Update README.md
Browse files
README.md
CHANGED
@@ -67,6 +67,32 @@ If you are looking for a larger model, with better performance, check out [Click
|
|
67 |
- 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e)
|
68 |
- 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Evaluation Results
|
72 |
<table>
|
@@ -156,7 +182,6 @@ print(summary.strip().split("\n")[-1]) # Get only the summary, without the promp
|
|
156 |
## Run inference in the NoticIA dataset
|
157 |
```python
|
158 |
import torch # pip install torch
|
159 |
-
from newspaper import Article #pip3 install newspaper3k
|
160 |
from datasets import load_dataset # pip install datasets
|
161 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers
|
162 |
|
|
|
67 |
- 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e)
|
68 |
- 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/)
|
69 |
|
70 |
+
# Open Source Models
|
71 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
72 |
+
<thead>
|
73 |
+
<tr>
|
74 |
+
<th></th>
|
75 |
+
<th><a href="https://huggingface.co/Iker/ClickbaitFighter-2B">Iker/ClickbaitFighter-2B</a></th>
|
76 |
+
<th><a href="https://huggingface.co/Iker/ClickbaitFighter-7B">Iker/ClickbaitFighter-7B</a></th>
|
77 |
+
<th><a href="https://huggingface.co/Iker/ClickbaitFighter-10B">Iker/ClickbaitFighter-10B</a></th>
|
78 |
+
</tr>
|
79 |
+
</thead>
|
80 |
+
<tbody>
|
81 |
+
<tr>
|
82 |
+
<td>Param. no.</td>
|
83 |
+
<td>2B</td>
|
84 |
+
<td>7B</td>
|
85 |
+
<td>10M</td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td>ROUGE</td>
|
89 |
+
<td>36.26</td>
|
90 |
+
<td>49.81</td>
|
91 |
+
<td>52.01</td>
|
92 |
+
</tr>
|
93 |
+
<tr>
|
94 |
+
</tbody>
|
95 |
+
</table>
|
96 |
|
97 |
# Evaluation Results
|
98 |
<table>
|
|
|
182 |
## Run inference in the NoticIA dataset
|
183 |
```python
|
184 |
import torch # pip install torch
|
|
|
185 |
from datasets import load_dataset # pip install datasets
|
186 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers
|
187 |
|