File size: 16,157 Bytes
4f6582a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-swift-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-swift-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3403
- Precision: 0.6596
- Recall: 0.3962
- F1 Macro: 0.4436
- Accuracy: 0.6112
- F1 Binary Minimum3: 0.7282
- F1 Binary Minimum2: 0.9673

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:------:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0      | 7.9458          | 0.0159    | 0.2    | 0.0294   | 0.0794   | 0                  | 0                  |
| 0.3909        | 0.2932  | 1000   | 0.3869          | 0.6080    | 0.3401 | 0.3645   | 0.5781   | 0.7198             | 0.9645             |
| 0.3743        | 0.5863  | 2000   | 0.3686          | 0.6224    | 0.3523 | 0.3809   | 0.5910   | 0.7154             | 0.9657             |
| 0.3639        | 0.8795  | 3000   | 0.3666          | 0.6145    | 0.3529 | 0.3809   | 0.5920   | 0.7273             | 0.9657             |
| 0.3655        | 1.1727  | 4000   | 0.3594          | 0.6360    | 0.3623 | 0.3946   | 0.5962   | 0.7145             | 0.9661             |
| 0.3702        | 1.4658  | 5000   | 0.3585          | 0.6124    | 0.3566 | 0.3856   | 0.5960   | 0.7031             | 0.9663             |
| 0.3625        | 1.7590  | 6000   | 0.3558          | 0.6531    | 0.3717 | 0.4082   | 0.5999   | 0.7191             | 0.9665             |
| 0.3474        | 2.0522  | 7000   | 0.3542          | 0.6420    | 0.3696 | 0.4033   | 0.6004   | 0.7173             | 0.9666             |
| 0.3711        | 2.3454  | 8000   | 0.3536          | 0.6375    | 0.3618 | 0.3944   | 0.5999   | 0.7107             | 0.9665             |
| 0.3495        | 2.6385  | 9000   | 0.3522          | 0.6454    | 0.3736 | 0.4109   | 0.6021   | 0.7248             | 0.9667             |
| 0.3576        | 2.9317  | 10000  | 0.3536          | 0.6591    | 0.3664 | 0.4012   | 0.6015   | 0.7305             | 0.9666             |
| 0.3616        | 3.2249  | 11000  | 0.3558          | 0.6652    | 0.3813 | 0.4223   | 0.6011   | 0.7362             | 0.9666             |
| 0.3482        | 3.5180  | 12000  | 0.3504          | 0.6589    | 0.3773 | 0.4163   | 0.6046   | 0.7259             | 0.9671             |
| 0.3616        | 3.8112  | 13000  | 0.3550          | 0.6670    | 0.3889 | 0.4326   | 0.6036   | 0.7384             | 0.9666             |
| 0.36          | 4.1044  | 14000  | 0.3515          | 0.6646    | 0.3844 | 0.4262   | 0.6049   | 0.7346             | 0.9671             |
| 0.3553        | 4.3975  | 15000  | 0.3519          | 0.6779    | 0.3887 | 0.4336   | 0.6058   | 0.7369             | 0.9668             |
| 0.3457        | 4.6907  | 16000  | 0.3485          | 0.6668    | 0.3852 | 0.4275   | 0.6049   | 0.7199             | 0.9671             |
| 0.3544        | 4.9839  | 17000  | 0.3530          | 0.6510    | 0.3703 | 0.4043   | 0.5980   | 0.6881             | 0.9669             |
| 0.349         | 5.2770  | 18000  | 0.3472          | 0.6650    | 0.3785 | 0.4184   | 0.6049   | 0.7189             | 0.9671             |
| 0.3478        | 5.5702  | 19000  | 0.3479          | 0.6629    | 0.3709 | 0.4079   | 0.6038   | 0.7097             | 0.9669             |
| 0.3517        | 5.8634  | 20000  | 0.3470          | 0.6630    | 0.3830 | 0.4265   | 0.6051   | 0.7154             | 0.9669             |
| 0.3552        | 6.1566  | 21000  | 0.3475          | 0.6536    | 0.3767 | 0.4165   | 0.6041   | 0.7113             | 0.9667             |
| 0.3619        | 6.4497  | 22000  | 0.3472          | 0.6705    | 0.3739 | 0.4127   | 0.6071   | 0.7275             | 0.9667             |
| 0.3534        | 6.7429  | 23000  | 0.3626          | 0.6590    | 0.3978 | 0.4435   | 0.5977   | 0.7434             | 0.9667             |
