File size: 16,155 Bytes
65d945d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-java-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-java-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3339
- Precision: 0.7086
- Recall: 0.4035
- F1 Macro: 0.4297
- Accuracy: 0.6370
- F1 Binary Minimum3: 0.7202
- F1 Binary Minimum2: 0.9386

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:------:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0      | 6.4612          | 0.0266    | 0.2    | 0.0470   | 0.1330   | 0                  | 0                  |
| 0.3818        | 0.2936  | 1000   | 0.3828          | 0.4885    | 0.3550 | 0.3697   | 0.6056   | 0.7105             | 0.9351             |
| 0.3773        | 0.5872  | 2000   | 0.3656          | 0.4854    | 0.3527 | 0.3704   | 0.6141   | 0.7005             | 0.9347             |
| 0.3586        | 0.8808  | 3000   | 0.3592          | 0.4868    | 0.3677 | 0.3898   | 0.6197   | 0.7037             | 0.9356             |
| 0.3726        | 1.1744  | 4000   | 0.3573          | 0.4863    | 0.3705 | 0.3927   | 0.6188   | 0.7089             | 0.9349             |
| 0.3624        | 1.4680  | 5000   | 0.3531          | 0.4963    | 0.3833 | 0.4059   | 0.6237   | 0.7191             | 0.9373             |
| 0.3586        | 1.7616  | 6000   | 0.3512          | 0.4953    | 0.3817 | 0.4051   | 0.6251   | 0.7153             | 0.9367             |
| 0.3584        | 2.0552  | 7000   | 0.3543          | 0.4865    | 0.3709 | 0.3941   | 0.6219   | 0.7010             | 0.9353             |
| 0.3628        | 2.3488  | 8000   | 0.3493          | 0.4976    | 0.3836 | 0.4070   | 0.6265   | 0.7179             | 0.9368             |
| 0.36          | 2.6424  | 9000   | 0.3543          | 0.4846    | 0.3710 | 0.3944   | 0.6212   | 0.6952             | 0.9349             |
| 0.3502        | 2.9360  | 10000  | 0.3520          | 0.4925    | 0.4040 | 0.4219   | 0.6258   | 0.7274             | 0.9369             |
| 0.3583        | 3.2296  | 11000  | 0.3478          | 0.4891    | 0.3895 | 0.4143   | 0.6257   | 0.7105             | 0.9360             |
| 0.3594        | 3.5232  | 12000  | 0.3483          | 0.4909    | 0.3958 | 0.4191   | 0.6268   | 0.7185             | 0.9368             |
| 0.3523        | 3.8168  | 13000  | 0.3510          | 0.4874    | 0.3773 | 0.4018   | 0.6237   | 0.7005             | 0.9352             |
| 0.3419        | 4.1104  | 14000  | 0.3528          | 0.4823    | 0.3869 | 0.4114   | 0.6234   | 0.7001             | 0.9341             |
| 0.3457        | 4.4040  | 15000  | 0.3485          | 0.4988    | 0.3956 | 0.4162   | 0.6274   | 0.7250             | 0.9369             |
| 0.3575        | 4.6976  | 16000  | 0.3500          | 0.5014    | 0.4013 | 0.4210   | 0.6268   | 0.7281             | 0.9377             |
| 0.3476        | 4.9912  | 17000  | 0.3499          | 0.5020    | 0.4029 | 0.4217   | 0.6275   | 0.7299             | 0.9379             |
| 0.3562        | 5.2848  | 18000  | 0.3454          | 0.4958    | 0.3933 | 0.4169   | 0.6288   | 0.7190             | 0.9371             |
| 0.3461        | 5.5784  | 19000  | 0.3451          | 0.4910    | 0.3904 | 0.4153   | 0.6281   | 0.7108             | 0.9359             |
| 0.3444        | 5.8720  | 20000  | 0.3436          | 0.4971    | 0.3864 | 0.4110   | 0.6287   | 0.7152             | 0.9364             |
| 0.3403        | 6.1656  | 21000  | 0.3450          | 0.4986    | 0.3982 | 0.4203   | 0.6298   | 0.7259             | 0.9373             |
| 0.3502        | 6.4592  | 22000  | 0.3452          | 0.4931    | 0.3828 | 0.4079   | 0.6276   | 0.7077             | 0.9361             |
| 0.3476        | 6.7528  | 23000  | 0.3542          | 0.7095    | 0.4026 | 0.4183   | 0.6243   | 0.7321             | 0.9376             |
