kyujinpy commited on
Commit
6191196
·
verified ·
1 Parent(s): 0919494

Upload modeling_ovis.py

Browse files
Files changed (1) hide show
  1. modeling_ovis.py +590 -0
modeling_ovis.py ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2025 AIDC-AI
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ #
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+ import os
17
+ import importlib.metadata
18
+
19
+ from packaging import version
20
+ from importlib import import_module
21
+ from typing import List, Callable, Union, Optional, Dict
22
+
23
+ import PIL.Image
24
+ import torch
25
+ from torch import Tensor
26
+ from torch.nn import init
27
+ from torch.nn.functional import softmax, gumbel_softmax, pad
28
+ from transformers.utils import is_flash_attn_2_available
29
+ from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
30
+ from transformers.generation.utils import GenerateOutput
31
+
32
+ from .configuration_ovis import BaseVisualTokenizerConfig, Aimv2VisualTokenizerConfig
33
+ from .configuration_ovis import OvisConfig, ConversationFormatter
34
+ from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID
35
+
36
+ # ----------------------------------------------------------------------
37
+ # Visual Tokenizer
38
+ # ----------------------------------------------------------------------
39
+ class BaseVisualTokenizer(PreTrainedModel):
40
+ base_model_prefix = "backbone"
41
+ main_input_name = None
42
+ _image_processor_class = None
43
+ _image_processor_kwargs = {}
44
+ _backbone_class = None
45
+ _backbone_name_or_path = None
46
+
47
+ def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
48
+ super().__init__(config, *inputs, **kwargs)
49
+ self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
50
+ self.backbone = AutoModel.from_config(self.config.backbone_config)
51
+ head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
52
+ self.head = torch.nn.Sequential(
53
+ torch.nn.Linear(
54
+ self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
55
+ bias=False
56
+ ),
57
+ torch.nn.LayerNorm(head_dim)
58
+ )
59
+
60
+ assert all((self.image_processor.do_resize,
61
+ not getattr(self.image_processor, 'do_center_crop', False),
62
+ self.image_processor.do_rescale,
63
+ self.image_processor.do_normalize
64
+ )), f"image_processor `{self.image_processor}` is not supported currently"
65
+
66
+ def get_backbone(self):
67
+ return self.backbone
68
+
69
+ def get_image_processor(self):
70
+ return self.image_processor
71
+
72
+ def mock_input(self):
73
+ height, width = self.get_image_size()
74
+ return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
75
+
76
+ def get_head(self):
77
+ return self.head
78
+
79
+ def get_image_size(self):
80
+ raise NotImplementedError
81
+
82
+ @staticmethod
83
+ def construct_image_placeholders(grid):
84
+ image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
85
+ if grid[0] * grid[1] > 1:
86
+ for r in range(grid[0]):
87
+ for c in range(grid[1]):
88
+ image_placeholders.append(IMAGE_ATOM_ID)
89
+ if c < grid[1] - 1:
90
+ image_placeholders.append(IMAGE_INDICATOR_IDS[2])
91
+ if r < grid[0] - 1:
92
+ image_placeholders.append(IMAGE_INDICATOR_IDS[3])
93
+ image_placeholders.append(IMAGE_INDICATOR_IDS[4])
94
+ return image_placeholders
95
+
96
+ def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
97
+ def _preprocess(img: PIL.Image.Image, side):
98
+ # first resize and preprocess
99
+ w, h = img.size
100
+ if w == h:
101
+ new_width = new_height = side
102
+ elif w > h:
103
+ new_width = side
104
+ new_height = int(h / w * new_width)
105
+ else:
106
+ new_height = side
107
+ new_width = int(w / h * new_height)
108
+ new_size = dict(height=new_height, width=new_width)
109
+ pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
110
+
111
+ # then pad to square
112
+ square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
113
+ new_height, new_width = pixel_values.shape[2:]
114
+ if new_height == new_width:
115
+ square_values[:, :, :, :] = pixel_values
116
+ elif new_height > new_width:
117
+ from_index = (side - new_width) // 2
118
+ square_values[:, :, :, from_index:from_index + new_width] = pixel_values
119
+ else:
120
+ from_index = (side - new_height) // 2
121
+ square_values[:, :, from_index:from_index + new_height, :] = pixel_values
122
+
123
+ return square_values
124
+
125
+ def _partition(img, grid):
126
+ w, h = img.size
127
+ row_height = h // grid[0]
128
