim
|
224 |
+
num_attention_heads = self.num_attention_heads
|
225 |
+
if not embed_dim % num_attention_heads == 0:
|
226 |
+
raise ValueError(
|
227 |
+
f"When no key size is provided, the embedding dimension should be "
|
228 |
+
f"divisible by the number of heads, however provided embedding "
|
229 |
+
f"dimension is {embed_dim} and the number of heads is "
|
230 |
+
f"{num_attention_heads}."
|
231 |
+
)
|
232 |
+
self.key_size = embed_dim // num_attention_heads
|
233 |
+
|
234 |
+
# Validate gene embedding projection
|
235 |
+
use_gene_embedding = self.use_gene_embedding
|
236 |
+
if use_gene_embedding:
|
237 |
+
init_gene_embed_dim = self.init_gene_embed_dim
|
238 |
+
embed_dim = self.embed_dim
|
239 |
+
if init_gene_embed_dim != embed_dim:
|
240 |
+
project_gene_embedding = self.project_gene_embedding
|
241 |
+
if not project_gene_embedding:
|
242 |
+
logging.warning(
|
243 |
+
f"Init gene embedding dimension ({init_gene_embed_dim})"
|
244 |
+
f"different than embedding dimension ({embed_dim})."
|
245 |
+
f"Setting `project_gene_embedding` to True"
|
246 |
+
)
|
247 |
+
self.project_gene_embedding = True
|
248 |
+
|
249 |
+
|
250 |
+
class BulkRNABert(PreTrainedModel):
|
251 |
+
config_class = BulkRNABertConfig
|
252 |
+
|
253 |
+
def __init__(self, config: BulkRNABertConfig):
|
254 |
+
super().__init__(config=config)
|
255 |
+
|
256 |
+
self.expression_embedding_layer = nn.Embedding(
|
257 |
+
config.n_expressions_bins, config.embed_dim
|
258 |
+
)
|
259 |
+
self.gene_embedding_layer = nn.Embedding(
|
260 |
+
config.n_genes,
|
261 |
+
config.init_gene_embed_dim,
|
262 |
+
)
|
263 |
+
self.fc_gene_embedding = nn.Linear(config.init_gene_embed_dim, config.embed_dim)
|
264 |
+
|
265 |
+
attention_maps_to_save = config.attention_maps_to_save
|
266 |
+
self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})
|
267 |
+
|
268 |
+
self._attention_maps_per_layer_to_save = {
|
269 |
+
layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
|
270 |
+
for layer in self._attention_layers_to_save
|
271 |
+
}
|
272 |
+
max_layer = max(self._attention_layers_to_save + [0])
|
273 |
+
if max_layer > config.num_layers:
|
274 |
+
raise ValueError(
|
275 |
+
f"You are requiring attention maps for layer {max_layer}, "
|
276 |
+
f"while the model has {config.num_layers} layers only."
|
277 |
+
)
|
278 |
+
self.transformer_layers = nn.ModuleList(
|
279 |
+
[
|
280 |
+
SelfAttentionBlock(
|
281 |
+
num_heads=config.num_attention_heads,
|
282 |
+
embed_dim=config.embed_dim,
|
283 |
+
key_size=config.key_size,
|
284 |
+
ffn_embed_dim=config.ffn_embed_dim,
|
285 |
+
name=f"attention_layer_{layer_idx}",
|
286 |
+
)
|
287 |
+
for layer_idx in range(config.num_layers)
|
288 |
+
]
|
289 |
+
)
|
290 |
+
|
291 |
+
self.lm_head = nn.Linear(config.embed_dim, config.n_expressions_bins)
|
292 |
+
|
293 |
+
def forward(
|
294 |
+
self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
|
295 |
+
) -> dict[str, torch.Tensor]:
|
296 |
+
outs = {}
|
297 |
+
x = self.expression_embedding_layer(input_ids)
|
298 |
+
|
299 |
+
if self.config.use_gene_embedding:
|
300 |
+
gene_indices = torch.arange(self.config.n_genes, device=x.device)
|
301 |
+
gene_embedding = self.gene_embedding_layer(gene_indices)
|
302 |
+
if self.config.project_gene_embedding:
|
303 |
+
gene_embedding = self.fc_gene_embedding(gene_embedding)
|
304 |
+
x = x + gene_embedding
|
305 |
+
|
306 |
+
outs["embeddings"] = x
|
307 |
+
|
308 |
+
if attention_mask is None:
|
309 |
+
batch_size, seq_length = input_ids.shape
|
310 |
+
attention_mask = torch.ones( # noqa
|
311 |
+
(batch_size, 1, seq_length, seq_length),
|
312 |
+
device=input_ids.device,
|
313 |
+
dtype=bool,
|
314 |
+
)
|
315 |
+
|
316 |
+
for layer_idx, transformer in enumerate(self.transformer_layers):
|
317 |
+
output = transformer(x, attention_mask=attention_mask)
|
318 |
+
x = output["embeddings"]
|
319 |
+
if (layer_idx + 1) in self.config.embeddings_layers_to_save:
|
320 |
+
outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
|
321 |
+
if (layer_idx + 1) in self._attention_layers_to_save:
|
322 |
+
for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
|
323 |
+
dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
|
324 |
+
outs[dkey] = output["attention_weights"][:, map_number + 1]
|
325 |
+
|
326 |
+
outs["logits"] = self.lm_head(x)
|
327 |
+
return outs
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BulkRNABert"
|
4 |
+
],
|
5 |
+
"attention_maps_to_save": [],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "bulkrnabert.BulkRNABertConfig",
|
8 |
+
"AutoModel": "bulkrnabert.BulkRNABert"
|
9 |
+
},
|
10 |
+
"embed_dim": 256,
|
11 |
+
"embeddings_layers_to_save": [],
|
12 |
+
"ffn_embed_dim": 512,
|
13 |
+
"init_gene_embed_dim": 200,
|
14 |
+
"key_size": 32,
|
15 |
+
"model_type": "BulkRNABert",
|
16 |
+
"n_expressions_bins": 64,
|
17 |
+
"n_genes": 19062,
|
18 |
+
"num_attention_heads": 8,
|
19 |
+
"num_layers": 4,
|
20 |
+
"project_gene_embedding": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.37.2",
|
23 |
+
"use_gene_embedding": true
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b934e179e95a9f25f22ede71c7fe92132469d5bc4340c1031c9601b102a491f5
|
3 |
+
size 24027776
|