# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import List, Optional, Union, Dict import numpy as np import torch from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput, is_valid_image from transformers.processing_utils import Unpack, _validate_images_text_input_order, ProcessorMixin from transformers.tokenization_utils_base import AddedToken, PreTokenizedInput, TextInput from transformers.utils import logging from transformers.models.paligemma.processing_paligemma import ( make_batched_images, build_string_from_input, _is_str_or_image, PaliGemmaProcessorKwargs, IMAGE_TOKEN, EXTRA_TOKENS ) from .action_tokenizer import SpatialActionTokenizer logger = logging.get_logger(__name__) class SpatialVLAProcessor(ProcessorMixin): attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "SiglipImageProcessor" tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast") def __init__( self, image_processor=None, tokenizer=None, chat_template=None, statistics: Optional[dict] = None, bin_policy=None, intrinsic_config=None, action_config=None, num_obs_steps=1, obs_delta=1, action_chunk_size=1, min_sigma=0.0, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") if not hasattr(image_processor, "image_seq_length"): raise ValueError("Image processor is missing an `image_seq_length` attribute.") self.image_seq_length = image_processor.image_seq_length if not hasattr(tokenizer, "image_token"): image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) tokens_to_add = {"additional_special_tokens": [image_token]} tokenizer.add_special_tokens(tokens_to_add) self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) else: self.image_token_id = tokenizer.image_token_id tokenizer.add_tokens(EXTRA_TOKENS) tokenizer.add_bos_token = False tokenizer.add_eos_token = False super().__init__(image_processor, tokenizer, chat_template=chat_template) # action tokenizer self.statistics = statistics if statistics else {} self.bin_policy = bin_policy self.min_sigma = min_sigma self.intrinsic_config = intrinsic_config self.action_config = action_config self.num_obs_steps = num_obs_steps self.obs_delta = obs_delta self.action_chunk_size = action_chunk_size self.dataset_intrinsics = {} height, width = image_processor.size["height"], image_processor.size["width"] # scale intrinsic matrix for k, v in intrinsic_config.items(): K = torch.tensor(v["intrinsic"]).float() K[:2] *= torch.tensor([width / v["width"], height / v["height"]])[:, None] self.dataset_intrinsics[k] = K self.action_tokenizer = SpatialActionTokenizer( tokenizer=tokenizer, num_bins=action_config["num_bins"], bin_policy=bin_policy, use_spherical=action_config["use_spherical"], min_sigma=min_sigma, ) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, unnorm_key: Optional[str] = None, suffix_actions: Optional[np.array] = None, # (t e) **kwargs: Unpack[PaliGemmaProcessorKwargs], ) -> BatchFeature: images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( PaliGemmaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if suffix_actions is not None: action_tokens = self.action_tokenizer(suffix_actions) # (n,3) suffix="".join(action_tokens.flatten()) else: suffix = output_kwargs["text_kwargs"].pop("suffix", None) return_token_type_ids = True if suffix is not None else False if images is None: raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.") if text is None: logger.warning_once( "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model.") text = "" if _is_str_or_image(text): text = [text] elif isinstance(text, list) and _is_str_or_image(text[0]): pass if text is not None and images is not None: if not any(IMAGE_TOKEN in sample for sample in text): if isinstance(text, List) and isinstance(images, List): if len(images) != len(text): raise ValueError( f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images." ) if is_valid_image(images): images = [[images]] elif isinstance(images, list) and is_valid_image(images[0]): images = [[image] for image in images] elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])): raise ValueError("images must be an image, list of images or list of list of images") if suffix is not None and _is_str_or_image(suffix): suffix = [suffix] if suffix is not None: suffix = [sfx + self.tokenizer.eos_token for sfx in suffix] input_strings = [ build_string_from_input( prompt=prompt, bos_token=self.tokenizer.bos_token, image_seq_len=self.image_seq_length, image_token=IMAGE_TOKEN, num_images=len(image_list) if isinstance(image_list, list) else 1, ) for prompt, image_list in zip(text, images) ] images = make_batched_images(images) else: expanded_samples = [] for sample in text: expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length) bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN) bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0 expanded_sample = ( expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:] ) expanded_samples.append(expanded_sample) input_strings = [f"{sample}\n" for sample in expanded_samples] pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"] if output_kwargs["text_kwargs"].get("max_length", None) is not None: output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length inputs = self.tokenizer( input_strings, text_pair=suffix, return_token_type_ids=return_token_type_ids, **output_kwargs["text_kwargs"], ) intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"] return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic} if return_token_type_ids: labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) return_data.update({"labels": labels}) return BatchFeature(data=return_data) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma def decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def decode_actions( self, generation_outputs: torch.Tensor, unnorm_key: Optional[str] = None, ) -> Dict[str, torch.Tensor]: action_token_num = 3 # translation + rotation + gripper predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy() assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!" if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size: # pad with zeros logger.warning(f"Padding zero action!") predicted_action_token_ids = np.concatenate( [ predicted_action_token_ids, np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong), ] ) predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num) normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids) if unnorm_key is None: logger.warning(f"unnorm_key {unnorm_key} is not in statistics, use next one") unnorm_key = next(self.statistics.keys()) action_norm_stats = self.statistics[unnorm_key]["action"] action_dim = len(action_norm_stats["q01"]) mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool) action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"]) actions = [] for normalized_actions in normalized_action_chunks: action = np.where( mask, 0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low, normalized_actions, ) actions.append(action) actions = np.stack(actions) return {"actions": actions, "action_ids": predicted_action_token_ids}