+ col_width = w // grid[1]
129
+
130
+ partition = []
131
+ for row in range(grid[0]):
132
+ for col in range(grid[1]):
133
+ left = col * col_width
134
+ upper = row * row_height
135
+ right = w if col == grid[1] - 1 else (col + 1) * col_width
136
+ lower = h if row == grid[0] - 1 else (row + 1) * row_height
137
+ partition.append((left, upper, right, lower))
138
+
139
+ return partition
140
+
141
+ def _covering_area(left, upper, right, lower, side):
142
+ w = right - left
143
+ h = lower - upper
144
+ w, h = max(w, h), min(w, h)
145
+ if w > side:
146
+ h = h / w * side
147
+ w = side
148
+ return w * h
149
+
150
+ def _get_best_grid(img, side):
151
+ img_area = img.size[0] * img.size[1]
152
+
153
+ candidate_grids = []
154
+ for i in range(1, max_partition + 1):
155
+ for j in range(1, max_partition + 1):
156
+ if i * j <= max_partition:
157
+ candidate_grids.append((i, j))
158
+
159
+ all_grids = []
160
+ good_grids = []
161
+ for grid in candidate_grids:
162
+ partition = _partition(img, grid)
163
+ covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
164
+ assert covering_ratio <= 1.0
165
+ all_grids.append((grid, covering_ratio))
166
+ if covering_ratio > covering_threshold:
167
+ good_grids.append((grid, covering_ratio))
168
+
169
+ if len(good_grids) > 0:
170
+ # pick the good partition with minimum #sub_images and break the tie using covering_ratio
171
+ return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
172
+ else:
173
+ # pick the partition with maximum covering_ratio and break the tie using #sub_images
174
+ return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
175
+
176
+ if convert_to_rgb and image.mode != 'RGB':
177
+ image = image.convert('RGB')
178
+
179
+ sides = self.get_image_size()
180
+ if sides[0] != sides[1]:
181
+ raise ValueError('get_image_size() returns non-square size')
182
+ side = sides[0]
183
+ grid = _get_best_grid(image, side)
184
+ partition = _partition(image, grid)
185
+ crops = [image.crop(p) for p in partition]
186
+ if len(crops) > 1:
187
+ crops.insert(0, image)
188
+ pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
189
+ image_placeholders = self.construct_image_placeholders(grid)
190
+ return pixel_values, image_placeholders
191
+
192
+ def tokenize(self, logits):
193
+ def st_argmax(y_soft, dim): # straight-through softmax
194
+ index = y_soft.max(dim, keepdim=True)[1]
195
+ y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
196
+ ret = y_hard - y_soft.detach() + y_soft
197
+ return ret
198
+
199
+ if self.config.tokenize_function == 'softmax':
200
+ tokens = softmax(logits, dim=-1)
201
+ elif self.config.tokenize_function == 'gumbel_argmax':
202
+ tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
203
+ elif self.config.tokenize_function == 'st_argmax':
204
+ tokens = st_argmax(logits, dim=-1)
205
+ else:
206
+ raise ValueError(
207
+ f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
208
+ return tokens
209
+
210
+ def encode(self, pixel_values):
211
+ output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
212
+ features = output.hidden_states[-1]
213
+ if self.config.drop_cls_token:
214
+ features = features[:, 1:, :]
215
+
216
+ # merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
217
+ # e.g., for hidden_stride=2, this leads to a token length reduction: 1024 -> 256 for aimv2
218
+ if self.config.hidden_stride > 1:
219
+ n, l, d = features.shape # this `d` maybe different from the above `d
220
+ sqrt_l = int(l ** 0.5)
221
+ assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
222
+ features = features.reshape(n, sqrt_l, sqrt_l, d)
223
+ pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
224
+ features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
225
+ sqrt_l += pl
226
+ features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
227
+ sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
228
+ features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
229
+ features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
230
+ features = features.reshape(
231
+ n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
232
+
233
+ return features
234
+
235
+ def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
236
+ features = self.encode(pixel_values)
237
+ logits = self.head(features)
238
+ tokens = self.tokenize(logits)
239
+ # tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
240
+ # which, tokens' shape should become [BatchSize, #Token, VocabSize]
