Upload mmdetection-config.py
Browse files- mmdetection-config.py +235 -0
mmdetection-config.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_batch_size = 4
|
2 |
+
num_epochs = 15
|
3 |
+
num_frozen_stages = 2
|
4 |
+
|
5 |
+
auto_scale_lr = dict(base_batch_size=2, enable=False)
|
6 |
+
backend_args = None
|
7 |
+
data_root = 'C:/vs_code_workspaces/mmdetection/mmdetection/data/ins/v9'
|
8 |
+
dataset_type = 'CocoDataset'
|
9 |
+
default_hooks = dict(
|
10 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
11 |
+
logger=dict(interval=50, type='LoggerHook'),
|
12 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
13 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
14 |
+
timer=dict(type='IterTimerHook'),
|
15 |
+
visualization=dict(type='DetVisualizationHook'))
|
16 |
+
default_scope = 'mmdet'
|
17 |
+
env_cfg = dict(cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
18 |
+
launcher = 'none'
|
19 |
+
load_from = 'C:/vs_code_workspaces/mmdetection/mmdetection/ins_development/resources/add300_frozen2/epoch_9.pth'
|
20 |
+
log_level = 'INFO'
|
21 |
+
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
22 |
+
metainfo = dict(classes=('waste', ), palette=[ (220, 20, 60, ),])
|
23 |
+
model = dict(
|
24 |
+
backbone=dict(
|
25 |
+
depth=101,
|
26 |
+
frozen_stages=num_frozen_stages,
|
27 |
+
init_cfg=dict(checkpoint='C:/Users/INS/.cache/torch/hub/checkpoints/resnet101-63fe2227.pth', type='Pretrained'),
|
28 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
29 |
+
norm_eval=True,
|
30 |
+
num_stages=4,
|
31 |
+
out_indices=(0, 1, 2, 3, ),
|
32 |
+
style='pytorch',
|
33 |
+
type='ResNet'),
|
34 |
+
data_preprocessor=dict(
|
35 |
+
bgr_to_rgb=True,
|
36 |
+
mean=[123.675, 116.28, 103.53, ],
|
37 |
+
pad_size_divisor=32,
|
38 |
+
std=[58.395, 57.12, 57.375, ],
|
39 |
+
type='DetDataPreprocessor'),
|
40 |
+
neck=dict(in_channels=[256, 512, 1024, 2048, ],
|
41 |
+
num_outs=5,
|
42 |
+
out_channels=256,
|
43 |
+
type='FPN'),
|
44 |
+
roi_head=dict(
|
45 |
+
bbox_head=dict(
|
46 |
+
bbox_coder=dict(
|
47 |
+
target_means=[0.0, 0.0, 0.0, 0.0,],
|
48 |
+
target_stds=[0.1, 0.1, 0.2, 0.2,],
|
49 |
+
type='DeltaXYWHBBoxCoder'),
|
50 |
+
fc_out_channels=1024,
|
51 |
+
in_channels=256,
|
52 |
+
loss_bbox=dict(loss_weight=1.0, type='L1Loss'),
|
53 |
+
loss_cls=dict(
|
54 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
55 |
+
num_classes=1,
|
56 |
+
reg_class_agnostic=False,
|
57 |
+
roi_feat_size=7,
|
58 |
+
type='Shared2FCBBoxHead'),
|
59 |
+
bbox_roi_extractor=dict(
|
60 |
+
featmap_strides=[4, 8, 16, 32, ],
|
61 |
+
out_channels=256,
|
62 |
+
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
|
63 |
+
type='SingleRoIExtractor'),
|
64 |
+
type='StandardRoIHead'),
|
65 |
+
rpn_head=dict(
|
66 |
+
anchor_generator=dict(
|
67 |
+
ratios=[0.5, 1.0, 2.0, ],
|
68 |
+
scales=[8,],
|
69 |
+
strides=[4, 8, 16, 32, 64, ],
|
70 |
+
type='AnchorGenerator'),
|
71 |
+
bbox_coder=dict(
|
72 |
+
target_means=[0.0, 0.0, 0.0, 0.0, ],
|
73 |
+
target_stds=[1.0, 1.0, 1.0, 1.0, ],
|
74 |
+
type='DeltaXYWHBBoxCoder'),
|
75 |
+
feat_channels=256,
|
76 |
+
in_channels=256,
|
77 |
+
loss_bbox=dict(loss_weight=1.0, type='L1Loss'),