| 0.3494        | 7.0361  | 24000  | 0.3479          | 0.6711    | 0.3905 | 0.4363   | 0.6078   | 0.7312             | 0.9668             |
| 0.3488        | 7.3292  | 25000  | 0.3455          | 0.6647    | 0.3836 | 0.4251   | 0.6075   | 0.7258             | 0.9671             |
| 0.3557        | 7.6224  | 26000  | 0.3457          | 0.6699    | 0.3890 | 0.4328   | 0.6066   | 0.7193             | 0.9671             |
| 0.3442        | 7.9156  | 27000  | 0.3461          | 0.6622    | 0.3726 | 0.4111   | 0.6060   | 0.7214             | 0.9671             |
| 0.3648        | 8.2087  | 28000  | 0.3463          | 0.6742    | 0.3834 | 0.4260   | 0.6087   | 0.7310             | 0.9667             |
| 0.35          | 8.5019  | 29000  | 0.3463          | 0.6577    | 0.3966 | 0.4434   | 0.6086   | 0.7317             | 0.9674             |
| 0.3539        | 8.7951  | 30000  | 0.3526          | 0.6478    | 0.3654 | 0.3975   | 0.5977   | 0.6838             | 0.9669             |
| 0.3475        | 9.0882  | 31000  | 0.3454          | 0.6761    | 0.3898 | 0.4352   | 0.6090   | 0.7326             | 0.9670             |
| 0.3535        | 9.3814  | 32000  | 0.3447          | 0.6719    | 0.3895 | 0.4346   | 0.6092   | 0.7291             | 0.9671             |
| 0.3514        | 9.6746  | 33000  | 0.3445          | 0.6660    | 0.3918 | 0.4380   | 0.6088   | 0.7281             | 0.9671             |
| 0.3504        | 9.9678  | 34000  | 0.3455          | 0.6698    | 0.3914 | 0.4363   | 0.6094   | 0.7349             | 0.9672             |
| 0.3629        | 10.2609 | 35000  | 0.3550          | 0.6620    | 0.3935 | 0.4389   | 0.6036   | 0.7441             | 0.9666             |
| 0.3436        | 10.5541 | 36000  | 0.3491          | 0.6607    | 0.3959 | 0.4422   | 0.6074   | 0.7403             | 0.9672             |
| 0.3516        | 10.8473 | 37000  | 0.3461          | 0.6641    | 0.3792 | 0.4166   | 0.6051   | 0.7062             | 0.9670             |
| 0.3483        | 11.1404 | 38000  | 0.3435          | 0.6705    | 0.3894 | 0.4348   | 0.6071   | 0.7214             | 0.9671             |
| 0.3506        | 11.4336 | 39000  | 0.3450          | 0.6595    | 0.3969 | 0.4447   | 0.6101   | 0.7344             | 0.9672             |
| 0.3484        | 11.7268 | 40000  | 0.3440          | 0.6641    | 0.3934 | 0.4380   | 0.6086   | 0.7273             | 0.9674             |
| 0.3491        | 12.0199 | 41000  | 0.3589          | 0.6601    | 0.3959 | 0.4408   | 0.6001   | 0.7454             | 0.9668             |
| 0.3468        | 12.3131 | 42000  | 0.3456          | 0.6731    | 0.3895 | 0.4345   | 0.6087   | 0.7371             | 0.9674             |
| 0.3461        | 12.6063 | 43000  | 0.3431          | 0.6730    | 0.3897 | 0.4357   | 0.6096   | 0.7274             | 0.9675             |
| 0.355         | 12.8994 | 44000  | 0.3440          | 0.6672    | 0.3812 | 0.4221   | 0.6069   | 0.7141             | 0.9672             |
| 0.347         | 13.1926 | 45000  | 0.3469          | 0.6574    | 0.3804 | 0.4180   | 0.6039   | 0.7030             | 0.9669             |
| 0.3453        | 13.4858 | 46000  | 0.3443          | 0.6736    | 0.3882 | 0.4326   | 0.6102   | 0.7350             | 0.9669             |
| 0.3463        | 13.7790 | 47000  | 0.3428          | 0.6640    | 0.3877 | 0.4308   | 0.6085   | 0.7186             | 0.9673             |
| 0.3485        | 14.0721 | 48000  | 0.3433          | 0.6667    | 0.3965 | 0.4438   | 0.6097   | 0.7308             | 0.9673             |
| 0.3539        | 14.3653 | 49000  | 0.3429          | 0.6570    | 0.3900 | 0.4343   | 0.6079   | 0.7214             | 0.9672             |