241
+ batch_size, token_len, _ = tokens.shape
242
+ padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
243
+ dtype=tokens.dtype,
244
+ device=tokens.device,
245
+ layout=tokens.layout,
246
+ requires_grad=False)
247
+ tokens = torch.cat((tokens, padding_tensor), dim=2)
248
+ return tokens
249
+
250
+
251
+ class Aimv2VisualTokenizer(BaseVisualTokenizer):
252
+ config_class = Aimv2VisualTokenizerConfig
253
+ supports_gradient_checkpointing = True
254
+ _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
255
+ _image_processor_kwargs = dict(do_center_crop=False)
256
+
257
+ def get_image_size(self):
258
+ height = self.image_processor.crop_size["height"]
259
+ width = self.image_processor.crop_size["width"]
260
+ return height, width
261
+
262
+
263
+ AutoModel.register(Aimv2VisualTokenizerConfig, Aimv2VisualTokenizer)
264
+
265
+
266
+ # ----------------------------------------------------------------------
267
+ # Ovis
268
+ # ----------------------------------------------------------------------
269
+ class VisualEmbedding(torch.nn.Embedding):
270
+ def forward(self, visual_tokens: Tensor) -> Tensor:
271
+ if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
272
+ return super().forward(visual_tokens)
273
+ return torch.matmul(visual_tokens, self.weight)
274
+
275
+ def reset_parameters(self, mean=0., std=1.) -> None:
276
+ init.normal_(self.weight, mean=mean, std=std)
277
+ self._fill_padding_idx_with_zero()
278
+
279
+
280
+ class OvisPreTrainedModel(PreTrainedModel):
281
+ config_class = OvisConfig
282
+ base_model_prefix = "ovis"
283
+
284
+
285
+ class Ovis(OvisPreTrainedModel):
286
+
287
+ def __init__(self, config: OvisConfig, *inputs, **kwargs):
288
+ super().__init__(config, *inputs, **kwargs)
289
+ attn_kwargs = dict()
290
+ if self.config.llm_attn_implementation:
291
+ if self.config.llm_attn_implementation == "flash_attention_2":
292
+ assert (is_flash_attn_2_available() and
293
+ version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.6.3")), \
294
+ "Using `flash_attention_2` requires having `flash_attn>=2.6.3` installed."
295
+ attn_kwargs["attn_implementation"] = self.config.llm_attn_implementation
296
+ self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
297
+ assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
298
+ self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
299
+ self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
300
+ image_processor_name_or_path=self.config.name_or_path)
301
+ self.vte = VisualEmbedding(
302
+ self.config.visual_tokenizer_config.vocab_size,
303
+ self.config.hidden_size,
304
+ device=self.visual_tokenizer.device,
305
+ dtype=self.visual_tokenizer.dtype
306
+ )
307
+
308
+ def _merge_modules(modules_list: tuple):
309
+ merged_modules = []
310
+ for modules in modules_list:
311
+ merged_modules.extend(modules if modules else [])
312
+ return merged_modules
313
+
314
+ self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
315
+ self._skip_keys_device_placement = self.llm._skip_keys_device_placement
316
+ self._keep_in_fp32_modules = _merge_modules(
317
+ (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
318
+ self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
319
+ self.supports_gradient_checkpointing = True
320
+ self._supports_flash_attn_2 = True
321
+
322
+ def get_text_tokenizer(self):
323
+ return self.text_tokenizer
324
+
325
+ def get_visual_tokenizer(self):
326
+ return self.visual_tokenizer
327
+
328
+ def tie_weights(self):
329
+ if not self.config.disable_tie_weight:
330
+ self.get_llm().tie_weights()
331
+
332
+ def get_llm(self):
333
+ return self.llm
334
+
335
+ def get_vte(self):
336
+ return self.vte
337
+
338
+ def get_wte(self):
339
+ return self.llm.get_input_embeddings()
340
+
341
+ def get_conversation_formatter(self) -> ConversationFormatter:
342
+ if getattr(self, 'conversation_formatter', None) is None:
343
+ self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__),
344
+ self.config.conversation_formatter_class)(self.text_tokenizer)
345
+ return self.conversation_formatter
346
+
347
+ def forward(
348
+ self,
349
+ input_ids: torch.Tensor,
350
+ attention_mask: torch.Tensor,
351
+ labels: Optional[torch.Tensor],
352
+ pixel_values: List[Optional[torch.Tensor]],
353
+ **kwargs
354
+ ):
355
+ # assert self.training, "`forward` can only be used in training. For inference, use `generate`."