|
78 |
+
loss_cls=dict(loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
|
79 |
+
type='RPNHead'),
|
80 |
+
test_cfg=dict(
|
81 |
+
rcnn=dict(
|
82 |
+
max_per_img=100,
|
83 |
+
nms=dict(iou_threshold=0.5, type='nms'),
|
84 |
+
score_thr=0.05),
|
85 |
+
rpn=dict(
|
86 |
+
max_per_img=1000,
|
87 |
+
min_bbox_size=0,
|
88 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
89 |
+
nms_pre=1000)),
|
90 |
+
train_cfg=dict(
|
91 |
+
rcnn=dict(
|
92 |
+
assigner=dict(
|
93 |
+
ignore_iof_thr=-1,
|
94 |
+
match_low_quality=False,
|
95 |
+
min_pos_iou=0.5,
|
96 |
+
neg_iou_thr=0.5,
|
97 |
+
pos_iou_thr=0.5,
|
98 |
+
type='MaxIoUAssigner'),
|
99 |
+
debug=False,
|
100 |
+
pos_weight=-1,
|
101 |
+
sampler=dict(
|
102 |
+
add_gt_as_proposals=True,
|
103 |
+
neg_pos_ub=-1,
|
104 |
+
num=512,
|
105 |
+
pos_fraction=0.25,
|
106 |
+
type='RandomSampler')),
|
107 |
+
rpn=dict(
|
108 |
+
allowed_border=-1,
|
109 |
+
assigner=dict(
|
110 |
+
ignore_iof_thr=-1,
|
111 |
+
match_low_quality=True,
|
112 |
+
min_pos_iou=0.3,
|
113 |
+
neg_iou_thr=0.3,
|
114 |
+
pos_iou_thr=0.7,
|
115 |
+
type='MaxIoUAssigner'),
|
116 |
+
debug=False,
|
117 |
+
pos_weight=-1,
|
118 |
+
sampler=dict(
|
119 |
+
add_gt_as_proposals=False,
|
120 |
+
neg_pos_ub=-1,
|
121 |
+
num=256,
|
122 |
+
pos_fraction=0.5,
|
123 |
+
type='RandomSampler')),
|
124 |
+
rpn_proposal=dict(
|
125 |
+
max_per_img=1000,
|
126 |
+
min_bbox_size=0,
|
127 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
128 |
+
nms_pre=2000)),
|
129 |
+
type='FasterRCNN')
|
130 |
+
optim_wrapper = dict(
|
131 |
+
optimizer=dict(lr=0.02, momentum=0.9, type='SGD', weight_decay=0.0001),
|
132 |
+
type='OptimWrapper')
|
133 |
+
param_scheduler = [
|
134 |
+
dict(begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
135 |
+
dict(begin=0, by_epoch=True, end=12, gamma=0.1, milestones=[8, 11, ], type='MultiStepLR'),
|
136 |
+
]
|
137 |
+
resume = False
|
138 |
+
test_cfg = dict(type='TestLoop')
|
139 |
+
test_dataloader = dict(
|
140 |
+
batch_size=num_batch_size,
|
141 |
+
dataset=dict(
|
142 |
+
ann_file='test/annotations_coco.json',
|
143 |
+
backend_args=None,
|
144 |
+
data_prefix=dict(img='test/'),
|
145 |
+
data_root=data_root,
|
146 |
+
metainfo=dict(classes=('waste', ), palette=[(220, 20, 60, ), ]),
|
147 |
+
pipeline=[
|
148 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
149 |
+
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
150 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
151 |
+
dict(meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor',), type='PackDetInputs'),
|
152 |
+
],
|
153 |
+
test_mode=True,
|
154 |
+
type='CocoDataset'),
|
155 |
+
drop_last=False,
|
156 |
+
num_workers=2,
|
157 |
+
persistent_workers=True,
|
158 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
159 |
+
test_evaluator = dict(
|
160 |
+
ann_file='data/ins_annotated_v9/test/annotations_coco.json',
|
161 |
+
backend_args=None,
|
162 |
+
format_only=False,
|
163 |
+
metric='bbox',
|
164 |
+
type='CocoMetric')
|
165 |
+
test_pipeline = [
|
166 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
167 |
+
dict(keep_ratio=True, scale=(1280, 1280,), type='Resize'),
