--- library_name: transformers tags: - transformers - text-generation-inference - text-generation - reasoning - r1-reasoning - fine-tuned license: mit datasets: - openai/gsm8k language: - en base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: text-generation --- # **Qwen-2.5-7B-Reasoning (Fine-Tuned by HyperX-Sen)** ## 🚀 **Model Overview** This model is a fine-tuned version of **Qwen/Qwen2.5-7B-Instruct**, specifically optimized for **advanced reasoning tasks**. Fine-tuned on the **OpenAI GSM8K dataset**, it significantly enhances multi-step reasoning and problem-solving capabilities. ## 🔧 **Fine-Tuning Details** - **Base Model:** [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) - **Fine-tuned by:** HyperX-Sen - **Dataset:** [GSM8K (Grade School Math 8K)](https://huggingface.co/datasets/openai/gsm8k) - **Hardware:** 2× Tesla T4 GPUs - **Objective:** Improve complex reasoning and logical deduction ## 📈 **Performance Improvements** Through fine-tuning on **GSM8K**, the model has improved in: - **Mathematical reasoning** - **Step-by-step logical deduction** - **Commonsense reasoning** - **Word problem-solving** This makes it ideal for applications requiring **high-level reasoning**, such as **AI tutoring, research assistance, and problem-solving AI agents**. ## 🛠 **How to Use** ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "HyperX-Sen/Qwen-2.5-7B-Reasoning" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) SYSTEM_PROMPT = """ Respond in the following format: ... ... """ # Define the conversation messages = [ {"role": "system", "content": f"{SYSTEM_PROMPT}"}, {"role": "user", "content": "What are the potential impacts of artificial intelligence on employment?"} ] # Format the chat input input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Tokenize the formatted input inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # Generate the response output = model.generate(**inputs, max_length=512, do_sample=True, temperature=0.7) # Decode and display the response response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) ``` ## 🙌 **Acknowledgments** A huge thanks to **Qwen** for providing the powerful **Qwen2.5-7B-Instruct** model, which served as the base for this fine-tuned version.