356
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
357
+ text_input_ids=input_ids,
358
+ text_attention_masks=attention_mask,
359
+ text_labels=labels,
360
+ pixel_values=pixel_values
361
+ )
362
+ return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
363
+
364
+ def merge_multimodal(
365
+ self,
366
+ text_input_ids: torch.Tensor,
367
+ text_attention_masks: torch.Tensor,
368
+ text_labels: Optional[torch.Tensor],
369
+ pixel_values: List[Optional[torch.Tensor]],
370
+ left_padding: bool = False
371
+ ):
372
+ input_device = text_input_ids.device
373
+ visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
374
+ visual_indicator_embeds = self.get_vte()(
375
+ torch.tensor(
376
+ list(range(visual_vocab_szie - 5, visual_vocab_szie)),
377
+ dtype=torch.long,
378
+ device=self.get_visual_tokenizer().device
379
+ )
380
+ ).to(device=input_device)
381
+
382
+ if self.training:
383
+ # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
384
+ # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
385
+ # (see below in this function); so, the gradient will not be affected.
386
+ num_images = [x.shape[0] for x in pixel_values]
387
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
388
+ visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
389
+ split_size_or_sections=num_images, dim=0)
390
+ visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
391
+ split_size_or_sections=num_images, dim=0)
392
+ visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
393
+ visual_input_ids]
394
+ else:
395
+ # When inference, sample can include only text with `None` pixel_value
396
+ num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
397
+ if sum(num_images) > 0:
398
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
399
+ visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
400
+ split_size_or_sections=num_images, dim=0)
401
+ visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
402
+ split_size_or_sections=num_images, dim=0)
403
+ visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
404
+ visual_input_ids]
405
+ else:
406
+ # just placeholders
407
+ visual_embeds = [None] * len(num_images)
408
+ visual_input_ids = [None] * len(num_images)
409
+ visual_labels = [None] * len(num_images)
410
+ # just placeholders
411
+ if text_labels is None:
412
+ text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
413
+
414
+ input_embeds = []
415
+ attention_masks = []
416
+ labels = []
417
+ for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
418
+ text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
419
+ ):
420
+ placeholder_token_mask = torch.lt(text_input_id, 0)
421
+ text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
422
+ for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
423
+ text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
424
+ image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
425
+ if len(image_atom_positions) > 0:
426
+ input_embed_parts = []
427
+ attention_mask_parts = []
428
+ label_parts = []
429
+ prev_image_atom_position = -1
430
+ for index, image_atom_position in enumerate(image_atom_positions):
431
+ input_embed_parts.append(
432
+ text_embed[prev_image_atom_position + 1:image_atom_position, :])
433
+ label_parts.append(
434
+ text_label[prev_image_atom_position + 1:image_atom_position])
435
+ attention_mask_parts.append(
436
+ text_attention_mask[prev_image_atom_position + 1:image_atom_position])
437
+ input_embed_parts.append(visual_embed[index])
438
+ attention_mask_parts.append(
439
+ torch.ones_like(visual_label[index], dtype=torch.bool))
440
+ label_parts.append(visual_label[index])
441
+ prev_image_atom_position = image_atom_position
442
+ if prev_image_atom_position + 1 < text_input_id.shape[0]:
443
+ input_embed_parts.append(
444
+ text_embed[prev_image_atom_position + 1:, :])
445
+ attention_mask_parts.append(
446
+ text_attention_mask[prev_image_atom_position + 1:])
447
+ label_parts.append(
448
+ text_label[prev_image_atom_position + 1:])
449
+ input_embed = torch.cat(input_embed_parts, dim=0)
450
+ attention_mask = torch.cat(attention_mask_parts, dim=0)
451
+ label = torch.cat(label_parts, dim=0)
452
+ else:
453
+ input_embed = text_embed
454
+ attention_mask = text_attention_mask
455
+ label = text_label
456
+ if self.training:
457
+ # Make visual_embed & visual_indicator_embeds involved in the backward graph,
458
+ # to be compatible with deepspeed zero and ddp.
