File size: 16,157 Bytes
c478f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-shell-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-shell-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3628
- Precision: 0.6557
- Recall: 0.5002
- F1 Macro: 0.5093
- Accuracy: 0.6202
- F1 Binary Minimum3: 0.8655
- F1 Binary Minimum2: 0.9307

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:------:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0      | 6.9862          | 0.0476    | 0.2    | 0.0769   | 0.2382   | 0                  | 0                  |
| 0.4093        | 0.2928  | 1000   | 0.4109          | 0.5009    | 0.4593 | 0.4662   | 0.5836   | 0.8543             | 0.9213             |
| 0.4015        | 0.5857  | 2000   | 0.4013          | 0.5537    | 0.4682 | 0.4762   | 0.5887   | 0.8605             | 0.9208             |
| 0.4088        | 0.8785  | 3000   | 0.3942          | 0.5063    | 0.4684 | 0.4749   | 0.5941   | 0.8566             | 0.9245             |
| 0.399         | 1.1713  | 4000   | 0.3928          | 0.5838    | 0.4809 | 0.4902   | 0.5979   | 0.8622             | 0.9245             |
| 0.3884        | 1.4641  | 5000   | 0.3934          | 0.5752    | 0.4867 | 0.4955   | 0.6011   | 0.8632             | 0.9253             |
| 0.3962        | 1.7570  | 6000   | 0.3869          | 0.6081    | 0.4831 | 0.4927   | 0.6019   | 0.8621             | 0.9259             |
| 0.393         | 2.0498  | 7000   | 0.3999          | 0.5715    | 0.4686 | 0.4776   | 0.5826   | 0.8639             | 0.9175             |
| 0.4009        | 2.3426  | 8000   | 0.3823          | 0.6038    | 0.4872 | 0.4965   | 0.6056   | 0.8603             | 0.9271             |
| 0.3898        | 2.6354  | 9000   | 0.3895          | 0.5640    | 0.4893 | 0.4986   | 0.6018   | 0.8646             | 0.9252             |
| 0.3784        | 2.9283  | 10000  | 0.3813          | 0.6028    | 0.4817 | 0.4898   | 0.6052   | 0.8587             | 0.9278             |
| 0.4001        | 3.2211  | 11000  | 0.3806          | 0.6109    | 0.4842 | 0.4934   | 0.6051   | 0.8624             | 0.9263             |
| 0.3802        | 3.5139  | 12000  | 0.3828          | 0.6116    | 0.4782 | 0.4876   | 0.5992   | 0.8623             | 0.9244             |
| 0.3939        | 3.8067  | 13000  | 0.3832          | 0.6118    | 0.4774 | 0.4871   | 0.5980   | 0.8623             | 0.9234             |
| 0.3809        | 4.0996  | 14000  | 0.3800          | 0.6068    | 0.4884 | 0.4958   | 0.6098   | 0.8573             | 0.9287             |
| 0.3857        | 4.3924  | 15000  | 0.3786          | 0.6104    | 0.4880 | 0.4979   | 0.6063   | 0.8631             | 0.9275             |
| 0.401         | 4.6852  | 16000  | 0.3770          | 0.6241    | 0.4858 | 0.4949   | 0.6076   | 0.8613             | 0.9284             |
| 0.3737        | 4.9780  | 17000  | 0.3814          | 0.5728    | 0.4897 | 0.4991   | 0.6050   | 0.8647             | 0.9262             |
| 0.3792        | 5.2709  | 18000  | 0.3828          | 0.5930    | 0.4836 | 0.4936   | 0.6008   | 0.8651             | 0.9245             |
| 0.3882        | 5.5637  | 19000  | 0.3811          | 0.5800    | 0.4877 | 0.4973   | 0.6036   | 0.8645             | 0.9259             |
| 0.3683        | 5.8565  | 20000  | 0.3777          | 0.5816    | 0.4915 | 0.5012   | 0.6080   | 0.8643             | 0.9276             |
| 0.3816        | 6.1493  | 21000  | 0.3757          | 0.6353    | 0.4862 | 0.4945   | 0.6098   | 0.8600             | 0.9291             |
| 0.3857        | 6.4422  | 22000  | 0.3751          | 0.5801    | 0.4950 | 0.5039   | 0.6120   | 0.8627             | 0.9291             |
| 0.3948        | 6.7350  | 23000  | 0.3742          | 0.6232    | 0.4909 | 0.5004   | 0.6104   | 0.8617             | 0.9285             |
