File size: 11,776 Bytes
8cbc8de
365b6d8
 
 
 
 
 
 
 
 
 
 
 
 
8cbc8de
 
 
365b6d8
8cbc8de
 
365b6d8
 
8cbc8de
365b6d8
 
 
 
 
 
 
 
 
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
365b6d8
8cbc8de
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
 
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import List, Optional, Union, Dict
import numpy as np
import torch
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import Unpack, _validate_images_text_input_order, ProcessorMixin
from transformers.tokenization_utils_base import AddedToken, PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.models.paligemma.processing_paligemma import (
    make_batched_images, 
    build_string_from_input, 
    _is_str_or_image, 
    PaliGemmaProcessorKwargs,
    IMAGE_TOKEN,
    EXTRA_TOKENS
)
from .action_tokenizer import SpatialActionTokenizer
logger = logging.get_logger(__name__)

class SpatialVLAProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]
    image_processor_class = "SiglipImageProcessor"
    tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template=None,
        statistics: Optional[dict] = None,
        bin_policy=None,
        intrinsic_config=None,
        action_config=None,
        num_obs_steps=1,
        obs_delta=1,
        action_chunk_size=1,
        min_sigma=0.0,
        **kwargs,
    ):
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")
        if tokenizer is None:
            raise ValueError("You need to specify a `tokenizer`.")
        if not hasattr(image_processor, "image_seq_length"):
            raise ValueError("Image processor is missing an `image_seq_length` attribute.")

        self.image_seq_length = image_processor.image_seq_length

        if not hasattr(tokenizer, "image_token"):
            image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
            tokens_to_add = {"additional_special_tokens": [image_token]}
            tokenizer.add_special_tokens(tokens_to_add)
            self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
        else:
            self.image_token_id = tokenizer.image_token_id

        tokenizer.add_tokens(EXTRA_TOKENS)
        tokenizer.add_bos_token = False
        tokenizer.add_eos_token = False

        super().__init__(image_processor, tokenizer, chat_template=chat_template)

        # action tokenizer
        self.statistics = statistics if statistics else {}
        self.bin_policy = bin_policy
        self.min_sigma = min_sigma
        self.intrinsic_config = intrinsic_config
        self.action_config = action_config
        self.num_obs_steps = num_obs_steps
        self.obs_delta = obs_delta
        self.action_chunk_size = action_chunk_size
        self.dataset_intrinsics = {}
        height, width = image_processor.size["height"], image_processor.size["width"]

        # scale intrinsic matrix
        for k, v in intrinsic_config.items():
            K = torch.tensor(v["intrinsic"]).float()
            K[:2] *= torch.tensor([width / v["width"], height / v["height"]])[:, None]
            self.dataset_intrinsics[k] = K
        
        self.action_tokenizer = SpatialActionTokenizer(
            tokenizer=tokenizer, num_bins=action_config["num_bins"], 
            bin_policy=bin_policy, use_spherical=action_config["use_spherical"],
            min_sigma=min_sigma,
        )

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        unnorm_key: Optional[str] = None,
        suffix_actions: Optional[np.array] = None, # (t e)
        **kwargs: Unpack[PaliGemmaProcessorKwargs],
    ) -> BatchFeature:
        images, text = _validate_images_text_input_order(images, text)

        output_kwargs = self._merge_kwargs(
            PaliGemmaProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if suffix_actions is not None:
            action_tokens = self.action_tokenizer(suffix_actions) # (n,3)
            suffix="".join(action_tokens.flatten())
        else:
            suffix = output_kwargs["text_kwargs"].pop("suffix", None)

        return_token_type_ids = True if suffix is not None else False

        if images is None:
            raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.")
        if text is None:
            logger.warning_once( "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model.")
            text = ""

        if _is_str_or_image(text):
            text = [text]
        elif isinstance(text, list) and _is_str_or_image(text[0]):
            pass

        if text is not None and images is not None:
            if not any(IMAGE_TOKEN in sample for sample in text):
                if isinstance(text, List) and isinstance(images, List):
                    if len(images) != len(text):
                        raise ValueError(
                            f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images."
                        )
                if is_valid_image(images):
                    images = [[images]]
                elif isinstance(images, list) and is_valid_image(images[0]):
                    images = [[image] for image in images]
                elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
                    raise ValueError("images must be an image, list of images or list of list of images")
                if suffix is not None and _is_str_or_image(suffix): suffix = [suffix]
                if suffix is not None: suffix = [sfx + self.tokenizer.eos_token for sfx in suffix]
                input_strings = [
                    build_string_from_input(
                        prompt=prompt,
                        bos_token=self.tokenizer.bos_token,
                        image_seq_len=self.image_seq_length,
                        image_token=IMAGE_TOKEN,
                        num_images=len(image_list) if isinstance(image_list, list) else 1,
                    )
                    for prompt, image_list in zip(text, images)
                ]
                images = make_batched_images(images)
            else:
                expanded_samples = []
                for sample in text:
                    expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length)
                    bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN)
                    bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0
                    expanded_sample = (
                        expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:]
                    )
                    expanded_samples.append(expanded_sample)
                input_strings = [f"{sample}\n" for sample in expanded_samples]
        pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]

        if output_kwargs["text_kwargs"].get("max_length", None) is not None:
            output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length

        inputs = self.tokenizer(
            input_strings,
            text_pair=suffix,
            return_token_type_ids=return_token_type_ids,
            **output_kwargs["text_kwargs"],
        )

        intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"]
        return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic}

        if return_token_type_ids:
            labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
            return_data.update({"labels": labels})
        return BatchFeature(data=return_data)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

    def decode_actions(
        self,
        generation_outputs: torch.Tensor,
        unnorm_key: Optional[str] = None,
    ) -> Dict[str, torch.Tensor]:
        action_token_num = 3  # translation + rotation + gripper
        predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy()
        assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!"

        if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size:  # pad with zeros
            logger.warning(f"Padding zero action!")
            predicted_action_token_ids = np.concatenate(
                [
                    predicted_action_token_ids,
                    np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong),
                ]
            )
        predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num)
        normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids)

        if unnorm_key is None:
            logger.warning(f"unnorm_key {unnorm_key} is not in statistics, use next one")
            unnorm_key = next(self.statistics.keys())
        action_norm_stats = self.statistics[unnorm_key]["action"]

        action_dim = len(action_norm_stats["q01"])
        mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool)
        action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])

        actions = []
        for normalized_actions in normalized_action_chunks:
            action = np.where(
                mask,
                0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
                normalized_actions,
            )
            actions.append(action)
        actions = np.stack(actions)
        return {"actions": actions, "action_ids": predicted_action_token_ids}