File size: 6,795 Bytes
805087b
 
 
 
 
 
 
 
 
 
 
 
 
d248431
805087b
c10d5df
10b9478
c10d5df
 
805087b
 
 
 
 
 
c10d5df
805087b
 
 
c10d5df
 
805087b
 
 
 
c10d5df
 
805087b
 
 
 
d248431
 
805087b
 
c10d5df
 
10b9478
 
 
1c94de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07a48c1
1c94de7
 
 
10b9478
 
 
805087b
 
 
 
 
10b9478
 
805087b
10b9478
c10d5df
 
805087b
c10d5df
 
 
 
 
10b9478
c10d5df
 
10b9478
c10d5df
 
 
 
 
10b9478
c10d5df
 
 
 
1c94de7
 
 
ada721f
 
 
1c94de7
 
c10d5df
07a48c1
805087b
ada721f
07a48c1
 
 
 
 
 
 
 
 
805087b
ada721f
 
 
 
 
 
 
 
 
 
 
 
 
 
805087b
ada721f
07a48c1
 
 
 
 
 
 
 
 
 
805087b
07a48c1
 
 
805087b
07a48c1
 
 
 
 
 
805087b
c10d5df
805087b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d248431
 
 
805087b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import tqdm
import re
import requests
from huggingface_hub import login
from datasets import Dataset
from datasets import load_dataset
from google.colab import userdata

login(userdata.get('HF_TOKEN'))

data = load_dataset("Ibrahemqasim/categories_en2ar", split="train")

# nationalities.keys() "nat_en","man","men","women","womens","country_en","country_ar",

nationalities = load_dataset("Ibrahemqasim/nationalities", split="train")
nationalities_pattern = r'\b(' + '|'.join(map(re.escape, [n["nat_en"].lower() for n in sorted(nationalities, key=lambda x: -x["nat_en"].count(' '))])) + r')\b'
nationalities_pattern_ar = r'(' + '|'.join(map(re.escape, [n["man"].lower() for n in sorted(nationalities, key=lambda x: -x["man"].count(' '))])) + r')'

# print(nationalities_pattern)

countries = load_dataset("Ibrahemqasim/countries", split="train")
countries_pattern = r'\b(' + '|'.join(map(re.escape, [n["en"] for n in sorted(countries, key=lambda x: -x["en"].count(' '))])) + r')\b'

# ---
countries_dict = {cc["en"]: cc for cc in countries}
nationalities_dict = {cc["nat_en"].lower(): cc for cc in nationalities}
# ---
to_work = [
    "categories_with_nationalities",
    "categories_with_NAT_pattern",
    "categories_with_YEAR_NAT_pattern",
]

data_lists = {
    "categories_with_nationalities" : {},
    "categories_with_NAT_pattern" : {},
    "categories_with_YEAR_NAT_pattern" : {},
}

YEAR_PATTERN = "{YEAR}"
NAT = "{NAT}"
EN_NAT_PATTERN = "{EN_NAT}"

COUNTRY_PATTERN = "{COUNTRY}"

# data = [{"en": "Category:1970s yemeni peoples", "ar": "تصنيف: يمنيون في عقد 1970"}]
match1_done = 0


def new_func(value, ar_tab):
    # List of possible keys and their corresponding tags
    patterns = [
        ("men", "{NAT_MEN}"),
        ("womens", "{NAT_WOMENS}"),
        ("women", "{NAT_WOMEN}"),
        ("man", "{NAT_MAN}"),
    ]

    # Iterate through the patterns
    for key, tag in patterns:
        country = ar_tab.get(key, "")
        if not country:
            continue
        # ---
        country2 = f"ال{country}".replace(" ", " ال")
        # ---
        if country2 in value:
            return country2, tag.replace("}", "_AL}")
        elif country in value:
            return country, tag

    return "", ""