| 0.3817        | 7.0278  | 24000  | 0.3754          | 0.5829    | 0.4954 | 0.5041   | 0.6119   | 0.8626             | 0.9291             |
| 0.375         | 7.3206  | 25000  | 0.3735          | 0.6155    | 0.4916 | 0.4993   | 0.6129   | 0.8611             | 0.9291             |
| 0.3773        | 7.6135  | 26000  | 0.3730          | 0.6185    | 0.4923 | 0.5014   | 0.6119   | 0.8610             | 0.9291             |
| 0.3774        | 7.9063  | 27000  | 0.3735          | 0.6334    | 0.4879 | 0.4970   | 0.6100   | 0.8625             | 0.9288             |
| 0.3788        | 8.1991  | 28000  | 0.3736          | 0.6012    | 0.4934 | 0.5028   | 0.6114   | 0.8634             | 0.9288             |
| 0.3601        | 8.4919  | 29000  | 0.3771          | 0.5904    | 0.4921 | 0.5022   | 0.6081   | 0.8641             | 0.9276             |
| 0.3779        | 8.7848  | 30000  | 0.3724          | 0.6157    | 0.4934 | 0.5019   | 0.6133   | 0.8626             | 0.9293             |
| 0.3732        | 9.0776  | 31000  | 0.3820          | 0.5773    | 0.4939 | 0.5038   | 0.6067   | 0.8656             | 0.9272             |
| 0.3729        | 9.3704  | 32000  | 0.3725          | 0.6023    | 0.4934 | 0.5030   | 0.6117   | 0.8637             | 0.9289             |
| 0.378         | 9.6633  | 33000  | 0.3742          | 0.6092    | 0.4903 | 0.5002   | 0.6089   | 0.8638             | 0.9279             |
| 0.3794        | 9.9561  | 34000  | 0.3713          | 0.6021    | 0.4971 | 0.5063   | 0.6146   | 0.8628             | 0.9297             |
| 0.3703        | 10.2489 | 35000  | 0.3718          | 0.6222    | 0.4923 | 0.5016   | 0.6121   | 0.8642             | 0.9288             |
| 0.3614        | 10.5417 | 36000  | 0.3711          | 0.6300    | 0.4930 | 0.5023   | 0.6125   | 0.8633             | 0.9289             |
| 0.3822        | 10.8346 | 37000  | 0.3729          | 0.6324    | 0.4881 | 0.4951   | 0.6127   | 0.8591             | 0.9299             |
| 0.3775        | 11.1274 | 38000  | 0.3914          | 0.5661    | 0.4887 | 0.4986   | 0.5967   | 0.8657             | 0.9234             |
| 0.3709        | 11.4202 | 39000  | 0.3741          | 0.6303    | 0.4897 | 0.4958   | 0.6138   | 0.8569             | 0.9301             |
| 0.3749        | 11.7130 | 40000  | 0.3770          | 0.5928    | 0.4919 | 0.5021   | 0.6071   | 0.8650             | 0.9269             |
| 0.3683        | 12.0059 | 41000  | 0.3707          | 0.6075    | 0.4951 | 0.5037   | 0.6141   | 0.8645             | 0.9295             |
| 0.3772        | 12.2987 | 42000  | 0.3756          | 0.5952    | 0.4942 | 0.5042   | 0.6096   | 0.8655             | 0.9279             |
| 0.3829        | 12.5915 | 43000  | 0.3705          | 0.5929    | 0.4980 | 0.5070   | 0.6147   | 0.8643             | 0.9293             |
| 0.3736        | 12.8843 | 44000  | 0.3688          | 0.6151    | 0.4971 | 0.5059   | 0.6161   | 0.8636             | 0.9300             |
| 0.3795        | 13.1772 | 45000  | 0.3704          | 0.6011    | 0.4975 | 0.5071   | 0.6141   | 0.864              | 0.9295             |
| 0.3756        | 13.4700 | 46000  | 0.3704          | 0.6181    | 0.4967 | 0.5041   | 0.6168   | 0.8621             | 0.9296             |
| 0.3711        | 13.7628 | 47000  | 0.3684          | 0.6255    | 0.4955 | 0.5038   | 0.6160   | 0.8626             | 0.9301             |
| 0.3764        | 14.0556 | 48000  | 0.3696          | 0.6068    | 0.4973 | 0.5069   | 0.6150   | 0.8643             | 0.9295             |
| 0.3666        | 14.3485 | 49000  | 0.3688          | 0.6085    | 0.4982 | 0.5071   | 0.6158   | 0.8642             | 0.9298             |
