Iker commited on
Commit
29881b4
·
verified ·
1 Parent(s): f5acbca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -1
README.md CHANGED
@@ -67,6 +67,32 @@ If you are looking for a larger model, with better performance, check out [Click
67
  - 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e)
68
  - 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/)
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  # Evaluation Results
72
  <table>
@@ -156,7 +182,6 @@ print(summary.strip().split("\n")[-1]) # Get only the summary, without the promp
156
  ## Run inference in the NoticIA dataset
157
  ```python
158
  import torch # pip install torch
159
- from newspaper import Article #pip3 install newspaper3k
160
  from datasets import load_dataset # pip install datasets
161
  from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers
162
 
 
67
  - 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e)
68
  - 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/)
69
 
70
+ # Open Source Models
71
+ <table border="1" cellspacing="0" cellpadding="5">
72
+ <thead>
73
+ <tr>
74
+ <th></th>
75
+ <th><a href="https://huggingface.co/Iker/ClickbaitFighter-2B">Iker/ClickbaitFighter-2B</a></th>
76
+ <th><a href="https://huggingface.co/Iker/ClickbaitFighter-7B">Iker/ClickbaitFighter-7B</a></th>
77
+ <th><a href="https://huggingface.co/Iker/ClickbaitFighter-10B">Iker/ClickbaitFighter-10B</a></th>
78
+ </tr>
79
+ </thead>
80
+ <tbody>
81
+ <tr>
82
+ <td>Param. no.</td>
83
+ <td>2B</td>
84
+ <td>7B</td>
85
+ <td>10M</td>
86
+ </tr>
87
+ <tr>
88
+ <td>ROUGE</td>
89
+ <td>36.26</td>
90
+ <td>49.81</td>
91
+ <td>52.01</td>
92
+ </tr>
93
+ <tr>
94
+ </tbody>
95
+ </table>
96
 
97
  # Evaluation Results
98
  <table>
 
182
  ## Run inference in the NoticIA dataset
183
  ```python
184
  import torch # pip install torch
 
185
  from datasets import load_dataset # pip install datasets
186
  from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers
187