| 0.3541        | 14.6585 | 50000  | 0.3487          | 0.6623    | 0.3950 | 0.4412   | 0.6066   | 0.7417             | 0.9671             |
| 0.3523        | 14.9516 | 51000  | 0.3455          | 0.6512    | 0.3869 | 0.4283   | 0.6048   | 0.7027             | 0.9668             |
| 0.3372        | 15.2448 | 52000  | 0.3453          | 0.6706    | 0.3975 | 0.4449   | 0.6089   | 0.7375             | 0.9673             |
| 0.3522        | 15.5380 | 53000  | 0.3428          | 0.6680    | 0.3964 | 0.4441   | 0.6112   | 0.7326             | 0.9672             |
| 0.3457        | 15.8311 | 54000  | 0.3441          | 0.6738    | 0.3914 | 0.4382   | 0.6099   | 0.7363             | 0.9668             |
| 0.3403        | 16.1243 | 55000  | 0.3443          | 0.6643    | 0.3958 | 0.4432   | 0.6097   | 0.7364             | 0.9672             |
| 0.3448        | 16.4175 | 56000  | 0.3436          | 0.6703    | 0.3819 | 0.4262   | 0.6066   | 0.7182             | 0.9667             |
| 0.3316        | 16.7106 | 57000  | 0.3419          | 0.6640    | 0.3941 | 0.4405   | 0.6092   | 0.7223             | 0.9672             |
| 0.3436        | 17.0038 | 58000  | 0.3496          | 0.6626    | 0.4037 | 0.4526   | 0.6073   | 0.7431             | 0.9672             |
| 0.3507        | 17.2970 | 59000  | 0.3478          | 0.6624    | 0.4038 | 0.4530   | 0.6093   | 0.7424             | 0.9670             |
| 0.3407        | 17.5901 | 60000  | 0.3416          | 0.6654    | 0.3921 | 0.4380   | 0.6099   | 0.7268             | 0.9672             |
| 0.3483        | 17.8833 | 61000  | 0.3427          | 0.6679    | 0.3878 | 0.4317   | 0.6100   | 0.7336             | 0.9671             |
| 0.3436        | 18.1765 | 62000  | 0.3436          | 0.6702    | 0.3910 | 0.4377   | 0.6099   | 0.7340             | 0.9668             |
| 0.3474        | 18.4697 | 63000  | 0.3473          | 0.6560    | 0.4018 | 0.4501   | 0.6102   | 0.7429             | 0.9669             |
| 0.3429        | 18.7628 | 64000  | 0.3416          | 0.6609    | 0.3927 | 0.4375   | 0.6096   | 0.7244             | 0.9673             |
| 0.3533        | 19.0560 | 65000  | 0.3417          | 0.6696    | 0.3896 | 0.4348   | 0.6104   | 0.7284             | 0.9673             |
| 0.3375        | 19.3492 | 66000  | 0.3419          | 0.6621    | 0.3924 | 0.4377   | 0.6084   | 0.7154             | 0.9672             |
| 0.3428        | 19.6423 | 67000  | 0.3415          | 0.6700    | 0.3900 | 0.4357   | 0.6107   | 0.7301             | 0.9673             |
| 0.35          | 19.9355 | 68000  | 0.3424          | 0.6553    | 0.3817 | 0.4225   | 0.6074   | 0.7131             | 0.9673             |
| 0.3499        | 20.2287 | 69000  | 0.3478          | 0.6581    | 0.4031 | 0.4515   | 0.6090   | 0.7430             | 0.9674             |
| 0.3429        | 20.5218 | 70000  | 0.3567          | 0.6619    | 0.3969 | 0.4427   | 0.6030   | 0.7470             | 0.9661             |
| 0.3342        | 20.8150 | 71000  | 0.3415          | 0.6677    | 0.3920 | 0.4388   | 0.6107   | 0.7302             | 0.9674             |
| 0.3381        | 21.1082 | 72000  | 0.3482          | 0.6587    | 0.4022 | 0.4509   | 0.6078   | 0.7428             | 0.9668             |
| 0.3524        | 21.4013 | 73000  | 0.3439          | 0.6600    | 0.4036 | 0.4533   | 0.6116   | 0.7395             | 0.9672             |
| 0.3428        | 21.6945 | 74000  | 0.3423          | 0.6564    | 0.3889 | 0.4329   | 0.6074   | 0.7111             | 0.9671             |
| 0.3447        | 21.9877 | 75000  | 0.3416          | 0.6644    | 0.3929 | 0.4397   | 0.6108   | 0.7321             | 0.9671             |
| 0.3436        | 22.2809 | 76000  | 0.3412          | 0.6552    | 0.4009 | 0.4488   | 0.6098   | 0.7265             | 0.9674             |