| 0.3617        | 14.6413 | 50000  | 0.3738          | 0.6002    | 0.4948 | 0.5048   | 0.6104   | 0.8657             | 0.9282             |
| 0.381         | 14.9341 | 51000  | 0.3681          | 0.6233    | 0.4978 | 0.5074   | 0.6158   | 0.8642             | 0.9299             |
| 0.3678        | 15.2269 | 52000  | 0.3674          | 0.6279    | 0.4985 | 0.5076   | 0.6172   | 0.8645             | 0.9300             |
| 0.3818        | 15.5198 | 53000  | 0.3684          | 0.6307    | 0.4966 | 0.5043   | 0.6175   | 0.8626             | 0.9297             |
| 0.3831        | 15.8126 | 54000  | 0.3674          | 0.6156    | 0.4979 | 0.5067   | 0.6166   | 0.8639             | 0.9301             |
| 0.3737        | 16.1054 | 55000  | 0.3694          | 0.5929    | 0.4994 | 0.5086   | 0.6156   | 0.8651             | 0.9300             |
| 0.3603        | 16.3982 | 56000  | 0.3675          | 0.6336    | 0.4958 | 0.5053   | 0.6161   | 0.8643             | 0.9296             |
| 0.3696        | 16.6911 | 57000  | 0.3676          | 0.6210    | 0.4972 | 0.5068   | 0.6155   | 0.8648             | 0.9296             |
| 0.3726        | 16.9839 | 58000  | 0.3671          | 0.6501    | 0.4952 | 0.5035   | 0.6169   | 0.8627             | 0.9302             |
| 0.3817        | 17.2767 | 59000  | 0.3696          | 0.6388    | 0.4924 | 0.5023   | 0.6119   | 0.8648             | 0.9282             |
| 0.3651        | 17.5695 | 60000  | 0.3660          | 0.6414    | 0.4972 | 0.5061   | 0.6183   | 0.8639             | 0.9303             |
| 0.3649        | 17.8624 | 61000  | 0.3667          | 0.6346    | 0.4984 | 0.5061   | 0.6187   | 0.8628             | 0.9297             |
| 0.3767        | 18.1552 | 62000  | 0.3658          | 0.6303    | 0.5000 | 0.5095   | 0.6186   | 0.8641             | 0.9304             |
| 0.3619        | 18.4480 | 63000  | 0.3675          | 0.6397    | 0.4933 | 0.5000   | 0.6170   | 0.8608             | 0.9302             |
| 0.3735        | 18.7408 | 64000  | 0.3708          | 0.6168    | 0.4959 | 0.5060   | 0.6122   | 0.8663             | 0.9283             |
| 0.3673        | 19.0337 | 65000  | 0.3679          | 0.6050    | 0.5000 | 0.5093   | 0.6165   | 0.8654             | 0.9298             |
| 0.3671        | 19.3265 | 66000  | 0.3671          | 0.6489    | 0.4945 | 0.5040   | 0.6148   | 0.8649             | 0.9294             |
| 0.372         | 19.6193 | 67000  | 0.3654          | 0.6490    | 0.4975 | 0.5064   | 0.6183   | 0.8650             | 0.9302             |
| 0.3711        | 19.9122 | 68000  | 0.3649          | 0.6327    | 0.4997 | 0.5085   | 0.6188   | 0.8639             | 0.9304             |
| 0.36          | 20.2050 | 69000  | 0.3648          | 0.6307    | 0.4995 | 0.5077   | 0.6190   | 0.8648             | 0.9303             |
| 0.3718        | 20.4978 | 70000  | 0.3651          | 0.6370    | 0.4985 | 0.5079   | 0.6183   | 0.8650             | 0.9304             |
| 0.3762        | 20.7906 | 71000  | 0.3656          | 0.6448    | 0.4976 | 0.5067   | 0.6172   | 0.8653             | 0.9299             |
| 0.3602        | 21.0835 | 72000  | 0.3645          | 0.6468    | 0.4976 | 0.5059   | 0.6187   | 0.8640             | 0.9303             |
| 0.3624        | 21.3763 | 73000  | 0.3679          | 0.6015    | 0.5009 | 0.5105   | 0.6165   | 0.8662             | 0.9296             |
| 0.3774        | 21.6691 | 74000  | 0.3649          | 0.6171    | 0.5005 | 0.5094   | 0.6187   | 0.8649             | 0.9304             |
| 0.3724        | 21.9619 | 75000  | 0.3646          | 0.6370    | 0.5010 | 0.5102   | 0.6194   | 0.8654             | 0.9304             |
| 0.3762        | 22.2548 | 76000  | 0.3642          | 0.6594    | 0.4977 | 0.5068   | 0.6182   | 0.8645             | 0.9300             |