| 0.3403        | 7.0464  | 24000  | 0.3431          | 0.4992    | 0.3905 | 0.4153   | 0.6308   | 0.7156             | 0.9369             |
| 0.3543        | 7.3400  | 25000  | 0.3443          | 0.5061    | 0.3950 | 0.4164   | 0.6303   | 0.7252             | 0.9379             |
| 0.3478        | 7.6336  | 26000  | 0.3430          | 0.4985    | 0.3962 | 0.4189   | 0.6305   | 0.7227             | 0.9372             |
| 0.3523        | 7.9272  | 27000  | 0.3425          | 0.4958    | 0.3941 | 0.4191   | 0.6309   | 0.7138             | 0.9367             |
| 0.3495        | 8.2208  | 28000  | 0.3429          | 0.4963    | 0.3880 | 0.4134   | 0.6300   | 0.7118             | 0.9368             |
| 0.3492        | 8.5144  | 29000  | 0.3492          | 0.7052    | 0.4057 | 0.4231   | 0.6278   | 0.7315             | 0.9376             |
| 0.3426        | 8.8080  | 30000  | 0.3498          | 0.7065    | 0.4029 | 0.4211   | 0.6267   | 0.7306             | 0.9379             |
| 0.3471        | 9.1016  | 31000  | 0.3440          | 0.5101    | 0.3913 | 0.4132   | 0.6302   | 0.7269             | 0.9378             |
| 0.3468        | 9.3952  | 32000  | 0.3429          | 0.5062    | 0.3969 | 0.4179   | 0.6315   | 0.7265             | 0.9376             |
| 0.3484        | 9.6888  | 33000  | 0.3410          | 0.4969    | 0.3975 | 0.4210   | 0.6312   | 0.7195             | 0.9370             |
| 0.3482        | 9.9824  | 34000  | 0.3406          | 0.5032    | 0.3898 | 0.4147   | 0.6314   | 0.7161             | 0.9375             |
| 0.3408        | 10.2760 | 35000  | 0.3409          | 0.4990    | 0.3990 | 0.4227   | 0.6320   | 0.7206             | 0.9376             |
| 0.3476        | 10.5696 | 36000  | 0.3404          | 0.5055    | 0.3874 | 0.4119   | 0.6314   | 0.7173             | 0.9379             |
| 0.3391        | 10.8632 | 37000  | 0.3429          | 0.7050    | 0.4040 | 0.4246   | 0.6315   | 0.7276             | 0.9381             |
| 0.3403        | 11.1568 | 38000  | 0.3409          | 0.7022    | 0.4016 | 0.4244   | 0.6331   | 0.7245             | 0.9377             |
| 0.3354        | 11.4504 | 39000  | 0.3425          | 0.7096    | 0.3982 | 0.4192   | 0.6317   | 0.7276             | 0.9378             |
| 0.3462        | 11.7440 | 40000  | 0.3412          | 0.4983    | 0.3915 | 0.4175   | 0.6324   | 0.7088             | 0.9371             |
| 0.3374        | 12.0376 | 41000  | 0.3437          | 0.4857    | 0.4019 | 0.4264   | 0.6297   | 0.7074             | 0.9350             |
| 0.3537        | 12.3312 | 42000  | 0.3430          | 0.7070    | 0.4052 | 0.4246   | 0.6323   | 0.7298             | 0.9378             |
| 0.3466        | 12.6248 | 43000  | 0.3388          | 0.7051    | 0.3952 | 0.4197   | 0.6336   | 0.7211             | 0.9378             |
| 0.342         | 12.9184 | 44000  | 0.3471          | 0.4908    | 0.3793 | 0.4047   | 0.6261   | 0.6961             | 0.9353             |
| 0.3437        | 13.2120 | 45000  | 0.3396          | 0.7069    | 0.3922 | 0.4161   | 0.6331   | 0.7193             | 0.9374             |
| 0.335         | 13.5056 | 46000  | 0.3395          | 0.7111    | 0.3953 | 0.4186   | 0.6338   | 0.7246             | 0.9382             |
| 0.3466        | 13.7992 | 47000  | 0.3384          | 0.7042    | 0.3986 | 0.4224   | 0.6333   | 0.7219             | 0.9378             |
| 0.353         | 14.0928 | 48000  | 0.3407          | 0.6951    | 0.3941 | 0.4209   | 0.6316   | 0.7058             | 0.9368             |
| 0.3444        | 14.3864 | 49000  | 0.3395          | 0.7014    | 0.3893 | 0.4159   | 0.6330   | 0.7119             | 0.9374             |
