File size: 24,286 Bytes
8cbc8de
365b6d8
 
 
 
 
 
 
 
 
 
 
 
 
8cbc8de
 
 
 
 
365b6d8
8cbc8de
 
 
 
365b6d8
 
8cbc8de
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
365b6d8
 
8cbc8de
 
 
365b6d8
 
 
8cbc8de
 
365b6d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbc8de
365b6d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbc8de
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
365b6d8
 
8cbc8de
 
 
 
 
 
 
 
365b6d8
8cbc8de
365b6d8
8cbc8de
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
 
 
8cbc8de
 
 
365b6d8
 
8cbc8de
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365b6d8
8cbc8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PaliGemmamodel."""

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import os
import torch
import torch.utils.checkpoint
from torch import nn
from torch.linalg import inv
import torchvision.transforms.functional as TF
import torch.nn.functional as F
from transformers.cache_utils import Cache, HybridCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from transformers.utils import (
    ModelOutput,
    logging,
)
from .configuration_spatialvla import SpatialVLAConfig
from .modeling_gemma2 import Gemma2ForCausalLM
from transformers import AutoModel, ZoeDepthForDepthEstimation

SIGLIP_MEAN, SIGLIP_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
ZOE_MEAN, ZOE_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

logger = logging.get_logger(__name__)

class Ego3DPositionEmbeddingMLP(nn.Module):
    """Absolute pos embedding, learned.
    https://github.com/kwea123/nerf_pl/blob/52aeb387da64a9ad9a0f914ea9b049ffc598b20c/models/nerf.py#L4
    """

    def __init__(self, in_channels=3, num_pos_feats=768, n_freqs=8, logscale=True):
        super(Ego3DPositionEmbeddingMLP, self).__init__()
        self.n_freqs = n_freqs
        self.freq_out_channels = in_channels * (2 * n_freqs + 1)
        if logscale:
            freq_bands = 2 ** torch.linspace(0, n_freqs - 1, n_freqs)
        else:
            freq_bands = torch.linspace(1, 2 ** (n_freqs - 1), n_freqs)
        
        center = torch.tensor([0., 0., 2.]).repeat(in_channels // 3)
        self.register_buffer("freq_bands", freq_bands, persistent=False)
        self.register_buffer("center", center, persistent=False)

        self.position_embedding_head = nn.Sequential(
            nn.Linear(self.freq_out_channels, num_pos_feats),
            nn.LayerNorm(num_pos_feats),
            nn.ReLU(),
            nn.Linear(num_pos_feats, num_pos_feats),
        )
        self._reset_parameters()

    def _reset_parameters(self):
        """init with small weights to maintain stable training."""
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p, gain=0.01)

    @torch.no_grad()
    def frequency_encoding(self, xyz):
        """
        Embeds x to (x, sin(2^k x), cos(2^k x), ...)
        Different from the paper, "x" is also in the output
        See https://github.com/bmild/nerf/issues/12
        x \in [-2, 2]
        y \in [-2, 2]
        z \in [0., 4]
        Inputs:
            x: (b n m)
        Outputs:
            out: (b n o)
        """
        xyz_n = ((xyz - self.center) / 2.0).to(self.freq_bands.dtype)
        xyz_feq = xyz_n.unsqueeze(-1) * self.freq_bands  # (b n m 1)
        sin_xyz, cos_xyz = torch.sin(xyz_feq), torch.cos(xyz_feq)  # (b n m nf)
        encoding = torch.cat([xyz_n.unsqueeze(-1), sin_xyz, cos_xyz], -1).reshape(*xyz.shape[:2], -1)
        return encoding

    def forward(self, xyz):
        """Forward pass, xyz is (B, N, 3or6), output (B, N, F)."""
        freq_encoding = self.frequency_encoding(xyz)
        position_embedding = self.position_embedding_head(freq_encoding)
        return position_embedding

def process_zoe(pixel_values, pad_mode="reflect", output_size=(384, 512)):
    """https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/zoedepth/image_processing_zoedepth.py"""
    # h, w = images.shape[-2:]
    # pad
    ph, pw = 31, 31  # int((h / 2)**0.5 * 3), int((w / 2)**0.5 * 3) # 32, 31
    images = F.pad(pixel_values, (pw, pw, ph, ph), mode=pad_mode)
    # resize
    size = (384, 384)  # get_resize_output_image_size
    images = F.interpolate(images, size=size, mode="bicubic", align_corners=True)
    # zoe: padding -> resize -> nomalize. we follow `nomalize -> padding -> resize` from siglip
    images = TF.normalize(images, mean=ZOE_MEAN, std=ZOE_STD)
    return images, ph, pw