| 0.3795        | 22.5476 | 77000  | 0.3674          | 0.6267    | 0.4968 | 0.5067   | 0.6151   | 0.8659             | 0.9291             |
| 0.3774        | 22.8404 | 78000  | 0.3660          | 0.6146    | 0.4995 | 0.5090   | 0.6171   | 0.8658             | 0.9297             |
| 0.351         | 23.1332 | 79000  | 0.3648          | 0.6453    | 0.4993 | 0.5087   | 0.6180   | 0.8653             | 0.9302             |
| 0.3645        | 23.4261 | 80000  | 0.3643          | 0.6314    | 0.4953 | 0.5023   | 0.6193   | 0.8629             | 0.9304             |
| 0.3664        | 23.7189 | 81000  | 0.3644          | 0.6284    | 0.5017 | 0.5101   | 0.6202   | 0.8654             | 0.9303             |
| 0.3641        | 24.0117 | 82000  | 0.3655          | 0.6297    | 0.4991 | 0.5090   | 0.6174   | 0.8655             | 0.9299             |
| 0.3588        | 24.3045 | 83000  | 0.3646          | 0.6656    | 0.4986 | 0.5084   | 0.6179   | 0.8656             | 0.9300             |
| 0.3721        | 24.5974 | 84000  | 0.3633          | 0.6598    | 0.4988 | 0.5078   | 0.6197   | 0.8643             | 0.9307             |
| 0.3644        | 24.8902 | 85000  | 0.3636          | 0.6465    | 0.4980 | 0.5053   | 0.6202   | 0.8636             | 0.9304             |
| 0.3555        | 25.1830 | 86000  | 0.3631          | 0.6518    | 0.4985 | 0.5064   | 0.6203   | 0.8638             | 0.9306             |
| 0.3607        | 25.4758 | 87000  | 0.3641          | 0.6353    | 0.4997 | 0.5091   | 0.6186   | 0.8654             | 0.9303             |
| 0.3643        | 25.7687 | 88000  | 0.3629          | 0.6528    | 0.4991 | 0.5072   | 0.6210   | 0.8645             | 0.9308             |
| 0.3715        | 26.0615 | 89000  | 0.3644          | 0.6259    | 0.5000 | 0.5092   | 0.6184   | 0.8660             | 0.9303             |
| 0.3662        | 26.3543 | 90000  | 0.3642          | 0.6294    | 0.5007 | 0.5102   | 0.6190   | 0.8656             | 0.9303             |
| 0.36          | 26.6471 | 91000  | 0.3640          | 0.6215    | 0.5011 | 0.5104   | 0.6194   | 0.8657             | 0.9305             |
| 0.3676        | 26.9400 | 92000  | 0.3632          | 0.6607    | 0.4987 | 0.5079   | 0.6192   | 0.8656             | 0.9306             |
| 0.3614        | 27.2328 | 93000  | 0.3644          | 0.6186    | 0.5002 | 0.5094   | 0.6187   | 0.8659             | 0.9304             |
| 0.3622        | 27.5256 | 94000  | 0.3627          | 0.6478    | 0.4987 | 0.5062   | 0.6210   | 0.8642             | 0.9307             |
| 0.3431        | 27.8184 | 95000  | 0.3633          | 0.6520    | 0.5003 | 0.5097   | 0.6195   | 0.8654             | 0.9305             |
| 0.3625        | 28.1113 | 96000  | 0.3628          | 0.6578    | 0.5007 | 0.5099   | 0.6199   | 0.8656             | 0.9305             |
| 0.3795        | 28.4041 | 97000  | 0.3625          | 0.6436    | 0.4978 | 0.5054   | 0.6200   | 0.8646             | 0.9308             |
| 0.3626        | 28.6969 | 98000  | 0.3638          | 0.6261    | 0.5008 | 0.5099   | 0.6193   | 0.8657             | 0.9304             |
| 0.3701        | 28.9898 | 99000  | 0.3625          | 0.6597    | 0.4995 | 0.5083   | 0.6203   | 0.8647             | 0.9308             |
| 0.3643        | 29.2826 | 100000 | 0.3630          | 0.6583    | 0.5005 | 0.5098   | 0.6199   | 0.8654             | 0.9306             |
| 0.3594        | 29.5754 | 101000 | 0.3626          | 0.6603    | 0.4997 | 0.5086   | 0.6205   | 0.8651             | 0.9308             |
| 0.3569        | 29.8682 | 102000 | 0.3628          | 0.6557    | 0.5002 | 0.5093   | 0.6202   | 0.8655             | 0.9307             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1