|
168 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
169 |
+
dict(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor',),type='PackDetInputs'),
|
170 |
+
]
|
171 |
+
train_cfg = dict(max_epochs=num_epochs, type='EpochBasedTrainLoop', val_interval=1)
|
172 |
+
train_dataloader = dict(
|
173 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
174 |
+
batch_size=num_batch_size,
|
175 |
+
dataset=dict(
|
176 |
+
ann_file='train/annotations_coco.json',
|
177 |
+
backend_args=None,
|
178 |
+
data_prefix=dict(img='train/'),
|
179 |
+
data_root=data_root,
|
180 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
181 |
+
metainfo=dict(classes=('waste', ), palette=[(220, 20, 60, ),]),
|
182 |
+
pipeline=[
|
183 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
184 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
185 |
+
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
186 |
+
dict(prob=0.5, type='RandomFlip'),
|
187 |
+
dict(type='PackDetInputs'),
|
188 |
+
],
|
189 |
+
type='CocoDataset'),
|
190 |
+
num_workers=2,
|
191 |
+
persistent_workers=True,
|
192 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
193 |
+
train_pipeline = [
|
194 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
195 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
196 |
+
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
197 |
+
dict(prob=0.5, type='RandomFlip'),
|
198 |
+
dict(type='PackDetInputs'),
|
199 |
+
]
|
200 |
+
val_cfg = dict(type='ValLoop')
|
201 |
+
val_dataloader = dict(
|
202 |
+
batch_size=num_batch_size,
|
203 |
+
dataset=dict(
|
204 |
+
ann_file='valid/annotations_coco.json',
|
205 |
+
backend_args=None,
|
206 |
+
data_prefix=dict(img='valid/'),
|
207 |
+
data_root=data_root,
|
208 |
+
metainfo=dict(classes=('waste', ), palette=[(220, 20, 60, ),]),
|
209 |
+
pipeline=[
|
210 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
211 |
+
dict(keep_ratio=True, scale=(1280, 1280,), type='Resize'),
|
212 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
213 |
+
dict(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ),type='PackDetInputs'),
|
214 |
+
],
|
215 |
+
test_mode=True,
|
216 |
+
type='CocoDataset'),
|
217 |
+
drop_last=False,
|
218 |
+
num_workers=2,
|
219 |
+
persistent_workers=True,
|
220 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
221 |
+
val_evaluator = dict(
|
222 |
+
ann_file='data/ins_annotated_v9/valid/annotations_coco.json',
|
223 |
+
backend_args=None,
|
224 |
+
format_only=False,
|
225 |
+
metric='bbox',
|
226 |
+
type='CocoMetric')
|
227 |
+
val_pipeline = [
|
228 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
229 |
+
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
230 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
231 |
+
dict(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor',), type='PackDetInputs'),
|
232 |
+
]
|
233 |
+
vis_backends = [dict(type='LocalVisBackend'), ]
|
234 |
+
visualizer = dict(name='visualizer', type='DetLocalVisualizer', vis_backends=[dict(type='LocalVisBackend'), ])
|
235 |
+
work_dir = './ins_development/training/ins_annotated_v9/pretrained/add300/faster/2frozen/e9\\'
|