@dataclass
class SpatialVLACausalLMOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[torch.FloatTensor] = None

class SpatialVLAMultiModalProjector(nn.Module):
    def __init__(self, config: SpatialVLAConfig):
        super().__init__()
        self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)

    def forward(self, image_features):
        hidden_states = self.linear(image_features)
        return hidden_states

class SpatialVLAPreTrainedModel(PreTrainedModel):
    config_class = SpatialVLAConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["SpatialVLAMultiModalProjector", "ZoeDepthForDepthEstimation", "Ego3DPositionEmbeddingMLP"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_cache_class = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

class SpatialVLAForConditionalGeneration(SpatialVLAPreTrainedModel, GenerationMixin):
    def __init__(self, config: SpatialVLAConfig, vision_model=None, vision_zoe_model=None, projector_model=None, language_model=None):
        super().__init__(config)

        self.vision_tower = vision_model or AutoModel.from_config(config=config.vision_config)
        self.multi_modal_projector = projector_model or SpatialVLAMultiModalProjector(config)
        self.vocab_size = config.text_config.vocab_size
        if language_model is None:
            language_model = Gemma2ForCausalLM(config=config.text_config)
        if language_model._tied_weights_keys is not None:
            self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
        self.language_model = language_model

        if config.use_vision_zoe:
            self.vision_zoe_model = vision_zoe_model or ZoeDepthForDepthEstimation(config.vision_zoe_config)
            self.position_embedding_3d = Ego3DPositionEmbeddingMLP(
                config.ego3d_patch_reso**2 * 3, num_pos_feats=config.vision_config.hidden_size, n_freqs=config.n_freqs
            )
            # register buffer
            patch_size, reso, image_size = config.vision_config.patch_size, config.ego3d_patch_reso, config.vision_config.image_size
            y, x = torch.meshgrid(torch.arange(0, image_size, patch_size // reso), torch.arange(0, image_size, patch_size // reso), indexing="ij")  # (h//sp w//sp)
            y, x = y + patch_size / reso / 2, x + patch_size / reso / 2
            uv_h = torch.stack([x, y, torch.ones_like(x)], dim=0).reshape(3, -1)  # (3 hw)
            self.register_buffer("uv_h", uv_h, persistent=False)

        # shared spatial embeddings for <ACTION> <IMG>
        if config.use_spatial_token:
            self.spatial_embed_tokens = nn.Embedding(self.config.spatial_token_num, config.text_config.hidden_size)
        else:
            self.spatial_embed_tokens = None
        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1


    def backproject_patch(self, K: torch.Tensor, depth: torch.Tensor, patch_size=14, reso=2) -> torch.Tensor:
        """
        Backproject depth map to 3D points in camera coordinate.
        Args:
            K: camera intrinsic matrix (b 3 3)
            depth: depth map (b 1 h w)
            patch_size: patch size for siglip
            reso: reso^2 -> sample points in each patch
        patch sz = 14  ......          
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”       
        β”‚ ─    ─ β”‚ ─    ─ β”‚       
        β”‚ points β”‚        β”œβ”€ ─ ─ 
        β”‚ ─    ─ β”‚ ─    ─ β”‚       
        β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€       
        β”‚ ─    ─ β”‚ ─    ─ β”‚       
        β”‚        β”‚        β”‚       
        β”‚ ─    ─ β”‚ ─    ─ β”‚       
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜       
        reso=2───►points=4
            β”‚                    
            β”‚                        
        """
        b, c, h, w = depth.shape
        hp, wp = h // patch_size, w // patch_size
        sub_hp = sub_wp = reso
        patch_depth = F.interpolate(depth, size=(hp * reso, wp * reso), mode="area").reshape(b, c, -1)
        p_cam = (inv(K.float()) @ self.uv_h.float()) * patch_depth  # (b 3 3) @ (3 hw) -> (b 3 hw) * (b 1 hw) -> (b 3 hw)
        patch_p_cam = p_cam.reshape(b, 3, hp, sub_hp, wp, sub_wp).permute(0, 2, 4, 3, 5, 1).reshape(b, hp * wp, -1)
        return patch_p_cam

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()
    
    def resize_token_embeddings(
        self,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        mean_resizing: bool = True,
    ) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
        vocab_size = model_embeds.weight.shape[0]
        self.config.text_config.vocab_size = self.vocab_size = self.config._vocab_size = vocab_size
        self.tie_weights()
        return model_embeds
    
    def _update_causal_mask(
        self,
        attention_mask,
        token_type_ids,
        past_key_values,
        cache_position,
        input_ids=None,
        inputs_embeds=None,
        is_training: bool = False,
    ):
        if self.config.text_config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        using_static_cache = isinstance(past_key_values, StaticCache)
        min_dtype = torch.finfo(self.dtype).min
        inputs_lead_dim = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]
        sequence_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        elif isinstance(past_key_values, HybridCache):
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else cache_position[0] + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            return attention_mask

        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device)
        if sequence_length != 1:
            if is_training: causal_mask = torch.triu(causal_mask, diagonal=1)
            else: causal_mask[:, :sequence_length] = 0.0

        causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype)
            if is_training:
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0)
        return causal_mask

    def get_image_features(self, pixel_values: torch.FloatTensor, intrinsic: torch.FloatTensor):
        siglip_pixel_values = TF.normalize(pixel_values, mean=SIGLIP_MEAN, std=SIGLIP_STD)
        image_outputs = self.vision_tower(siglip_pixel_values)