for tab in tqdm.tqdm(data):
    # ---
    key = tab["en"]
    value = tab["ar"]
    # ---
    match_en = re.search(nationalities_pattern, key, re.IGNORECASE)
    match_ar = re.search(nationalities_pattern_ar, value, re.IGNORECASE)
    # ----
    if match_en or match_ar:
        # ---
        match1_done += 1
        # ---
        if key in data_lists["categories_with_nationalities"]:
            data_lists["categories_with_nationalities"][key]["count"] += 1
        else:
            data_lists["categories_with_nationalities"][key] = {"ar": value, "count": 1}
    # ---
    if not match_en:
        continue
    # ---
    en_country = match_en.group(1)
    ar_tab = nationalities_dict.get(en_country.lower(), {})
    # ---
    if not ar_tab:
        continue
    # ---
    ar_country, NAT_PATTERN = new_func(value, ar_tab)
    # ---
    if not NAT_PATTERN:
        continue
    # ---
    key1 = re.sub(rf'\b{re.escape(en_country)}\b', EN_NAT_PATTERN, f" {key} ", re.IGNORECASE)
    key1 = key1.strip()
    # ---
    if EN_NAT_PATTERN in key1 and key1 in data_lists["categories_with_NAT_pattern"]:
        data_lists["categories_with_NAT_pattern"][key1]["count"] += 1
    # ---
    value1 = re.sub(rf'\b{re.escape(ar_country)}\b', NAT_PATTERN, f" {value} ", re.IGNORECASE)
    value1 = value1.strip()
    # ---
    if EN_NAT_PATTERN in key1 and NAT_PATTERN in value1:
        # ---
        if key1 not in data_lists["categories_with_NAT_pattern"]:
            data_lists["categories_with_NAT_pattern"][key1] = {"ar": value1, "count": 1}
        # ---
        # continue
        # ---
        # Add if key and value has 4 digits and they are the same
        reg_year = r"(\d+[–-]\d+|\d{4})"
        # ---
        key_digits = re.search(reg_year, key, re.IGNORECASE)
        value_digits = re.search(reg_year, value1, re.IGNORECASE)
        # ----
        if not key_digits:
            continue
        # ----
        key2 = key1.replace(key_digits.group(), YEAR_PATTERN)
        # ---
        if key2 in data_lists["categories_with_YEAR_NAT_pattern"]:
            data_lists["categories_with_YEAR_NAT_pattern"][key2]["count"] += 1
        # ---
        if not value_digits:
            continue
        # ----
        value2 = value1.replace(value_digits.group(), YEAR_PATTERN)
        # ----
        if key_digits.group() == value_digits.group():
            # ---
            if key2 not in data_lists["categories_with_YEAR_NAT_pattern"]:
                data_lists["categories_with_YEAR_NAT_pattern"][key2] = {"ar": value2, "count": 1}
            # ----
            continue
            # ----
            # البحث عن اسم الدولة في key2
            match = re.search(countries_pattern, key2, re.IGNORECASE)
            # ----
            if match:
                en_country = match.group(1)
                ar_country = countries.get(en_country)
                # ---
                if ar_country and ar_country in value2:
                    key3 = re.sub(rf'\b{re.escape(en_country)}\b', COUNTRY_PATTERN, key2, re.IGNORECASE)
                    value3 = re.sub(rf'\b{re.escape(ar_country)}\b', COUNTRY_PATTERN, value2, re.IGNORECASE)
                    # ---
                    if COUNTRY_PATTERN in key3 and COUNTRY_PATTERN in value3:
                        # ---
                        if key3 in data_lists["categories_with_YEAR_COUNTRY_pattern"]:
                            data_lists["categories_with_YEAR_COUNTRY_pattern"][key3]["count"] += 1
                        else:
                            data_lists["categories_with_YEAR_COUNTRY_pattern"][key3] = {"ar": value3, "count": 1}
# ----
print(f"{match1_done=}")

# for x, data_list in data_lists.items():
for x in to_work:
    data_list = data_lists.get(x)
    # ---
    if x == "countries":
        data_list = [{"en": key, "ar": value} for key, value in data_list.items()]
    else:
        data_list = [{"en": key, "ar": value["ar"], "count": value["count"]} for key, value in data_list.items()]
        # sort data_list by count
        data_list = sorted(data_list, key=lambda x: x["count"], reverse=True)
    # ---
    print("______________")
    print(f"len of {x} : {len(data_list)}.")
    # ---
    print("____________________________")
    # ---
    if len(data_list) == 0:
        continue
    # ---
    # إنشاء Dataset
    dataset = Dataset.from_list(data_list)

    # رفع Dataset إلى Hugging Face
    dataset.push_to_hub(f"Ibrahemqasim/{x}")
    # ---
    print(f"dataset: Ibrahemqasim/{x} push_to_hub successfully!")