| 0.3328        | 14.6800 | 50000  | 0.3424          | 0.7149    | 0.4036 | 0.4235   | 0.6333   | 0.7313             | 0.9382             |
| 0.3374        | 14.9736 | 51000  | 0.3378          | 0.7023    | 0.3953 | 0.4205   | 0.6337   | 0.7168             | 0.9375             |
| 0.335         | 15.2672 | 52000  | 0.3385          | 0.7048    | 0.4025 | 0.4252   | 0.6342   | 0.7265             | 0.9379             |
| 0.3441        | 15.5608 | 53000  | 0.3384          | 0.7116    | 0.3918 | 0.4154   | 0.6336   | 0.7223             | 0.9380             |
| 0.3395        | 15.8544 | 54000  | 0.3409          | 0.6944    | 0.3944 | 0.4213   | 0.6318   | 0.7034             | 0.9367             |
| 0.3558        | 16.1480 | 55000  | 0.3373          | 0.7042    | 0.3983 | 0.4235   | 0.6354   | 0.7175             | 0.9378             |
| 0.328         | 16.4416 | 56000  | 0.3389          | 0.7083    | 0.4069 | 0.4292   | 0.6350   | 0.7280             | 0.9386             |
| 0.3416        | 16.7352 | 57000  | 0.3373          | 0.7048    | 0.4045 | 0.4284   | 0.6353   | 0.7227             | 0.9383             |
| 0.3275        | 17.0288 | 58000  | 0.3375          | 0.7096    | 0.4008 | 0.4250   | 0.6354   | 0.7241             | 0.9384             |
| 0.3528        | 17.3224 | 59000  | 0.3366          | 0.7077    | 0.3967 | 0.4213   | 0.6354   | 0.7196             | 0.9382             |
| 0.3504        | 17.6160 | 60000  | 0.3365          | 0.7039    | 0.3970 | 0.4220   | 0.6341   | 0.7166             | 0.9379             |
| 0.3292        | 17.9096 | 61000  | 0.3367          | 0.7064    | 0.4033 | 0.4280   | 0.6359   | 0.7229             | 0.9385             |
| 0.3382        | 18.2032 | 62000  | 0.3476          | 0.7160    | 0.4088 | 0.4247   | 0.6299   | 0.7363             | 0.9378             |
| 0.3349        | 18.4968 | 63000  | 0.3376          | 0.7017    | 0.3927 | 0.4195   | 0.6337   | 0.7074             | 0.9379             |
| 0.3401        | 18.7904 | 64000  | 0.3361          | 0.7030    | 0.3994 | 0.4251   | 0.6352   | 0.7154             | 0.9379             |
| 0.3365        | 19.0840 | 65000  | 0.3362          | 0.7016    | 0.4026 | 0.4276   | 0.6354   | 0.7168             | 0.9378             |
| 0.3385        | 19.3776 | 66000  | 0.3361          | 0.7031    | 0.3992 | 0.4256   | 0.6347   | 0.7134             | 0.9381             |
| 0.3395        | 19.6712 | 67000  | 0.3379          | 0.7092    | 0.4054 | 0.4282   | 0.6354   | 0.7263             | 0.9380             |
| 0.3383        | 19.9648 | 68000  | 0.3417          | 0.7138    | 0.4116 | 0.4313   | 0.6343   | 0.7337             | 0.9384             |
| 0.3356        | 20.2584 | 69000  | 0.3359          | 0.7086    | 0.3992 | 0.4235   | 0.6356   | 0.7221             | 0.9380             |
| 0.3363        | 20.5520 | 70000  | 0.3365          | 0.7088    | 0.4062 | 0.4305   | 0.6367   | 0.7260             | 0.9384             |
| 0.3333        | 20.8456 | 71000  | 0.3365          | 0.7018    | 0.3933 | 0.4201   | 0.6340   | 0.7091             | 0.9380             |
| 0.3298        | 21.1392 | 72000  | 0.3351          | 0.7074    | 0.3976 | 0.4239   | 0.6358   | 0.7160             | 0.9385             |
| 0.3372        | 21.4328 | 73000  | 0.3349          | 0.7061    | 0.4002 | 0.4261   | 0.6364   | 0.7191             | 0.9383             |
| 0.3424        | 21.7264 | 74000  | 0.3352          | 0.7052    | 0.3990 | 0.4256   | 0.6356   | 0.7153             | 0.9384             |
| 0.3393        | 22.0200 | 75000  | 0.3371          | 0.7007    | 0.3948 | 0.4223   | 0.6340   | 0.7072             | 0.9378             |
| 0.3305        | 22.3136 | 76000  | 0.3377          | 0.6977    | 0.3956 | 0.4222   | 0.6336   | 0.7065             | 0.9375             |
