Commit
·
c4ef99f
1
Parent(s):
8b5f138
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Arabic syllables recognition with tashkeel.
|
2 |
+
This is fine tuned wav2vec2 model to recognize arabic syllables from speech.
|
3 |
+
The model was trained on Modern standard arabic dataset.\
|
4 |
+
5-gram language model is available with the model.
|
5 |
+
|
6 |
+
To try it out :
|
7 |
+
|
8 |
+
```
|
9 |
+
!pip install datasets transformers
|
10 |
+
!pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode
|
11 |
+
```
|
12 |
+
|
13 |
+
```
|
14 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
15 |
+
from transformers import Wav2Vec2ProcessorWithLM
|
16 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained('IbrahimSalah/Syllables_final_Large')
|
17 |
+
model = Wav2Vec2ForCTC.from_pretrained("IbrahimSalah/Syllables_final_Large")
|
18 |
+
```
|
19 |
+
```
|
20 |
+
import pandas as pd
|
21 |
+
dftest = pd.DataFrame(columns=['audio'])
|
22 |
+
import datasets
|
23 |
+
from datasets import Dataset
|
24 |
+
path ='/content/908-33.wav'
|
25 |
+
dftest['audio']=[path] ## audio path
|
26 |
+
dataset = Dataset.from_pandas(dftest)
|
27 |
+
```
|
28 |
+
```
|
29 |
+
import torch
|
30 |
+
import torchaudio
|
31 |
+
def speech_file_to_array_fn(batch):
|
32 |
+
speech_array, sampling_rate = torchaudio.load(batch["audio"])
|
33 |
+
print(sampling_rate)
|
34 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input.
|
35 |
+
batch["audio"] = resampler(speech_array).squeeze().numpy()
|
36 |
+
return batch
|
37 |
+
```
|
38 |
+
```
|
39 |
+
import numpy as np
|
40 |
+
from datasets import load_dataset
|
41 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
42 |
+
test_dataset = dataset.map(speech_file_to_array_fn)
|
43 |
+
inputs = processor(test_dataset["audio"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
44 |
+
with torch.no_grad():
|
45 |
+
logits = model(inputs.input_values).logits
|
46 |
+
print(logits.numpy().shape)
|
47 |
+
|
48 |
+
transcription = processor.batch_decode(logits.numpy()).text
|
49 |
+
print("Prediction:",transcription[0])
|
50 |
+
```
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|