--- base_model: bigcode/starencoder tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: stack-edu-classifier-javascript results: [] --- # stack-edu-classifier-javascript This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3612 - Precision: 0.5135 - Recall: 0.3322 - F1 Macro: 0.3711 - Accuracy: 0.6277 - F1 Binary Minimum3: 0.5704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 256 - seed: 0 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 128 - total_eval_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:| | No log | 0 | 0 | 5.6298 | 0.0010 | 0.1667 | 0.0020 | 0.0059 | 0 | | 0.3853 | 1.4493 | 1000 | 0.3886 | 0.4945 | 0.3110 | 0.3354 | 0.6037 | 0.5761 | | 0.3791 | 2.8986 | 2000 | 0.3729 | 0.5041 | 0.3090 | 0.3395 | 0.6208 | 0.5716 | | 0.3722 | 4.3478 | 3000 | 0.3720 | 0.5261 | 0.3116 | 0.3440 | 0.6189 | 0.5673 | | 0.3751 | 5.7971 | 4000 | 0.3704 | 0.5247 | 0.3204 | 0.3565 | 0.6199 | 0.5766 | | 0.3651 | 7.2464 | 5000 | 0.3718 | 0.5113 | 0.3352 | 0.3678 | 0.6310 | 0.5161 | | 0.3695 | 8.6957 | 6000 | 0.3649 | 0.5055 | 0.3253 | 0.3607 | 0.6249 | 0.5632 | | 0.361 | 10.1449 | 7000 | 0.3647 | 0.5042 | 0.3236 | 0.3571 | 0.6354 | 0.5410 | | 0.3666 | 11.5942 | 8000 | 0.3764 | 0.5290 | 0.3371 | 0.3752 | 0.6146 | 0.5941 | | 0.3563 | 13.0435 | 9000 | 0.3617 | 0.5179 | 0.3356 | 0.3743 | 0.6303 | 0.5674 | | 0.3735 | 14.4928 | 10000 | 0.3663 | 0.4998 | 0.3423 | 0.3760 | 0.6340 | 0.5320 | | 0.349 | 15.9420 | 11000 | 0.3616 | 0.5063 | 0.3306 | 0.3681 | 0.6273 | 0.5696 | | 0.3679 | 17.3913 | 12000 | 0.3632 | 0.5078 | 0.3396 | 0.3786 | 0.6252 | 0.5762 | | 0.3622 | 18.8406 | 13000 | 0.3612 | 0.5135 | 0.3322 | 0.3711 | 0.6277 | 0.5704 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1