| 0.3343        | 22.6072 | 77000  | 0.3374          | 0.7115    | 0.4086 | 0.4310   | 0.6360   | 0.7283             | 0.9385             |
| 0.3378        | 22.9008 | 78000  | 0.3349          | 0.7064    | 0.4023 | 0.4286   | 0.6363   | 0.7180             | 0.9383             |
| 0.3443        | 23.1944 | 79000  | 0.3349          | 0.7061    | 0.4039 | 0.4309   | 0.6367   | 0.7170             | 0.9382             |
| 0.3464        | 23.4880 | 80000  | 0.3390          | 0.7120    | 0.4123 | 0.4332   | 0.6353   | 0.7313             | 0.9385             |
| 0.3355        | 23.7816 | 81000  | 0.3350          | 0.7107    | 0.4041 | 0.4287   | 0.6369   | 0.7237             | 0.9383             |
| 0.3312        | 24.0752 | 82000  | 0.3347          | 0.7080    | 0.3984 | 0.4258   | 0.6366   | 0.7152             | 0.9387             |
| 0.3526        | 24.3688 | 83000  | 0.3349          | 0.7087    | 0.4059 | 0.4309   | 0.6368   | 0.7237             | 0.9386             |
| 0.3438        | 24.6624 | 84000  | 0.3344          | 0.7090    | 0.3990 | 0.4248   | 0.6362   | 0.7201             | 0.9382             |
| 0.3365        | 24.9560 | 85000  | 0.3344          | 0.7092    | 0.4026 | 0.4293   | 0.6369   | 0.7194             | 0.9386             |
| 0.3529        | 25.2496 | 86000  | 0.3354          | 0.7081    | 0.4090 | 0.4337   | 0.6372   | 0.7263             | 0.9385             |
| 0.3398        | 25.5432 | 87000  | 0.3343          | 0.7114    | 0.4018 | 0.4280   | 0.6371   | 0.7215             | 0.9386             |
| 0.3349        | 25.8368 | 88000  | 0.3342          | 0.7074    | 0.4036 | 0.4305   | 0.6368   | 0.7173             | 0.9385             |
| 0.343         | 26.1304 | 89000  | 0.3348          | 0.7051    | 0.4011 | 0.4289   | 0.6365   | 0.7131             | 0.9382             |
| 0.3408        | 26.4240 | 90000  | 0.3345          | 0.7064    | 0.4002 | 0.4274   | 0.6368   | 0.7144             | 0.9384             |
| 0.3264        | 26.7176 | 91000  | 0.3344          | 0.7111    | 0.4038 | 0.4297   | 0.6374   | 0.7223             | 0.9387             |
| 0.3308        | 27.0112 | 92000  | 0.3341          | 0.7077    | 0.4025 | 0.4297   | 0.6369   | 0.7171             | 0.9387             |
| 0.3354        | 27.3048 | 93000  | 0.3364          | 0.7153    | 0.4059 | 0.4292   | 0.6368   | 0.7296             | 0.9384             |
| 0.3448        | 27.5984 | 94000  | 0.3340          | 0.7083    | 0.4024 | 0.4293   | 0.6367   | 0.7184             | 0.9386             |
| 0.3404        | 27.8920 | 95000  | 0.3340          | 0.7086    | 0.4014 | 0.4287   | 0.6372   | 0.7165             | 0.9386             |
| 0.3382        | 28.1856 | 96000  | 0.3339          | 0.7079    | 0.4023 | 0.4288   | 0.6367   | 0.7190             | 0.9384             |
| 0.3318        | 28.4792 | 97000  | 0.3339          | 0.7069    | 0.4049 | 0.4314   | 0.6369   | 0.7187             | 0.9385             |
| 0.331         | 28.7728 | 98000  | 0.3345          | 0.7106    | 0.4060 | 0.4310   | 0.6377   | 0.7249             | 0.9387             |
| 0.3372        | 29.0664 | 99000  | 0.3342          | 0.7104    | 0.4040 | 0.4293   | 0.6372   | 0.7228             | 0.9385             |
| 0.3401        | 29.3600 | 100000 | 0.3339          | 0.7084    | 0.4033 | 0.4295   | 0.6367   | 0.7196             | 0.9386             |
| 0.331         | 29.6536 | 101000 | 0.3341          | 0.7102    | 0.4045 | 0.4299   | 0.6372   | 0.7226             | 0.9386             |
| 0.3378        | 29.9472 | 102000 | 0.3339          | 0.7086    | 0.4035 | 0.4297   | 0.6370   | 0.7202             | 0.9386             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1