459
+ input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
460
+ input_embeds.append(input_embed)
461
+ attention_masks.append(attention_mask)
462
+ labels.append(label)
463
+
464
+ if self.training: # padding to self.config.multimodal_max_length for increased training speed
465
+ padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
466
+ input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
467
+ attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
468
+ labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
469
+ batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
470
+ batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
471
+ batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
472
+
473
+ return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
474
+
475
+ def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
476
+ if not left_padding:
477
+ pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
478
+ return pad_sequence[:,:self.config.multimodal_max_length]
479
+ else:
480
+ pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
481
+ return pad_sequence[:,-self.config.multimodal_max_length:]
482
+
483
+ def preprocess_inputs(
484
+ self,
485
+ text_or_conversations: Union[List[Dict], str],
486
+ images: Optional[List[PIL.Image.Image]],
487
+ max_partition=9,
488
+ generation_preface='',
489
+ return_labels=False,
490
+ propagate_exception=True,
491
+ frame_selector=None,
492
+ frame_selector_kwargs=None
493
+ ):
494
+ # convert text to conversations
495
+ if isinstance(text_or_conversations, str):
496
+ conversations = [{
497
+ "from": "human",
498
+ "value": text_or_conversations
499
+ }]
500
+ elif isinstance(text_or_conversations, list):
501
+ conversations = text_or_conversations
502
+ else:
503
+ raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
504
+ f' but got {type(text_or_conversations)}')
505
+
506
+ if frame_selector is not None:
507
+ frame_selector_kwargs = frame_selector_kwargs or {}
508
+ conversations, images = frame_selector(conversations=conversations, frames=images, **frame_selector_kwargs)
509
+
510
+ # format conversations
511
+ prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
512
+ conversations, generation_preface=generation_preface)
513
+
514
+ # place image placeholders
515
+ input_ids = []
516
+ labels = []
517
+ pixel_values = []
518
+ invalidate_label = False
519
+ image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
520
+ last_image_token_index = -1
521
+ for i in range(len(image_token_indices)):
522
+ head = 0 if i == 0 else image_token_indices[i - 1] + 1
523
+ tail = image_token_indices[i]
524
+ last_image_token_index = tail
525
+ input_ids.extend(raw_input_ids[head:tail])
526
+ labels.extend(raw_labels[head:tail])
527
+ try:
528
+ image = images[i]
529
+ raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
530
+ image, max_partition=max_partition)
531
+ except Exception as e:
532
+ if propagate_exception:
533
+ raise e
534
+ logging.exception(e)
535
+ invalidate_label = True
536
+ raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
537
+ input_ids.extend(image_placeholders)
538
+ labels.extend([IGNORE_ID] * len(image_placeholders))
539
+ pixel_values.append(raw_pixel_values)
540
+ input_ids.extend(raw_input_ids[last_image_token_index + 1:])
541
+ labels.extend(raw_labels[last_image_token_index + 1:])
542
+
543
+ # return tensors
544
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
545
+ labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
546
+ pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
547
+
548
+ if return_labels:
549
+ return prompt, input_ids, pixel_values, labels
550
+ else:
551
+ return prompt, input_ids, pixel_values
552
+
553
+ def save_pretrained(
554
+ self,
555
+ save_directory: Union[str, os.PathLike],
556
+ is_main_process: bool = True,
557
+ state_dict: Optional[dict] = None,
558
+ save_function: Callable = torch.save,
559
+ push_to_hub: bool = False,
560
+ max_shard_size: Union[int, str] = "5GB",
561
+ safe_serialization: bool = True,
562
+ variant: Optional[str] = None,
563
+ token: Optional[Union[str, bool]] = None,
564
+ save_peft_format: bool = True,
565
+ **kwargs
566
+ ):
567
+ super().save_pretrained(save_directory,
568
+ is_main_process=is_main_process,
569
+ state_dict=state_dict,
570
+ save_function=save_function,
571
+ safe_serialization=safe_serialization)
572
+ self.get_text_tokenizer().save_pretrained(save_directory)
573
+ self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
574
+
575
+ def generate(
576
+ self,
577
+ inputs: Optional[torch.Tensor] = None,
578
+ **kwargs
579
+ ) -> Union[GenerateOutput, torch.LongTensor]:
580
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
581
+ text_input_ids=inputs,
582
+ text_attention_masks=kwargs.pop('attention_mask'),
583
+ text_labels=None,
584
+ pixel_values=kwargs.pop('pixel_values'),
585
+ left_padding=True
586
+ )
587
+ inputs_embeds = inputs_embeds.detach()
588
+ torch.cuda.empty_cache()
589
+
590
+ return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)