| 0.3484        | 22.5740 | 77000  | 0.3430          | 0.6585    | 0.3976 | 0.4459   | 0.6110   | 0.7365             | 0.9670             |
| 0.3401        | 22.8672 | 78000  | 0.3423          | 0.6594    | 0.3920 | 0.4378   | 0.6080   | 0.7101             | 0.9671             |
| 0.3394        | 23.1604 | 79000  | 0.3416          | 0.6606    | 0.3901 | 0.4349   | 0.6088   | 0.7145             | 0.9674             |
| 0.3331        | 23.4535 | 80000  | 0.3413          | 0.6627    | 0.3844 | 0.4273   | 0.6098   | 0.7214             | 0.9672             |
| 0.3587        | 23.7467 | 81000  | 0.3413          | 0.6593    | 0.3904 | 0.4351   | 0.6087   | 0.7157             | 0.9673             |
| 0.3518        | 24.0399 | 82000  | 0.3419          | 0.6641    | 0.3962 | 0.4437   | 0.6112   | 0.7352             | 0.9672             |
| 0.3442        | 24.3330 | 83000  | 0.3406          | 0.6626    | 0.3959 | 0.4432   | 0.6105   | 0.7277             | 0.9673             |
| 0.3386        | 24.6262 | 84000  | 0.3452          | 0.6607    | 0.3984 | 0.4464   | 0.6100   | 0.7409             | 0.9669             |
| 0.3418        | 24.9194 | 85000  | 0.3409          | 0.6655    | 0.3919 | 0.4385   | 0.6098   | 0.7195             | 0.9673             |
| 0.3426        | 25.2125 | 86000  | 0.3420          | 0.6513    | 0.4021 | 0.4514   | 0.6109   | 0.7351             | 0.9672             |
| 0.3293        | 25.5057 | 87000  | 0.3406          | 0.6714    | 0.3926 | 0.4397   | 0.6101   | 0.7289             | 0.9672             |
| 0.3437        | 25.7989 | 88000  | 0.3413          | 0.6506    | 0.4038 | 0.4529   | 0.6104   | 0.7303             | 0.9673             |
| 0.341         | 26.0921 | 89000  | 0.3407          | 0.6663    | 0.3965 | 0.4449   | 0.6108   | 0.7298             | 0.9673             |
| 0.3284        | 26.3852 | 90000  | 0.3407          | 0.6615    | 0.3958 | 0.4435   | 0.6103   | 0.7293             | 0.9673             |
| 0.3463        | 26.6784 | 91000  | 0.3408          | 0.6625    | 0.3916 | 0.4375   | 0.6098   | 0.7180             | 0.9673             |
| 0.3423        | 26.9716 | 92000  | 0.3406          | 0.6652    | 0.3927 | 0.4393   | 0.6104   | 0.7222             | 0.9672             |
| 0.3408        | 27.2647 | 93000  | 0.3405          | 0.6669    | 0.3925 | 0.4393   | 0.6100   | 0.7274             | 0.9672             |
| 0.3431        | 27.5579 | 94000  | 0.3409          | 0.6686    | 0.3921 | 0.4392   | 0.6102   | 0.7305             | 0.9672             |
| 0.3424        | 27.8511 | 95000  | 0.3409          | 0.6664    | 0.3964 | 0.4445   | 0.6105   | 0.7318             | 0.9672             |
| 0.3438        | 28.1442 | 96000  | 0.3405          | 0.6650    | 0.3942 | 0.4414   | 0.6109   | 0.7290             | 0.9672             |
| 0.3328        | 28.4374 | 97000  | 0.3404          | 0.6640    | 0.3934 | 0.4401   | 0.6101   | 0.7220             | 0.9673             |
| 0.3341        | 28.7306 | 98000  | 0.3405          | 0.6602    | 0.3951 | 0.4425   | 0.6107   | 0.7288             | 0.9673             |
| 0.3373        | 29.0237 | 99000  | 0.3403          | 0.6602    | 0.3957 | 0.4428   | 0.6110   | 0.7243             | 0.9673             |
| 0.3377        | 29.3169 | 100000 | 0.3404          | 0.6614    | 0.3948 | 0.4422   | 0.6104   | 0.7278             | 0.9672             |
| 0.3376        | 29.6101 | 101000 | 0.3404          | 0.6622    | 0.3962 | 0.4437   | 0.6110   | 0.7288             | 0.9673             |
| 0.3404        | 29.9033 | 102000 | 0.3403          | 0.6596    | 0.3962 | 0.4436   | 0.6112   | 0.7282             | 0.9673             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1