        # ego3d position encoding
        if self.config.use_vision_zoe:
            zoe_pixel_values, ph, pw = process_zoe(pixel_values, pad_mode="reflect")
            with torch.no_grad():
                pvh, pvw = pixel_values.shape[-2:]
                depth = self.vision_zoe_model(pixel_values=zoe_pixel_values).predicted_depth
                depth = F.interpolate(
                    depth.unsqueeze(1),
                    size=(pvh+2*ph, pvw+2*pw),
                    mode="bicubic",
                    align_corners=True,
                )[..., ph:-ph, pw:-pw]
                xyz = self.backproject_patch(
                    intrinsic, depth, patch_size=self.config.vision_config.patch_size, reso=self.config.ego3d_patch_reso
                )  # (b, n, 3*4)
            pos_embed_3d = self.position_embedding_3d(xyz)
            selected_image_feature = image_outputs.last_hidden_state + pos_embed_3d
        else:
            selected_image_feature = image_outputs.last_hidden_state
        image_features = self.multi_modal_projector(selected_image_feature)
        image_features = image_features / (self.config.text_config.hidden_size**0.5)
        return image_features

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        actions: Optional[torch.FloatTensor] = None,
        intrinsic: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, SpatialVLACausalLMOutputWithPast]:

        output_attentions = output_attentions or self.config.output_attentions
        output_hidden_states = output_hidden_states or self.config.output_hidden_states
        return_dict = return_dict or self.config.use_return_dict

        is_training = token_type_ids is not None and labels is not None
        
        if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids).clone() # avoid checkpint grad True

        if self.config.use_spatial_token:
            spatial_selected = (input_ids >= self.config.action_token_begin_idx) & (input_ids < self.config.action_token_begin_idx + self.config.spatial_token_num)
            inputs_embeds[spatial_selected] = inputs_embeds[spatial_selected] * 0.0 + self.spatial_embed_tokens(input_ids[spatial_selected] - self.config.action_token_begin_idx)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device)

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0) + 1  # Paligemma positions are 1-indexed

        # merge
        if pixel_values is not None:
            image_features = self.get_image_features(pixel_values, intrinsic)
            special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
            special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
            if inputs_embeds[special_image_mask].numel() != image_features.numel():
                image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
                raise ValueError(
                    f"Number of images does not match number of special image tokens in the input text. "
                    f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
                    "tokens from image embeddings."
                )
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

        # mask out pad-token-ids in labels for BC
        if labels is not None and self.pad_token_id in labels:
            logger.warning_once(
                "`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ",
                "You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
            )
            labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)

        causal_mask = self._update_causal_mask(
            attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training
        )
        outputs = self.language_model(
            attention_mask=causal_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
        )

        logits = outputs.logits
        loss = None
        if labels is not None:
            logits = logits.float()
            shift_logits = logits[..., :-1, :]
            shift_labels = labels[..., 1:]
            if attention_mask is not None:
                shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
                shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
            else:
                shift_logits = shift_logits.contiguous()
                shift_labels = shift_labels.contiguous()
            loss_fct = nn.CrossEntropyLoss()

            flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
            flat_labels = shift_labels.view(-1).to(shift_logits.device)
            loss = loss_fct(flat_logits, flat_labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return SpatialVLACausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_features if pixel_values is not None else None,
        )

    # AR inference
    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        pixel_values=None,
        intrinsic=None,
        attention_mask=None,
        token_type_ids=None,
        use_cache=True,
        num_logits_to_keep=None,
        labels=None,
        **kwargs,
    ):
        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            cache_position=cache_position,
            use_cache=use_cache,
            num_logits_to_keep=num_logits_to_keep,
            token_type_ids=token_type_ids,
            **kwargs,
        )
        if model_inputs.get("position_ids") is not None:
            model_inputs["position_ids"] += 1
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values
        is_training = token_type_ids is not None and labels is not None
        if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
            causal_mask = self._update_causal_mask(attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training)
            model_inputs["attention_mask"] = causal_mask
        model_inputs["intrinsic"] = intrinsic
        return model_inputs

    @torch.no_grad()
    def predict_action(
        self,
        model_inputs,
    ) -> torch.Tensor:
        model_inputs = model_inputs.to(torch.bfloat16).to(self.device)
        input_len = model_inputs["input_ids"].shape[-1]
        generation_outputs = self.generate(**model_inputs, max_new_tokens=256, do_sample=False)
        return generation_outputs[:,input_len:]

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: Optional[bool] = None,
        weights_only: bool = True,
        **kwargs,
    ):
        model = super().from_pretrained(
            pretrained_model_name_or_path,
            *model_args,
            config=config,
            cache_dir=cache_dir,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            force_download=force_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            weights_only=weights_only,
            **kwargs,
        )
        if model.config.use_spatial_token: 
            model.language_model.model.embed_tokens.weight.data[-model.config.spatial_token_num:] = model.spatial_embed_tokens.weight.data
        return model